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Abstract

Use is made of the Vlasov-Maxwell equations to describe the electron-ion

two-stream instability driven by the directed axial motion of a high-intensity

ion beam propagating through a stationary population of (unwanted) back-

ground electrons. The ion beam is treated as continuous in the z-direction,

and the electrons are electrostatically confined in the transverse direction by

the space-charge potential produced by the excess ion charge. The analysis

is carried out for arbitrary beam intensity, consistent with transverse con-

finement of the beam particles, and arbitrary fractional charge neutralization

by the background electrons. For the case of overlapping step-function ion

and electron density profiles, corresponding to monoenergetic electrons and

ions in the transverse direction, detailed stability properties are calculated,

including the important effects of an axial momentum spread, over a wide

range of system parameters for dipole perturbations with azimuthal mode

number ` = 1. The two-stream instability growth rate is found to increase

with increasing beam intensity, increasing fractional charge neutralization,

and decreasing proximity of the conducting wall. It is shown that Landau

damping associated with a modest axial momentum spread of the beam ions

and background electrons has a strong stabilizing influence on the instability.
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Periodic focusing accelerators and transport systems1–4 have a wide range of applications

ranging from basic scientific research, to applications such as spallation neutron sources, tri-

tium production, nuclear waste transmutation, and heavy ion fusion. At the high beam

currents and charge densities of practical interest, it is increasingly important to develop an

improved theoretical understanding of the influence of the intense self fields produced by

the beam space charge and current on detailed equilibrium, stability and transport prop-

erties. For a one-component high-intensity beam, considerable progress has been made

in describing the self-consistent evolution of the beam distribution function fb(x,p, t) and

the self-generated electric and magnetic fields in kinetic analyses5–9 based on the Vlasov-

Maxwell equations. In many practical accelerator applications, however, an (unwanted)

second charge component is present. For example, a background population of electrons can

result by secondary emission when energetic particles strike the chamber wall, or through

ionization of background neutral gas by the beam ions. When a second charge component

is present, it has been recognized for many years, both in theoretical studies and in ex-

perimental observations10–21, that the relative streaming motion of the high-intensity beam

particles through the background charge species provides the free energy to drive the clas-

sical two-stream instability, appropriately modified to include the effects of dc space charge,

relativistic kinematics, transverse beam dynamics, presence of a conducting wall, etc. A

well-documented example is the electron-proton (e-p) instability observed in the Proton

Storage Ring16–18, although a similar instability also exists for other ion species, including

(for example) electron-ion interactions in electron storage rings19–21.

In a recent theoretical calculation10,11 that focuses on the moderate-intensity ion beams

characteristic of proton linacs and storage rings, we developed a detailed kinetic description

of the electron-ion two-stream instability based on the Vlasov-Maxwell equations. While

that analysis10,11 incorporated the effects of finite transverse geometry and transverse kinetic

effects, it neglected the (stabilizing) influence of an axial momentum spread of the interacting

charge components. In this paper, building on the techniques developed in this earlier

work10,11, we examine two-stream stability properties, incorporating the important effects
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of an axial momentum spread on detailed stability behavior.

The present analysis considers a high-intensity ion beam with distribution function

fb(x,p, t), and characteristic radius rb and average axial momentum γbmbβbc propagating

in the z-direction through a background population of electrons with distribution function

fe(x,p, t). The ions have high directed axial velocity Vb = βbc in the z-direction, and the

background electrons are assumed to be nonrelativistic and approximately stationary with

zero average axial velocity,
∫
d3pvzfe ' 0 in the laboratory frame. In the smooth-beam

approximation, the ion beam is assumed to be continuous in the z-direction, and the applied

transverse focusing force on a beam ion is modeled by

Fb
foc = −γbmbω

2
βb(xêx + yêy) , (1)

where x⊥ = xêx +yêy is the transverse displacement from the beam axis, (γb−1)mbc
2 is the

characteristic directed ion kinetic energy, mb is the ion rest mass, c is the speed of light in

vacuo, and ωβb = const. is the effective betatron frequency for transverse ion motion in the

applied focusing field. For the background electrons, assuming that the ion density exceeds

the background electron density, the space-charge force on an electron, Fs
e = e∇⊥φ, provides

transverse confinement of the background electrons by the electrostatic space-charge poten-

tial φ(x, t). It is further assumed that the ion motion in the beam frame is nonrelativistic,

and that the transverse momentum components of the beam ions and the characteristic

spread in axial momentum are small compared with the directed axial momentum. The

space-charge intensity in the present analysis is allowed to be arbitrarily large, subject

only to transverse confinement of the beam ions by the focusing force in Eq. (1). Finally,

the present analysis is carried out in the electrostatic and magnetostatic approximations,

and the self-generated electric and magnetic fields are represented as Es = −∇φ(x, t) and

Bs = ∇Az(x, t)× êz, where the electrostatic potential φ(x, t) is determined self-consistently

from Poisson’s equation. Treating the axial velocity profile of the beam ions as approxi-

mately uniform over the beam cross section, Vzb(x, t) ' βbc = const., and assuming that

the electrons carry zero axial current in the laboratory frame, the z-component of vector
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potential Az(x, t) is determined self-consistently in the magnetostatic approximation from

∇2Az = −4πZbeβbnb. Here, +Zbe is the ion charge, and nb(x, t) =
∫
d3pfb(x,p, t) is the ion

number density.

Making use of the assumptions outlined above, collective interactions between the beam

ions and the background electrons are described by the nonlinear Vlasov-Maxwell equations

for the ion and electron distribution functions, fb(x,p, t) and fe(x,p, t), the space-charge

potential φ(x, t), and the combined potential ψ(x, t) = φ(x, t)− βbAz(x, t). We obtain10,11

{
∂

∂t
+ v · ∂

∂x
− (γbmbω

2
βbx⊥ + Zbe∇⊥ψ) · ∂

∂p⊥
− Zbe

∂φ

∂z

∂

∂pz

}
fb = 0 , (2)

{
∂

∂t
+ v · ∂

∂x
+ e∇φ · ∂

∂p

}
fe = 0 , (3)

∇2φ = −4πe
(
Zb

∫
d3pfb −

∫
d3pfe

)
, (4)

∇2ψ = −4πe

(
Zb

γ2
b

∫
d3pfb −

∫
d3pfe

)
, (5)

where v = p/γbmb in Eq. (2), and v = p/me in Eq. (3).

Equations (2)–(5) constitute a complete description of the collective interaction of the

beam ions with the background electrons based on the Vlasov-Maxwell equations. In the

present analysis, we further assume that the beam propagates axially through a perfectly

conducting cylindrical pipe with radius r = rw. Enforcing [Es
θ ]r=rw = [Es

z ]r=rw = [Bs
r ]r=rw =

0 readily gives φ(r = rw, θ, z, t) = 0, and ψ(r = rw, θ, z, t) = 0. Here, the constant values of

the potentials at r = rw have been taken equal to zero.

Finally, under equilibrium conditions (∂/∂t = 0), the analysis assumes that ion and

electron properties are spatially uniform in the z-direction with ∂/∂z = 0. However, the

stability analysis assumes small-amplitude perturbations with z− and t−variations propor-

tional to exp(ikzz−iωt),where kz is the axial wavenumber, and ω is the (complex) oscillation

frequency, with Imω > 0 corresponding to instability. For present purposes, the stability
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analysis assumes perturbations with sufficiently long axial wavelength and high frequency

that

k2
zr

2
b � 1 , (6)

where rb is the characteristic beam radius. Consistent with Eq. (6), we approximate

∇2 ' ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 in Eqs. (4) and (5), and neglect to leading order the contribu-

tions proportional to (∂/∂z)δφ in the linearized versions of Eqs. (2) and (3). Our previous

investigations of the electron-ion two-stream instability10,11 were carried out in the limit of

cold beam ions and background electrons in the axial direction, assuming that the phase

velocity, ω/kz , of the wave excitations satisfies |ω/kz − βbc| � vT bz, and |ω/kz | � vTez.

where vT bz = (2Tbz/γbmb)
1/2 and vTez = (2Tez/me)

1/2 are the characteristic axial thermal

speeds of the beam ions and the background electrons, respectively. An important feature of

the present analysis is the incorporation of the effects of a (small) axial momentum spread

on detailed stability behavior.

Under quasisteady equilibrium conditions with ∂/∂t = 0, we assume axisymmetric beam

propagation (∂/∂θ = 0) and negligible variation with axial coordinate (∂/∂z = 0). It is

readily shown from Eqs. (2)–(5) that the equilibrium distribution functions (∂/∂t = 0) for

the beam ions and background electrons are of the general form

f0
b (r,p) = Fb(H⊥b)Gb(pz) ,

f0
e (r,p) = Fe(H⊥b)Ge(pz) , (7)

where r = (x2 + y2)1/2 is the radial distance from the beam axis, the distributions in axial

momentum are normalized according to
∫∞
−∞ dpzGj(pz) = 1, for j = b, e, and H⊥b and H⊥e

are the single-particle Hamiltonians defined by

H⊥b =
1

2γbmb
p2
⊥ +

1

2
γbmbω

2
βbr

2 + Zbe[ψ
0(r) − ψ̂0] ,

H⊥e =
1

2me
p2
⊥ − e[φ0(r) − φ̂0] . (8)

5



Here, for ∂/∂θ = 0 = ∂/∂z, H⊥b and H⊥e are exact single-particle constants of the motion

in the equilibrium field configuration, and the constants ψ̂0 ≡ ψ0(r = 0) and φ̂0 ≡ φ0(r = 0)

are the on-axis (r = 0) values.

There is wide latitude in specifying the functional forms of the equilibrium distribution

functions9–11. Once Fb(H⊥b) and Fe(H⊥e) are specified, however, the equilibrium self-field

potentials and density profiles can be calculated self-consistently from Eqs. (4) and (5) with

∂/∂θ = 0 = ∂/∂z. For our purposes here, we specialize to the case of monoenergetic

electrons and ions1,10,11,22

Fb(H⊥b) =
n̂b

2πγbmb
δ(H⊥b − T̂⊥b) ,

Fe(H⊥e) =
n̂e

2πme
δ(H⊥e − T̂⊥e) . (9)

In this case, it is found that the density profiles n0
j (r), j = b, e, correspond to overlapping

step-function profiles. Here, n̂b and n̂e ≡ fZbn̂b are positive constants corresponding to

the ion and electron densities, f = const. is the fractional charge neutralization, and T̂⊥b

and T̂⊥e are constants corresponding to the on-axis (r = 0) values of the transverse ion

and electron temperatures, respectively. Without presenting algebraic details10,11, some

algebraic manipulation of Eqs. (4), (5), and (7)–(9) gives the step-function density profiles

n0
j (r) = n̂j = const., for 0 ≤ r < rb, and n0

j(r) = 0 for rb < r ≤ rw, and j = b, e.

Here, the beam radius rb is related to other equilibrium parameters by ν̂2
b r

2
b = 2T̂⊥b/γbmb

and ν̂2
e r

2
b = 2T̂⊥e/me, where for monoenergetic ions and electrons, the (depressed) betatron

frequencies ν̂b and ν̂e are defined by

ν̂2
b = ω2

βb −
1

2

(
1

γ2
b

− f

)
ω̂2

pb = const. ,

ν̂2
e =

1

2

γbmb

Zbme
(1 − f)ω̂2

pb = const. , (10)

where ω̂2
pb = 4πn̂bZ

2
b e

2/γbmb is the ion plasma frequency-squared. The inequalities, ν̂2
b >

0 and ν̂2
e > 0, are required for existence of the equilibrium. Therefore, we obtain the
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inequalities (ω̂2
pb/ω

2
βb)(1 − γ2

b f) < 2γ2
b and f < 1, as restrictions on beam intensity and

fractional charge neutralization for transverse confinement of the ions and electrons.

For small-amplitude perturbations about general equilibrium distributions, Fj(H⊥j)

and Gj(pz), j = b, e, and corresponding self-field potentials, ψ0(r) and φ0(r), a stabil-

ity analysis proceeds by linearizing Eqs. (2)–(5). Perturbed quantities are expressed as

δψ(x, t) = δψ̂(x⊥) exp(ikzz − iωt), δfb(x,p, t) = δf̂b(x⊥,p) exp(ikzz − iωt), etc., where

x⊥ = (x, y), and Imω > 0 is assumed, corresponding to instability (temporal growth).

Here, kz = 2πn/L is the axial wavenumber, where n is an integer, and L is the fundamental

axial periodicity length (L = 2πR for a ring, where R is the ring radius). The linearized

Vlasov equations are formally integrated by using the method of characteristics1,10,23 to

integrate along the unperturbed trajectories, x′
⊥(t′) and p′

⊥(t′), in the equilibrium field con-

figuration. Some straightforward algebra that makes use of Eqs. (2)–(5) and the assumptions

enumerated earlier gives

δf̂e(x⊥,p) = −e ∂

∂H⊥e
Fe(H⊥e)

{
δφ̂(x⊥) + i(ω − kzvz)

∫ 0

−∞
dτδφ̂(x′

⊥) exp[−i(ω− kzvz)τ ]
}
Ge(pz) ,

(11)

δf̂b(x⊥,p) = Zbe
∂

∂H⊥b

Fb(H⊥b)
{
δψ̂(x⊥) + i(ω − kzvz)

∫ 0

−∞
dτδψ̂(x′

⊥) exp[−i(ω− kzvz)τ ]
}
Gb(pz) ,

(12)

where vz = pz/me in Eq. (11), vz = pz/γbmb in Eq. (12), and the potential amplitudes,

δφ̂(x⊥) and δψ̂(x⊥), solve

(
∂2

∂x2
+

∂2

∂y2

)
δφ̂ = −4πe

[
Zb

∫
d3pδf̂b −

∫
d3pδf̂e

]
, (13)

(
∂2

∂x2
+

∂2

∂y2

)
δψ̂ = −4πe

[
1

γ2
b

Zb

∫
d3pδf̂b −

∫
d3pδf̂e

]
. (14)

In Eqs. (11) and (12), τ = t′ − t is the displaced time variable, and the ‘primed’ orbits,

x′
⊥(t′) and p′

⊥(t′), in the equilibrium field configuration are assumed10,11 to pass through the

phase-space point (x⊥,p⊥) at time t′ = t.
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The kinetic eigenvalue equations (11)–(14) have a wide range of applicability, and can

be used to determine the complex oscillation frequency ω and detailed stability properties

for a wide range of system parameters and choices of equilibrium distribution functions

Fj(H⊥j) and Gj(pz), j = b, e. The principal challenge in analyzing Eqs. (11)–(14) is two-

fold. First, depending on the equilibrium profiles, the transverse orbits x′
⊥(t′) are often

difficult to calculate in closed analytical form. Second, once the orbits in the equilibrium

fields are determined, the integrations over t′ in Eqs. (11) and (12) are challenging because

the orbits occur explicitly in the arguments of the (yet unknown) eigenfunction amplitudes

δφ̂(x′
⊥) and δψ̂(x′

⊥).

For present purposes, we specialize to the choice of monoenergetic ion and electron dis-

tributions in Eq. (9), and the corresponding step-function equilibrium density profiles with

n0
j (r) = n̂j = const., for 0 ≤ r < rb, and n0

j (r) = 0, for rb < r ≤ rw. In this case, the

transverse ion orbit equation for x′
⊥(t′) can be integrated exactly to give

x′
⊥(t′) = x⊥ cos(ν̂bτ ) +

1

γbmbν̂b
p⊥ sin(ν̂bτ ) (15)

for 0 ≤ r′(t′) < rb, and the axial orbit is z′(t′) = z + (pz/γbmb)τ . Here, τ = t′ − t is

the displaced time variable, and ν̂b = const. is the (depressed) betatron frequency defined

in Eq. (10). The electron orbit x′
⊥(t′) is identical in form to Eq. (15), provided we make

the replacements γbmb → me and ν̂b → ν̂e in Eq. (15). A careful examination of the

eigenvalue equations (11)–(14) for the choice of equilibrium distributions in Eq. (9)10,11

shows that Eqs. (11)–(14) support a class of exact solutions in which the perturbed potentials

have the forms, δψ̂(x⊥) = δψ̂`(r) exp(i`θ) = ψ̂`r
` exp(i`θ), and δφ̂(x⊥) = δφ̂`(r) exp(i`θ) =

φ̂`r
` exp(i`θ), in the beam interior (0 ≤ r < rb). Here, ψ̂` and φ̂` are constant amplitudes, `

is the azimuthal mode number, and we have introduced cylindrical polar coordinates (r, θ)

defined by x = r cos θ and y = r sin θ. This class of exact solutions corresponds to surface-

wave perturbations in which the perturbed density, δn̂j =
∫
d3pδfj, j = b, e, is localized

at the beam surface (r = rb). What is most remarkable is that the orbit integrals over

terms proportional to r′` exp(i`θ′) = [x′(t′) + iy′(t′)]` occurring in Eqs. (11) and (12) can be
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evaluated in closed analytical form, and Maxwell’s equations (13) and (14) solved exactly

inside (0 ≤ r < rb) and outside (rb < r ≤ rw) the beam10,11. Enforcing the appropriate

boundary conditions on δφ̂`(r) and δψ̂`(r) at r = rb and r = rw then gives a closed dispersion

relation for the complex eigenfrequency ω.

Derivation of the kinetic dispersion relation from Eqs. (11)–(14) closely parallels the

analysis in Ref. 10 and 11. Without presenting algebraic details, for perturbations with

azimuthal mode number ` and axial wavenumber kz, we obtain the dispersion relation

[
2

1 − (rb/rw)2`
+

ω̂2
pb

`γ2
b ν̂

2
b

Γ`
b(ω)

] [
2

1 − (rb/rw)2`
+
ω̂2

pe

`ν̂2
e

Γ`
e(ω)

]

=
ω̂2

pe

`ν̂2
e

· ω̂
2
pb

`ν̂2
b

Γ`
e(ω)Γ`

b(ω) , (16)

where ω̂2
pe = 4πn̂ee

2/me, ω̂
2
pb = 4πn̂bZ

2
b e

2/γbmb, and ν̂b and ν̂e are the (depressed) beta-

tron frequencies defined in Eq. (10). The ion and electron susceptibilities, Γ`
j(ω), j = b, e,

occurring in Eq. (16) are defined by

Γ`
j(ω) = − 1

2`

∑̀
m=0

`!

m!(`−m)!

∫ ∞

−∞
dpz

(`− 2m)ν̂jGj(pz)

[(ω − kzvz) − (`− 2m)ν̂j]
, (17)

for general azimuthal mode number `, and (yet unspecified) distribution in axial momentum

Gj(pz). In carrying out the integration over pz in Eq. (17), Imω > 0 is assumed23,24.

Equation (16) is the final form of the kinetic dispersion relation, derived from the lin-

earized Vlasov-Maxwell equations for small-amplitude perturbations about the monoener-

getic equilibrium distributions in Eq. (9) and the corresponding step-function density pro-

files. As such, Eq. (16) can be used to determine the complex oscillation frequency ω over

a wide range of system parameters, including normalized beam intensity (ω̂2
pb/2γ

2
bω

2
βb), frac-

tional charge neutralization (f = n̂e/Zbn̂b), azimuthal mode number (`), axial wavenumber

(kz), choice of Gj(pz), etc., subject only to the simplifying assumptions summarized earlier

in this paper. In the absence of electrons (n̂e = 0), the dispersion relation (16) supports

stable collective oscillations of the ion beam, and reveals a rich harmonic content at fre-

quencies ω− kzVb ' ±ν̂b, ±2ν̂b, · · · ,±`ν̂b. When background electrons are present (n̂e 6= 0),
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however, Eq. (16) supports unstable solutions (Imω > 0) with instability resulting from the

axial streaming (Vb 6= 0) of the beam ions through the background electrons, at least in the

limit where the ion and electron axial motions are ‘cold’10,11, with Gb(pz) = δ(pz − γbmbVb)

and Ge(pz) = δ(pz).

The pz-integration in Eq. (17) can be carried out for a variety of choices of Gj(pz) ranging

from a shifted Maxwellian, to a step-function distribution, to a Lorentzian distribution. For

analytical simplicity, we consider here the case of Lorentzian distributions with

Gb(pz) =
∆b

π[(pz − γbmbVb)2 + ∆2
b]
,

Ge(pz) =
∆e

π(p2
z + ∆2

e)
, (18)

where ∆j = const. > 0 is a measure of the axial momentum spread, and pz and vz are related

by pz = mevz for the electrons, and pz = γbmbvz for beam the ions. Note from Eq. (18)

that Vb =
∫∞
−∞ dpzvzGb(pz), and 0 =

∫∞
−∞ dpzvzGe(pz), which corresponds to the beam ions

streaming axially through a stationary electron background. Substituting Eq. (18) into

Eq. (17) and integrating over pz for Imω > 0 readily gives the simple expression

Γ`
j(ω) = − 1

2`

∑̀
m=0

`!

m!(`−m)!

(`− 2m)ν̂j

[(ω − kzVj + i|kz|vT jz) − (`− 2m)ν̂j]
. (19)

Here, Ve = 0 for the electrons, and vT jz is a measure of the characteristic axial thermal

speed, defined by vT bz = ∆b/γbmb for the beam ions, and vTez = ∆e/me for the background

electrons. Substituting Eq. (19) into Eq. (16), the resulting dispersion relation can be used

to investigate the effects of an axial momentum spread on detailed properties of the electron-

ion two-stream instability for general azimuthal mode number ` over a wide range of system

parameters.

A careful examination of Eq. (16) for n̂e 6= 0 shows that the strongest instability (largest

growth rate) occurs for azimuthal mode number ` = 1, corresponding to a simple (dipole)

displacement of the beam ions and the background electrons. For ` = 1, we substitute

Eq. (19) into Eq. (16), and introduce the electron and ion collective oscillation frequencies,

ωe and ωb, defined by
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ω2
e ≡ ν̂2

e +
1

2
ω̂2

pe

(
1 − r2

b

r2
w

)
=

1

2

γbmb

Zbme
ω̂2

pb

(
1 − f

r2
b

r2
w

)
,

ω2
b ≡ ν̂2

b +
ω̂2

pb

2γ2
b

(
1 − r2

b

r2
w

)
= ω2

βb +
1

2
ω̂2

pb

(
f − 1

γ2
b

r2
b

r2
w

)
, (20)

where ω̂2
pe has been expressed as ω̂2

pe = (γbmb/Zbme)fω̂
2
pb. Substituting into Eq. (16) and

rearranging terms, the ` = 1 dispersion relation can be expressed in the compact form

[(ω − kzVb + i|kz|vT bz)
2 − ω2

b ][(ω + i|kz|vTez)
2 − ω2

e ] = ω4
f , (21)

where ωf is defined by

ω4
f ≡ 1

4
f

(
1 − r2

b

r2
w

)2
γbmb

Zbme
ω̂4

pb . (22)

In the cold limit (vT bz = 0 = vTez), and in the absence of background electrons (f = 0

and ωf = 0), Eq. (21) gives stable collective oscillations of the ion beam with frequency

ω − kzVb = ±ωb, where ωb is defined in Eq. (20). For f 6= 0, however, the ion and electron

terms on the left-hand side of Eq. (21) are coupled by the ω4
f term on the right-hand side,

leading to one unstable solution with Imω > 0 for a certain range of axial wavenumber kz.

The instability is two-stream in nature, and results from the directed ion motion with axial

velocity Vb through the (stationary) background electrons. A careful examination10,11 of

Eq. (21) shows that the unstable, positive-frequency branch has frequency and wavenumber

(ω, kz) closely tuned to the values (ω0, kz0) defined by ω0 = +ωe and ω0 − kz0Vb = −ωb, or

equivalently, kz0 = (ωe + ωb)/Vb. This gives

ω0

kz0

− Vb ' − ωb

ωe + ωb

Vb . (23)

Because ωb � ωe in the regimes of practical interest [Eq. (20)], it follows from Eq. (23) that

the phase velocity of the unstable mode is downshifted only slightly from the directed beam

velocity Vb, and could be strongly affected by Landau damping by the beam ions for modest

values of vT bz/Vb 6= 0.

Returning to the full dispersion relation (21) for vT jz 6= 0, it is important to recognize

that Eq. (21) is applicable over a wide range of normalized beam intensity (ω̂2
pb/2γ

2
bω

2
βb) and

11



fractional charge neutralization (f) consistent with ν̂2
b > 0 and ν̂2

e > 0. That is, Eq. (21) can

be applied to the moderate-intensity ion beams (ω̂2
pb/2γ

2
bω

2
βb
<∼ 0.2, say) in the proton linacs

and storage rings envisioned for the Spallation Neutron Source (SNS) and the Proton Storage

Ring (PSR)16–18. On the other hand, Eq. (21) can also be applied to the low-emittance,

very high-intensity ion beams (ω̂2
pb/2γbω

2
βb → 1) envisioned for heavy ion fusion4.

Typical results for the unstable solution to Eq. (21) are illustrated in Fig. 1 (for vT bz =

0 = vTez) and in Fig. 2 (for vT bz 6= 0, and vT bz = vTez). The system parameters in Figs. 1

and 2 correspond to mb/me = 1836 (protons), (γb − 1)mbc
2 = 800Mev, rb/rw = 0.5, and

f = 1.

Shown in Fig. 1, for vT bz = 0 = vTez, are plots of (Imω)/ωβb and (Reω − ωe)/ωβb versus

(kz − kz0)Vb/ωβb, where kz0 ≡ (ωe + ωb)/Vb, obtained from Eq. (21) for the unstable branch

for several values of ω̂2
pb/2γ

2
bω

2
βb ranging from 0.05 to 0.5. At low beam intensities, the

instability growth rate in Fig. 1 is relatively small and has a narrow bandwidth in kz-space,

symmetric about kz = kz0. On the other hand, as the normalized beam intensity ω̂2
pb/2γ

2
bω

2
βb

is increased to 0.5, the instability bandwidth increases significantly in Fig. 1, and the growth

rate becomes substantial, with (Imω)max ' 1.2ωβb. As reported previously10,11, the two-

stream growth rate calculated from Eq. (21) also increases with increasing fractional charge

neutralization f , and increasing values of rw/rb.

To illustrate the stabilizing influence of parallel kinetic effects on the two-stream insta-

bility, shown in Fig. 2 is plot of (Imω)/ωβb versus (kz − kz0)/ωβb, obtained from Eq. (21)

for the unstable branch for fixed value of the normalized beam intensity, ω̂2
pb/2γ

2
bω

2
pb = 0.07,

and values of vT bz/Vb ranging from 0 to 0.01. Furthermore, for purpose of illustration, in

Fig. 2 we have fixed the axial momentum spread of the electrons by the value vTez = vT bz.

Because the characteristic phase velocity of the unstable mode is downshifted only slightly

from the directed beam velocity Vb [Eq. (23)], it is expected that Landau damping by parallel

kinetic effects can have a strong stabilizing influence at modest values of vT bz/Vb. That this

is indeed the case is evident from Fig. 2, which shows a substantial reduction in maximum

growth rate and eradication of the instability over the instability bandwidth as vTzb/Vb is

12



increased from 0 to 0.01.

The dispersion relation (21) can be used to derive an analytical criterion25 for stabi-

lization of the two-stream instability by parallel kinetic effects, valid for normalized beam

intensity sb ≡ ω̂2
pb/2γbω

2
βb ranging from the moderate values (sb

<∼ 0.2) of interest in pro-

ton machines, to the space-charge dominated beams (sb → 1) of interest in heavy ion

fusion. For our purpose here, we present the stability criterion for moderate values of

sb = ω̂2
pb/2γbω

2
βb
<∼ 0.2. It is convenient to express δω = ω − ωe and δkz = kz − kz0, where

kz0 = (ωe + ωb)/Vb, and ωe and ωb are defined in Eq. (20). For sb � 1, because |δω| � ωb,

we [see Figs. 1 and 2, and Eq. (20)], it follows that the dispersion relation (21) can be

approximated by the quadratic form.

(δω + i|kz|vT bz − δkzVb)(δω + i|kz|vTez) = − ω4
f

4ωeωb

(24)

for (ω, kz) in the vicinity of (ω0, kz0). The solution to Eq. (24) with γ = Im(δω) > 0

corresponds to instability (temporal growth), with maximum growth rate occurring for δkz =

0 (see Fig. 2). For cold beam ions and background electrons with vTez = 0 = vT bz, setting

δkz = 0 in Eq. (24) gives the maximum growth rate (Imδω)max = (ω4
f/4ωeωb)

1/2. On the

other hand, as vT bz and vTez are increased, the maximum growth rate decreases, and it

can be shown from Eq. (24) that the spectrum of unstable modes is completely stabilized

(Imδω < 0) whenever k2
z0vT bzvTez > ω4

f/4ωeωb, or equivalently,

vT bzvTez

V 2
b

>
ω4

f

4ωeωb(ωe + ωb)2
, (25)

where ωb, ωe, and ωf are defined in Eqs. (20) and (22).

In the regimes of practical interest, the right-hand side of Eq. (25) is very small, and

only modest momentum spreads are required to provide complete stabilization of the two-

stream instability. For example, assuming rb/rw � 1 and sb � 1, and taking vTez = vT bz

for purpose of illustration, Eq. (25) can be expressed as

∆pzb

γbmbVb

>
1

2
γ

1/2
b f1/2s

1/4
b

(
me

γbmb

)1/4

(26)
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where ∆pzb/γbmbVb = vT bz/Vb, ∆pzb = ∆b is the axial momentum spread [see Eq. (18)], and

sb = ω̂2
pb/2γbω

2
βb is the normalized beam intensity. As illustrative parameters, for f = 0.1,

sb = 0.07, γb = 1.85 and mb/me = 1836, Eq. (26) predicts complete stabilization for

∆pzb/γbmbVb > 1.4%.

In conclusion, we have outlined here the derivation of the fully kinetic dispersion relation

(21) describing the electron-ion two-stream instability for an intense ion beam propagating

through a stationary population of background electrons. For k2
zr

2
b � 1, the dispersion

relation (21) incorporates the leading-order effects of an axial momentum spread in the ion

and electron components, and can be used to investigate detailed stability properties over a

wide range of normalized beam intensity (ω̂2
pb/2γ

2
bω

2
βb), fractional charge neutralization (f =

n̂e/Zbn̂b), azimuthal mode number (`), and axial wavenumber (kz). For dipole perturbations

(` = 1), it has been shown that Landau damping by parallel kinetic effects can have a strong

stabilizing influence on the electron-ion two-stream instability. The condition for complete

stabilization of the two-stream instability by parallel kinetic effects is given by Eq. (25)

(valid for moderate values of beam intensity), which corresponds to a relatively small axial

momentum spread [see Eq. (26)]. If the beam ions and background electrons are initially cold

axially, it is expected that a nonlinear consequence of the two-stream instability would be to

cause an increase in axial momentum spread, thereby leading to a (quasilinear) stabilization

of the instability.
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FIGURES

FIG. 1. Plots of (a) normalized growth rate Imω/ωβb, and (b) normalized real frequency

(Reω − ωe)/ωβb versus shifted axial wavenumber (kz − kz0)Vb/ωβb obtained from the dispersion

relation (21) for the unstable branch with positive real frequency. System parameters correspond

to vT bz = 0 = vTez, mb/me = 1836 (protons), (γb − 1)mbc
2 = 800 MeV, rb/rw = 0.5, and f = 0.1.

Curves are shown for several values of normalized beam intensity ω̂2
pb/2γ2

b ω2
βb ranging from 0.05 to

0.5.

FIG. 2. Plot of normalized growth rate Imω/ωβb versus shifted axial wavenumber

(kz − kz0)Vb/ωβb obtained from Eq. (21) for the unstable branch with positive real frequency.

System parameters correspond to ω̂2
pb/2γ2

bω
2
βb = 0.07, vTez = vT bz, mb/me = 1836 (protons),

(γb − 1)mbc
2 = 800 MeV, rb/rw = 0.5, and f = 0.1. Curves are shown for several values of

normalized ion thermal spread vT bz/Vb ranging from 0 to 0.01.
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