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3D MHD Modeling:  M3D code
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Strong scaling: typical problem size
• Nonlinear time-dependent Extended MHD

• Valid for stellarators and tokamaks

• multi-level physics

• resistive MHD

• two-fluid MHD

• hybrid particle/MHD

• fully kinetic particles

• partially implicit time-stepping

• unstructured triangular mesh: linear, 2nd & 
3rd order finite elements

• uses PETSc library … however..

• recent work to optimize this for the Cray-
X1E vector computer at ORNL

→ Very good parallel scaling 
for an implicit, multi-physics 
code
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Campaign to model sawtooth in CDX-U 
using actual parameters of that discharge
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After first crash After second crash
Breslau
M3DSawtooth period ≈ 100 µs in good agree-

ment with experimental CDX sawtooth period ≈ 125 µs



NSTX: M3D 2-fluid modeling of q0<1 discharges with strong toroidal 
rotation is in qualitative agreement with recent experimental results:
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MHD Co  2FuidsCounter  2Fuids
MA=+ -0.3 MA= -0.3 MA=+0.3

long-lived saturated n=1 
mode with co-injection:  
2-fluid model essential

Temperature

Saturation with hot spot 
pulled away from x-point

ParkCrash Crash faster 
than MHD case



Milestones:
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• Complete and publish CDX-U simulation results.(CEMM 2006)

• Extend the CDX-U work to larger, higher temperature tokamaks 
(CEMM 2008). 

• Incorporate energetic particle effects into the predictive sawtooth 
modeling for a burning plasma (2010).

» PPPL: J. Breslau, J. Chen, G. Fu, W. Park, NYU: Strauss, MIT: Sugiyama

• Produce a publication on the physics of RF inducement of sawteeth
(SWIM 2008).

» PPPL: S. C. Jardin, J. Breslau, G-Y Fu, D. McCune, W. Park, J. Chen  ORNL: D. B. 
Batchelor, L. A. Berry, S. P. Hirshman, W. A. Houlberg, E. F.  Jaeger, D. A. Spong, D. E. 
Bernholdt, E. D’Azevedo, W. Elwasif, M. R. Fahey, S. Klasky  Indiana Univ: R. Bramley
Columbia Univ: D. Keyes GA: D. P. Schissel CompX: R. Harvey SAIC: D. Schnack
MIT: J. Ramos, L. Sugiyama
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M3D has extended it’s computational domain to allow computation of 
Edge Localized Modes (ELMs) and other free-boundary modes
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Nonlinear 
evolution of an 
unstable ELM in 
DIIID shaped 
tokamak

(pressure 
contours shown) Strauss, 

Sugiyama,
Park, 
Klasky 
(M3D)

• Scoping runs were done with 16 planes, limited to 
n < 8.  Uses 2nd order lumped mass finite elements.




M3D two-fluid model demonstrates linear gyroviscous
ELM Stabilization in agreement with theory
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DIII-D n=10 Linear Eigenmode H=         is two-fluid (hall) parameter
pi

c
Rω

M3D

Analytic growth rate

n=10

Park, 
Strauss

stableunstable

Non-linear calculation is very demanding as fine 
structure is generated requiring extreme resolution



Milestone:
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• Support the nonlinear study of free boundary modes in 
tokamaks and stellarators by researchers at NYU and 
MIT (CEMM 2006/10).

» PPPL: J. Breslau, M. Chance, J. Chen, G. Fu, W. Park, NYU: Strauss, 
MIT: Sugiyama
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• Progress and plans in 3D MHD Modeling
– Sawtooth
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– Neoclassical Tearing Mode
– Energetic Particle Modes
– RWM
– Pellet Injection (AMR Code)
– Other New Directions

• Relation to Integrated Modeling

• Progress and plans towards the 1½D Integrated Plasma Simulator
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• Summary



Joint project with ORNL to develop neoclassical 
closure for M3D for NTM - implement on Cray X1E
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Milestones:
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• Develop a predictive model of neoclassical tearing 
modes in tokamaks and STs together with researchers 
at ORNL (2008).

» PPPL: W. Park, G.Y. Fu, J. Breslau, J. Chen, S. Jardin ORNL: D. A. Spong, 
E. F. D’Azevedo, D. B. Batchelor,  D. del-Castillo-Negrete, M. Fahey, S. P. 
Hirshman,   S. Klasky , R. T. Mills

• Produce a publication on the physics of RF stabilization 
of the NTM  (SWIM 2010)

» PPPL: S. C. Jardin, J. Breslau, G-Y Fu, D. McCune, W. Park, J. Chen  
ORNL: D. B. Batchelor, L. A. Berry, S. P. Hirshman, W. A. Houlberg, E. F.  
Jaeger, D. A. Spong, D. E. Bernholdt, E. D’Azevedo, W. Elwasif, M. R. 
Fahey, S. Klasky  Indiana Univ: R. Bramley Columbia Univ: D. Keyes
GA: D. P. Schissel CompX: R. Harvey SAIC: D. Schnack MIT: J. 
Ramos, L. Sugiyama
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• Progress and plans in 3D MHD Modeling
– Sawtooth
– ELMs
– NTM
– Energetic Particle Modes
– RWM
– Pellet Injection (AMR Code)
– Other New Directions

• Relation to Integrated Modeling

• Progress and plans towards the 1½D Integrated Plasma Simulator
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M3D-hybrid (linear) calculation of energetic particle 
stabilization of Ideal Kink and excitation of Fishbone
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Circular
R/a=2.76
q(0)=0.9, 
q(a)=2.5
β(0) = 5.7%  
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Mode structure of Fishbone twists and rotates 
relative to Ideal Kink mode structure
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Fu
Ideal Kink Fishbone



In nonlinear fishbone calculation, distribution function 
flattens and broadens and mode frequency chirps down.

18

Fu

distribution



Milestones:
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• Perform nonlinear hybrid simulations of beam-driven 
MHD modes in NSTX and relate to experimental results 
(2006).

• Perform nonlinear hybrid simulations of alpha-driven 
MHD modes in ITER (2008).

• Explore integrated simulations of fast ion driven modes 
where their effect on the background profiles is 
calculated self-consistently as part of an integrated 
plasma model. (2010)

» PPPL: G. Fu, W. Park, J. Breslau, J. Chen
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• Progress and plans in 3D MHD Modeling
– Sawtooth
– ELMs
– NTM
– Energetic Particle Modes
– Resistive Wall Mode
– Pellet Injection (AMR Code)
– Other New Directions

• Relation to Integrated Modeling

• Progress and plans towards the 1½D Integrated Plasma Simulator

• Other activities

• Summary



Normal Mode Analysis:  The DCON, VACUUM, and a Circuits code 
have been combined to produce a self-consistent linear RWM code
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• represent an arbitrary plasma displacement as a linear 
combination of a complete set of plasma eigenfunctions
(including stable eigenmodes)

• add the feedback system, inertia, 
and conductors; specify ω, and 
calculate the self consistent response

• vary ω and use Nyquist techniques to 
evaluate stability

• It was found that it is important to 
keep the feedback system effects in 
determining the eigenfunction

Plasma

δWP, δK

Vacuum
δWV

DW

δEC

0p VW Wδ δ+ =

( ) ( ) ( ) 0p V W CW K W D Eδ δ ω δ ω δ ω+ + + + =

1

( ) ( )
N

i i
i

a t x
=

= ∑ξ ξ
G G

Kinetic Energy Wall Dissipation Coil Excitation 
Energy

Chu, Chance(important to keep the “stable” modes in the analysis)



The n=1 RWM feedback system always appears more stable if 
we use a rigid eigenfunction (ie, remove the “stable” modes)
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f=1 f=1f=3/4

f=1/2

f=1/4

f=1/8

f=3/4

f=1/2

f=1/4
f=1/16

Ri f Ri for all stable modes, let f 0

Cβ=42% Cβ=83%

(-1,0) (-1,0)

To illustrate the importance of the stable modes (eigenfunction deformability) we 
artificially remove them

Nyquist Diagram:

by multiplying them by a constant f 0 and show how the 
stability diagram changes:

Stable if transfer function P(ω) encircles (-1,0)

Cβ = βN − βN
NW

βN
IW − βN

NW

unstableunstable

Chu, Chance



M3D simulations examining role of plasma η and 
rotation on the resistive wall, resistive plasma mode
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Perturbed 
Poloidal flux 
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Milestones:
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• Extend the VACUUM code to be fully up-down 
asymmetric capable, and incorporate the same vacuum 
code in M3D that is used in the linear eigenvalue codes 
(2006).

• Perform a study on NSTX, similar to what was done on 
DIII-D, of RWM feedback as a function of the geometry 
and placement of the coil system. (2007)

• Extend the vacuum treatment to allow for 3D structures 
(2007-2008).

» PPPL: M. Chance, W. Park, J. Breslau,  GA: Chu, NYU: H. 
Strauss
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• Progress and plans in 3D MHD Modeling
– Sawtooth
– ELMs
– NTM
– Energetic Particle Modes
– RWM
– Pellet Injection (AMR Code)
– Other New Directions

• Relation to Integrated Modeling

• Progress and plans towards the 1½D Integrated Plasma Simulator

• Other activities

• Summary



Adaptive Mesh Refinement (AMR) MHD 
Code is an exploratory project with LBNL
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• Initial focus is on the MHD associated with frozen 
pellet or supersonic gas injection into a tokamak

• We implemented conservative finite volume upwind 
numerical method for MHD into CHOMBO:  now part of 
release

• Together with LBNL, introduced a non-orthogonal flux 
coordinate system into the CHOMBO AMR framework

• Electron heat flux model by Ishizaki, Parks 

• Full 3D toroidal geometry

• Will be presented in invited talk at 2006 DPP-APS

• Now exploring combining with “implicit” ODE solver 
(Samtaney, Reynolds, Woodward (LLNL)

R. Samtaney with 
APDEC center:          
P. Colella



AMR-MHD code simulation of pellet injection show 
qualitative differences between HFS and LFS launch
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Density

R. Samtaney

High-Field Side Launch Low-Field Side Launch




Milestones:
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• Develop a realistic 3D model of pellet injection into a 
tokamak based on the AMR technique, publish this, and 
present as an APS invited talk (CEMM 2006)

• Improve efficiency, and use to compare inside and 
outside pellet simulations with JET data (CEMM 2008)

• Further improve efficiency  and use to project pellet 
injection simulations to ITER (CEMM 2010)

» PPPL:  R. Samtaney, S. Jardin  LBNL: P. Colella, D. Reynolds, 
LLNL: D. Reynolds, C. Woodward
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• Progress and plans in 3D MHD Modeling
– Sawtooth
– ELMs
– NTM
– Energetic Particle Modes
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– Pellet Injection (AMR Code)
– Other New Directions

• Relation to Integrated Modeling

• Progress and plans towards the 1½D Integrated Plasma Simulator
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New Directions in Nonlinear Extended 3D MHD

30

We are looking to improve the M3D spatial representation, time advance, 
and physics models through a number of exploratory projects that we or 
our collaborators are involved in:

• 2nd and 3rd order lumped mass finite elements (Strauss, Sugiyama, Chen)

• Spectral Elements with semi-implicit time advance (Strauss, Hientzsc)

• Spectral Elements with Newton/Krylov time advance on structured 
adaptive mesh (Glasser, Lukin)

• C1 elements: high-order, high-continuity, implicit time advance on 
unstructured adaptive mesh:  M3D-C1 (Jardin, Breslau, Chance, Chen, 
Ferraro, Miah, Bauer)



New Directions in Nonlinear Extended 3D MHD

31

We are looking to improve the M3D spatial representation, time advance, 
and physics models through a number of exploratory projects that we or 
our collaborators are involved in:

• 2nd and 3rd order lumped mass finite elements (Strauss, Sugiyama, Chen)

• Spectral Elements with semi-implicit time advance (Strauss, Hientzsc)

• Spectral Elements with Newton/Krylov time advance on structured 
adaptive mesh (Glasser, Lukin)

• C1 elements: high-order, high-continuity, implicit time advance on 
unstructured adaptive mesh:  M3D-C1 (Jardin, Breslau, Chance, Chen, 
Ferraro, Miah, Bauer)



ˆ zV z VU χ⊥= ∇ × + ∇ +
G

ˆ ˆB z zIψ= ∇ × +
G

M3D-C1 code has full Extended MHD (2-fluid) 
equations with implicit differencing that allows 
time step to be determined by accuracy only:
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Alfven Wave physics

Whistler, KAW, field diffusion physics

Equations expressed 
in a form that allows 
non-trivial subsets of 
lower rank equations:

Phase-I:  Reduced 2-field MHD:  Phase-II:  Fitzpatrick-Porcelli 4-field model: 
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M3D-C1 has been tested against a number of test problems, 
including the GEM Challenge Problem (Birn, et al. JGR)

33

M3D-C1, zero 
ion pressure, 
uniform density, 
η=µ=0.001

Reconnected magnetic flux in the GEM Challenge problem as a function of time

• The calculations presented in this figure all have different physics 
models and slightly different initial conditions and parameters

• However, all models with two-fluid physics (ie, the Hall Term) show 
fast reconnection.  Single fluid resistive MHD does not

• M3D-C1 also shows fast reconnection

• Demanding problem with no guide field, and in which Alfvenic, highly 
compressible flows develop



M3D-C1 61x61 triangles, no symmetry imposed:  t=30            
GEM Magnetic Reconnection:  6-field 2-fluid model:  t=30, VMAX ~ 0.8 VA
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Milestones:
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• Extend C1 elements to 2-fluid linear 3D simulation 
(CEMM 2007)

• Extend C1 elements to full 2-fluid non-linear 3D 
simulation (CEMM 2008)

» PPPL:  Jardin, Breslau, Chance, Chen, Ferraro, Miah RPI: Bauer
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• Progress and plans in 3D MHD Modeling

• Relation to Integrated Modeling

• Progress and plans towards the 1½D 
Integrated Plasma Simulator

• Other activities

• Summary



What is Integrated Modeling?

37

1½D Integrated 
Plasma Simulator

Equilibrium Module

MHD Module

α-particle and 
beam Module

Edge Module

RF Modules

Transport Module

“first principles” codes

5D Gyrokinetics Code

3D Extended MHD Code

R
educed m

odels

Full Wave RF Code
…

“first principles”
coupled codes

5D Gyrokinetics Code

3D Extended MHD Code
+

• develop new 
understanding

• improve 
reduced models

3D Extended MHD Code

Full Wave RF Code
+



In the foreseeable future, comprehensive integration will mean using 
a 1½ D IPS with reduced models, and using the “first principles” code 
to examine time slices and develop improved reduced models.
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Time (sec)

0 100 200 300 400

0 100 200

Telescope in on 
time of interest to 
examine short 
timescales in 
more depth

Integrated Plasma Simulator:
1½ D Transport timescale code with 
reduced models for 3D phenomena
(with fast timescales averaged over)

Turbulence, MHD, or coupled code (s)
(with fast timescales being calculated)

Time (µsec)
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• Progress and plans in 3D MHD Modeling

• Relation to Integrated Modeling

• Progress and plans towards the 1½D Integrated 
Plasma Simulator

– TSC →TSC/TRANSP → PTRANSP → FSP

• Other activities

• Summary
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Initial Implementation of the 1½D 
Integrated Plasma Simulator

TSC Code

TRANSP Code

Evolves Free 
Boundary Equilibrium

Evolves Temperature 
and Density Profiles

Monte Carlo NBI, α-
particles, ICRH, 
ECH/ECCD, neutrals

Equilibrium, 
temperatures, 
densities

Heat and current 
sources Downstream Analysis

MHD stability (PEST,M3D)
Micro-turbulence (GTC,GYRO)
Fast Particle Modes (NOVA-K)
Advanced Heating Codes (AORSA)Linkages to data bases
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Initial Implementation of the 1½D 
Integrated Plasma Simulator

TRANSP Code

Evolves Free 
Boundary Equilibrium

Evolves Temperature 
and Density Profiles

TEQ Equilibrium 
Code (LLNL/TechX)

Globally Convergent 
Newton’s Method (GA)

Monte Carlo NBI, α-
particles, ICRH, 
ECH/ECCD, neutrals

Equilibrium, 
temperatures, 
densities

Heat and current 
sources

PTRANSP

Downstream Analysis
MHD stability (PEST,M3D)
Micro-turbulence (GTC,GYRO)
Fast Particle Modes (NOVA-K)
Advanced Heating Codes (AORSA)

Edge Physics (UEDGE)

Linkages to data bases



The Simulation of Wave Interaction with MHD 
(SWIM) project will extend this to RF/MHD Coupling

42“Fast MHD Campaign”From Batchelor, et. al. SWIM proposal.



Milestones:
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• Predictive TRANSP code capable of performing ITER-relevant 
calculations routinely in the fixed and free-boundary modes,  
capabilities for linkage to existing databases and post-run analysis 
codes and with coupling to UEDGE. (2007 PTRANSP)

» PPPL: Jardin, McCune, R. Andre, K. Indireshkumar, Ku, Kessel    GA:
StJohn LLNL: LoDestro, Ronglien, Cohen   LeHigh U.: Bateman, Kritz   
TechX: Carlson

• Complete SWIM “Fast MHD” campaign including the use of Fokker-
Plank codes to calculate RF modified distribution function, and the 
transfer and analysis of this by the 3D stability codes. (2010 SWIM)

» PPPL: S. C. Jardin, J. Breslau, G-Y Fu, D. McCune, W. Park, J. Chen  
ORNL: D. B. Batchelor, L. A. Berry, S. P. Hirshman, W. A. Houlberg, E. F.  
Jaeger, D. A. Spong, D. E. Bernholdt, E. D’Azevedo, W. Elwasif, M. R. 
Fahey, S. Klasky  Indiana Univ: R. Bramley Columbia Univ: D. Keyes
GA: D. P. Schissel CompX: R. Harvey SAIC: D. Schnack MIT: J. 
Ramos, L. Sugiyama
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• Progress and plans in 3D MHD Modeling

• Relation to Integrated Modeling

• Progress and plans towards the 1½D 
Integrated Plasma Simulator

• Other activities

• Summary



Other Activities
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• Equilibrium Reconstruction
– Developed new code Cbc2e which uses time-history in equilibrium 

reconstruction to accurately account for eddy currents
• Real-Time Forecasting (RTF) for Tokamak Discharges

– Prototyped a system for Real Time Forecasting to evolve plasma models 
to make real-time decisions in operating tokamaks (extension of RT-EFIT)

• The LiWall Concept
– Extensive analysis of a high-beta Spherical Torus with liquid-lithium walls 

as a path to Fusion Energy
• CHI Physics

– Developed special equilibrium reconstruction and evolution codes to 
support NSTX Coaxial Helicity Injection (CHI) experiments

• MRX Modeling
– High resolution numerical simulations of the 2D 2-fluid MHD equations 

and comparing with MRX data (PhD Thesis)
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• Progress and plans in 3D MHD Modeling

• Relation to Integrated Modeling

• Progress and plans towards the 1½D 
Integrated Plasma Simulator

• Other activities

• Summary



Summary of Activities and Milestones:
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• ITER analysis with free boundary PTRANSP code: coupling to UEDGE 
and downstream stability codes (PTRANSP)
• Study of Sawtooth (with energetic particle), EPM, RWM, ELM, Pellet 
Injection & development of C1 element code (CEMM)
• (De)Stabilizing effects of RF on MHD for Sawtooth and NTM in ITER 
relevant plasmas (SWIM)
• Predictive model of NTM in tokamaks and STs using new neoclassical 
closures (on Cray X1E) (with ORNL)
• Self-consistent linear analysis of RWM in NSTX and ITER.   
• Interpret beam-driven modes in NSTX.   
• Basis studies of reconnection.  Kinetic effects on MHD.
• Real time forecasting of tokamak discharges.
• Heterogeneous parallel computational services, advanced visualization 
and data workflow, improved parallelization efficiency (CPPG)
PPPL personnel involved:
J. Breslau, M. Chance, G. Fu, W. Park, L. Zakharov (Theory)
R. Andre, J. Chen, K. Indireshkumar, D. McCune, R. Samtaney (CPPG)
N. Ferraro, V. Lukin, M. Miah (students)
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