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Motivation

Neoclassical radial electric field is important for stellarator transport (e.g.
collisionless particle dynamics; zonal flow physics; transport barriers)

Departure of axi-symmetry can be weak (i.e. QA concept). standard cal-
culation of £, can be difficult

Well-established gyro-kinetic particle simulation techniques offer alterna-
tive possibility to determiné,

Method can be generalized to viscous flow damping in fully three-dimensional
non-axisymmetric geometries



The Method PPPL
Write confiningB field in Boozer coordinateg), ¢, () as

B = 1 () VEX VY + Vi x V0
B =g@W)V{+1(y)Vi+ 5V (1)

with ¢g(¢) o poloidal current;j () o toroidal current.
Jacobian of transformatiaff = [V (VOx V()] satisfies

TIB*=g()+c(¥)I () = f(¥) (Aux surface quantity) (2)

lon Momentum Balance

dV

VB
C

whereV : fluid velocity; p : mass densityR : collisional drag;F : (exter-
nal) applied force an® = P bb + (I — bb) P, : the pressure tensor; also
P (P,) : parallel (perpendicular) pressure.

Take scalar product of Eq.(2) wily = Or/0¢ (with r is the position vec-
tor) and operate with...) = r1....7 (¢, 0, () dfd( one obtains

c dt dt aC )~ T (4)




whereP = (P + P,) /2, T, = ((R+F)-e.) is the torque due to applied
forces and collisional dradj, is the toroidal component of the canonical mo-
mentumL = pV + eA /c whereA = V6 — xV( is the vector potential and
21y 1S the poloidal flux.

To derive Eq.(4), note that

<ene<- (V:B )> = g /[ nV-(Bxe;) Jdod¢ = g L (Y) [Tdo, = b(f) Cilcf

Here() is the total chargd, = nV is the patrticle flux, ando,, = J Vydod(
IS an area element normal to the magnetic surfaeeconst and pointing out-
wards.

For zero applied force and after a few ion-ion collision times, toroidal bal-
ance equation reads

L() dQ L oP

c dt _S_<0C> )
Knowing the parallel and perpendicular pressures on the magnetic surface
(velocity moments ob f), one obtains a measure of the radial particle flux on

that surface through Eq.(5)




Calculation of Parallel & Perpendicular Pressures orp,

Write perpendicular pressure as
Pr= > (PL),,,expli(mb + nNyC) (6)

,n

whereN, is the number of field periods of the configuration and the Fourier
coefficients are calculated according to

_ 187 dO 1§ d¢ (mwv3 /2) 6 f exp [—i (m + nN,()| d*v )
mn e de 13T d¢

Guiding center motion and collisions will spread the particles toward equal
density in pitch and over the magnetic surface
Then, in a small layeéy < v, (boundary), one notes that

[[dod = [T (60) " dPr = [F @)oY | B*dx
and the(P, ),, , Fourier components become

[ d*z (mv? /2) § f B exp [—i (ml + nN,())
I d3x B?

(Py)

(PL)yn =/ d’v (8)

Same method applies fat,.



Numerical Method PPPL
/Z—\

Particles are initially randomized thand(, and
between) — A /2 andy + A /2.

Introduce radial coordinate= |/v// B, so that
or ~ A/ (2+/By); typical drift time isT, ~ Ar/V;
whereV; ~ Vi, (p:r,/ R.) is the typical radial curvature

drift velocity. =

We must haver; > 7., wherer, is the relaxation time (typically a few ion-ion collision
times).

Calculation of | and P, are carried out within an annuldg < Ay < ¢, centered around

1.
3
7D
Parallel and perpendicular pressures calculated on U
different processor element (PE) are collected on a ; P
single PE (PE=0), on which the Fourier components ?
(P.),,, and(Py)  are evaluated. S Ap




Divergence of Pressure Tensor PPPL

Write Pressure Tensdt as

P=PBB+PI+P1 (9)
whereP = (P — P, ) /B*. Noting that
VB?/2=Bx (VxB)+(B-V)B (10)
and
V.-P=B(B-VP)+ PV:(BB)+ VP, (11)

and using Ampere’s law and the radial force balance equation, we obtain
— (1
V-P=B(B-VP)+P (2 VB? + 47TVP0) + VP, (12)

where Py = F (1) is the equilibrium pressure. Taking the scalar product of
Eq.(12) withe, = 0r/0¢ wherer is the position vector ang = {6, (} one
gets

P 0 0P,

_ . R » >
e, (VP>_B¢(BVP)+28¢B+8¢ (13)



Taking the flux-surface average) = 1/ 7 (o) dfd( of Eq.(13) yields

(e, (V-P)) :; <§0 (P +PL)) | (14)

since(B-V F') = 0 for any functionf’ = F (1,0, () and
<p532> <P||—PL 5BQ>
) B? 0y

- ) dod¢

/
= fW) /] 55 55 (B = Pu)dodC
/



Results & Conclusions

eRun for NCSX plasma (C82 configuration); with central ion temperature
T;(0) = 2.76 KeV; central electron temperatufe(0) = 2.14 KeV; central
plasma density,; = 6.73 x 10 cm™. Magnetic surface of reference

Y /iy = 0.7.

eEquilibrium B field is specified using 30 Fourier harmonics

eTrajectories ofx 10° Lagragian markers are integrated; time stepr;, =
4 x 107*; collisional effects are calculated every 10 time steps.

eBackground distribution functiorfy loaded as a Maxwellian withl/) =
0.

radial particle flux

Direct measuremenb(oken ling and gyro-kénetic calculatiorsmooth curveof I, (a.u.)



Electron & lon Radial Fluxes PPPL
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Electron Current Density as a function of Normalizéd= —ad/dr (e /T;(0))

O
T

jon current density (10%x7 statamps/cm*x

lon Current Density as a function of Normalizéd = —ad/dr (e®/T;(0))
Stable root found aF, ~ —26.2 kV/m
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