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e Non-linear equations for the slow space-time
evolution of the radial drift wave envelope and
zonal flow amplitude have been self-consistently
derived for a model nonuniform tokamak equilib-
rium within the coherent 4-wave drift wave-zonal
flow modulation interaction model of Chen, Lin
and White [Phys. Plasmas 7, 3129, (2000)].
Solutions clearly demonstrate turbulence spread-
ing due to non-linearly enhanced dispersiveness
and, consequently, the device-size dependence of
the saturated wave intensities and transport coef-
ficients.
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The dependence of plasma confinement on the de-
vice size 1s obviously a very crucial issue in fu-
sion energy research. Assuming drift waves are re-
sponsible for the anomalous transport, size-scaling
can be reduced, in the simplest model, to the de-
pendence of drift-wave fluctuation intensity on p,.
Here p, = p;/L, with p; and L, being, respectively,
the ion Larmor radius and the plasma inhomogene-
ity scale length. The coherent 4-wave drift wave-
zonal flow modulation interaction model of Chen,
Lin and White has captured the essential features
observed in global gyrokinetic simulations in the
pi/ L, — 0 limit.

We adopt the same model, including finite L,
plasma inhomogeneities. In this finite-p, coherent
4-wave model, not only the drift wave (pump) ra-
dial envelope will be localized, leading to reduction
in the modulational instability growth rate due to
the finite interaction region; but more interestingly
the damped pump and sidebands will disperse out-
ward leading to radial spreading of the drift wave
turbulence, qualitatively similar to that observed
in recent simulations.



We assume that fluctuating fields are given by a
single n # 0 drift wave, §¢4, and a zonal (n = m = 0)
scalar field perturbation 0¢.:

0pq = 0¢g + 01 + 09—,
Sy = ¥ Z A()?me_imﬁqbg(nq —m,r)+c.c.

m
S = =¥ Z As €™y (ng —m,r) +ce.
m

3o, = A,(r)+ cc. | (1)

Equations (1) explicitly indicate the existence of
two characteristic spatial scales for high-n drift
waves. The long scale reflects the characteristic ra-
dial variation of Ay, A4, A., i.e. of mode envelopes
and zonal flow, and is typically shorter than the
equilibrium scale L,. The short radial scale is as-
sociated with the parallel (to the ambient magnetic
field) mode structure. It is ~ n 'dr/dg
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Radial structure of the real part of the wave fields,
ReP (black), ReS (red) and ReZ (green), 7 = 20, for
A=1.15 and L = 200.



These equations require numerical solutions.

We take (Gaussian non-uniformity profiles and
quadratic dispersiveness for numerical studies.
That is, Dr = w/wy — 1 + 67 + V(z), with the po-
tential well V(z) = 1 — exp(—2*/L?), where L is re-
lated with the equilibrium profile scale as L =
indq/dr|L,/TY?. We also choose D; = —(yp(x)/T") =
—(1/T)(Aexp(—z*/L?) — 1) for the pump and D; =
(74/T") for the sidebands in order to have

Lp=0,— ’_}/p<flf) — ’LFV(CE) + 25’2 :
Ls=0,+7s—il'V(z) +i07 ,
Lr=(0-+7.) . (2)

We readily recover the local limit by taking L. — oo,
P = Fy(t), S = Sy(t)cos(k.x) and Z = Zy(t)sin(k,x).
In that case, maximum zonal flow growth rate for
fixed pump amplitude, T,y = |P|* — 7., is ex-
pected for x? = 35+ I, yrar ice. for O, = T712(y, +

Fz,Maz)l/Q-
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Radial structure of the real part of the wave fields,
ReP (black), ReS (red) and ReZ (green), 7 = 50 ,

for A =1.15 and L = 200.
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Radial structure of the real part of the wave fields,
ReP (black), IReS (red) and IReZ (green), 7 = 125 ,
for A =1.15 and L = 200.
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Characteristic squared width of the wave fields
normalized to L? as a function of time, for A = 1.2

and L = 200.
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Drift wave intensity <I_ > vs. L after spatial aver-
aging on one fifth of the linearly unstable domain.
The three curves refer to A = 1.15, A = 1.2 and
A=1.3.
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L??) are shown vs. the same simulation data.
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FIG. 1. Time evolution for A=1.1, L=>50
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FIG. 2. Time evolution ¥or A=1.1, L=>50
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13




Zonal flows, thus, act both as non-linear damp-
ing as well as anti potential well on the drift wave
pump. Meanwhile, the pump drives zonal flows
non-linearly but it generates non-linear diffusion
as well, that manifests itself in numerical simula-
tions as turbulence spreading.

When radial spreading stops and the fluctuation
intensity has reached a time asymptotic value,
both pump and sideband are characterized by com-
plex radial structures on intermediate scales be-

tween fast non-linear oscillations on ~ 7, and
the size of the linearly unstable region ~ 7}3/02[,.

We calculate the spatially averaged drift wave in-
tensity (/) on 1/5 of the linearly unstable domain.
In the L — oo limit, numerical results reflect
well the values for the fluctuation intensity ex-
pected from the fixed point solution, i.e. (I;) ~

0.15, 0.18, 0.23 respectively for A =1.15, 1.2, 1.3.
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The scaling of (I) with the system size is evident:
it sharply increases with L for L < 30, suggesting a
Bohm scaling of anomalous transport, and it even-
tually reaches the asymptotic value set by the fixed
point solution for L > 100, where gyro-Bohm scal-
ing is indeed expected. Due to the definition of
L = nq(pi/7)(|s|/p«)T "/, values obtained from simu-
lation results depend intrinsically on dimensionless
physical parameters such as magnetic shear and
normalized poloidal wavelength.

With the parameters of global gyrokinetic sim-
ulations, and defining o as the tokamak minor ra-
dius, present results would predict a Bohm to gyro-
Bohm transition for a/p, > 420 and saturation to
gyro-Bohm transport for a/p, > 1400, in remark-
able agreement with the numerical results.
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In summary, we have demonstrated that the co-
herent 4-wave drift wave-zonal flow modulation in-
teraction model of Chen, Lin and White not only
captures the essential features observed in global
gyrokinetic simulations in the p;/L, — 0 limit, but,
by allowing non-uniform equilibrium, accounts as
well for size scaling of drift wave intensity and ul-
timately of turbulent diffusion. This model sets
a hierarchy among the relevant non-linear inter-
actions; making it possible to consistently derive
equations for the slow space-time evolution of drift
wave radial envelope and zonal flow structures.
The predicted size scaling of drift wave intensity
is remarkably similar to that of global gyrokinetic
simulations.
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