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Fully Nonlinear lon gyrokinetic equations C

Evolution of the plasma species is determined by coupled ion and electron kinetic equations for the time-dependent three-
dimensional (5D) distribution functions simplified from H. Qin and et. al.(submitted to Contrib. Plasma Phys.; T. S. Hahm,
Phys. Plasmas , Vol. 3, 4658 (1996). The gyrocenter distribution function Fi,(X, i, 7, ) in gyrocenter coordinates: Z = (X, g, Eo, 1), X =
x—p,p=bxv/Q,
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Here Z,e, M, are the electric charge and mass of electrons (a = €), ions (o = 4). p is the guiding center
magnetic moment. The left-hand side of Eq. (1) describes the particle motion in the electric field and magnetic
field. C, is the Coulomb collision operator. The over-bar is used for the gyrocenter variables and { ) denotes
the gyroangle averaging. Here a splitting scheme has been used for the electric potential. The field & is split
into two parts: ®° is the large amplitude and the slow variation part; 3¢ is the small amplitude and the rapid
variation part. [4y is almost energy.
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Gyrokinetic Poisson equation---Hong QIn
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Fully Nonlinear (Gyro-kinetic Poisson equation
in long wavelength limit LLL;

In the long wavelength limit &, p, < 1, the self-consistent electrostatic potential are typically computed
from the gyro-kinetic Poisson equation for the multiple species
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For the single species, the gyro-kinetic Poisson equation becomes
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where the gyrocenter center density N, and perpendicular ion pressure p |, are defined by
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The n, and 7', are the normalization density and temperature. The ion gyroradius is p, = /27 ,/M,, /L,
the ion gyrofrequency is 0, = Z,eB/M,c, and the ion Debye length is A}, =T’ ,/4mn,/Z%e*.



Fully Nonlinear Gyro-kinetic Poisson equation
in arbitrary wavelength regime LLL;

In the arbitrary wavelength regime, the self-consistent electrostatic potential is computed from the gyro-
kinetic Poisson equation:
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where T'o(b) = Io(b)e™® b = p2V2 /2, Iy(b) is the usual zeroth-order modified Bessel function. The ion
gyroradius is p, = /21" ,/M, /{1, the ion gyrofrequency is Q, = Z,eB/M,c, and the ion Debye length is
A, = T1./4nN,Z2e%. Here the dot product between the density and potential and the Debye shielding
have been dropped for simplicity. The following first-order Padé approximation to I'y is an excellent fit for
0 <b <9, and is therefore valid well into the typical ion gyrokinetic regime.
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and Padé approximation Eq. (8) into Eq. (7) yields
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where ¢ can be solved using the gyrokinetic Poisson solver in the long wavelength limit.



Field-line-aligned coordinates LLL;

We choose field-line-aligned ballooning coordinates, (x, ¥, z), which are related to the usual flux coordinates
(1, 0, ¢) by the relations
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as shown in Fig. 1. The covering area given by the square ABCD in the usual flux coordinates is the same as
the parallelogram ABEF in the field-line-alighed coordinates. The magnetic separatrix is denoted by 1 = /.
In this choice of coordinates, x is a flux surface label, , the poloidal angle, is also the coordinate along the
field line, and z is a field line label within the flux surface. In this coordinates the magnetic field has a Clebsch
representation,

I B=vVZxVX & Bvz=0 ’

Figure 1: A sketch of the field-line-aligned coordinates mapping from (&, ¢) to (v, z). The area covered by the square ABCD is for
the usual Aux coordinates (¢, €, ). The area covered by parallelogram ABEF is for the field-line-aligned coordinates (x, y, 2).
The green area covered by the parallelogram AB;FqF'is a truncated simulation domain by the name of a annular toroidal wedge.

B =VzxVz



Drift operator

The equilibrium total drift operator becomes
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The perturbed E x B drift operator becomes
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when the conventional turbulence ordering (k| < k) is used, the perturbed E x B drift operator can be

further reduced to a simple form
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where 0/00 ~ —1:0/0z is used.
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The general perpendicular Laplacian operator LLL;

We use the general perpendicular Laplacian operator
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The general perpendicular Laplacian operator for axisymmetric potential $g(z,y) is
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For the perturbed potential 5¢, if we drop &/0y terms due to the elongated nature
of the turbulence (k”/kl<<1) we obtain
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In this formulation, we keep the poloidal variation of the zonal flow ®(y,0).



Boundary Conditions — Radial (z) C

Radial (x) boundary condition for potential ¢

Use the neoclassical analytical ambipolar value £, as the boundary condition at core boundary surface
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Radial (x) boundary condition for distribution function F

The radial Robin boundary condition at the inner core surface 4 = 1, and the outer wall surface 1 = 1/,
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This is a generalization of the Dirichlet (C3,. = 1) and Neumann {C3, = 0) boundary conditions.



Sheath boundary conditions
in SOL and private flux regions LLL;

Sheath boundary conditions for potential

If both electron and ion are kinetic, the sheath potential is determined:
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where there is an energetic group of impinging electrons that overcome the potential barrier and reach the
wall with the energy Fy > ed,;.

Sheath boundary conditions for distribution function 7

If both electron and ion are kinetic, the electron distribution function is:
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where the impinging ions are not confined for the perfectly absorbing wall and the current through the sheath
is zero with no biasing. A convention regarding the sign of the parallel velocity is that it is considered positive
if it has a positive projection on @ axis. Here the positive ¢ axis is pointing to the plate/wall. where there is

an energetic group of impinging electrons that overcome the potential barrier, reach the wall with the energy
Ey > eDgp,, and lost. Here vgp = /2 A®gg/m,, APgy is the sheath potential.



Tempest exhibits collisionless damping of
GAMs and zonal Flow

 Axis-symmetric mode (no toroidal variation)
— Parallel ion dynamics

— Magnetic curvature

— Acceleration (Nonlinear Landau damping)

= TEMPEST should see GAMs
» Tempest model

— Drift kinetic ions with radial drift, streaming,
and acceleration

— Boltzmann electron

— Gyrokinetic Poisson equation in limit small
p./L,

Dirichlet radial boundary conditions

GAI\/IS provide opportunity to “verify” TEMPEST
physics

— Rosenbluth-Hinton residual
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Tempest exhibits collisionless damping of

GAMs and zonal Flow
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GAMSs simulations converge with n,, ny, and Kg,,.,
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GAMSs simulations converge with n, and n,
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Maximum kinetic energy has to be 10x thermal energy

d(t=00) /B[t=0)
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Contour plot of distribution
- function
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5D development plan

Completed formulation of 5D
gyrokinetic simulation model

— A basic set of equations
« Electrostatic turbulence
e Arbitrary wavelength limit

— Choice of coordinate system
 Field-aligned coordinates

Planned numerical implementation

— Implementing special processor scheduling
for 5D data communication

— Designing dual coordinate sets for radial
difference

— Adding toroidal drift
« Change the 2D spatial loop to 3D
 Add toroidal convection

— Extend field solve to 3D

— Developing gyroaverging module

Defined benchmark test problems
— ITG turbulence
* Rosenbluth-Hinton zonal flow residual
 Linear growth rates of ITG modes
— Drift wave turbulence
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