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-Imposing such a perturbation δB in a tokamak

 

produces a 
nonambipolar

 

“ripple”

 

current[1-3]                        , which produces a 
torque                                      on the plasma.
-Less appreciated is that:
-scalar pressure gives 0 nonambipolar

 

<jr>, hence 0 torque, 
so calculations using scalar-pressure equilibria

 

are non-self-consistent.
-However, δB also produces a pressure anisotropy, p║

 

≠p┴

 

, which produces both jr
and in-surface currents jθ,ς. The latter produce a self-consistent
response to δB, which can shield or amplify the imposed δB.

-Introduction:

Γ>=< ej r

cRBj p
r />≈<ζτ

-Externally-imposed nonaxisymmetric

 

perturbations δB can strongly 
affect tokamaks, causing mode-locking, disruptions, or with benign
effects such as ELM control, important issues for ITER.

-Here, we analytically compute p║

 

, p┴

 

, and from these, the perturbed 
currents and self-consistent δB from this effect. 
-The radial current recovers earlier results for “banana-drift”

 

(bd) fluxes.
-The in-surface currents provide an expression for the amount of

shielding the plasma provides.
-The expressions for p║

 

, p┴

 

may also be used in a perturbed mhd

 

equilibrium code, 
such as IPEC [4], now under development. 
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-Outline:
-I.Ripple

 

transport  (heuristic)

-II.Equilibrium

 

eqns

-III.Calculation

 

of pressure anisotropy

-IV.Perturbed

 

flows

-V.Radial

 

fluxes

-VI.Diagonal

 

components & shielding

-VII.Summary
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-Also useful to define
covariant basis vectors,

contravariant

 

basis vectors, and

Jacobian.

-Coordinates: Parametrize

 

real-space position x with flux coordinates
radial flux coordinate, which may specialize to

≡ψ toroidal

 

flux/ π2 ≡χ poloidal

 

flux/ ,  or 
2/1

0 )/2()( Br ψψ ≡
as convenient.

, π2
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I.Ripple

 

transport  (heuristic):  banana-drift (bd) mechanism:

-Stochastic regime: [Goldston,  White,  Boozer, PRL (1981).]

-Ripple-plateau regime: 
[Boozer,  Phys. Fluids  (1983).] 

-Avged

 

nonaxisymmetric

 

contrib

 

to radial drift:
with                                      , “orbit-avging

 

factor”

-Diffusion coef:

-Resonant case:

 

[Linsker,  Boozer,  PF (1982)]

-Nonresonant

 

case:[Linsker,  Boozer,  PF (1982)]

ν

D

-Generalized bd

 

transport:
[Yushmanov, NF (83), Mynick, NF (1986)]: 
Multiple bounce-harmonics     , perturbation structure
including low-

 

MHD modes, multiple         ,  finite       .
l

ωn m

dΩ

D

where 
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II.Equilibrium:

,
(1)

-For each species s, have force-balance equation:
,  with

,  and

-Torque on plasma:
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III.Calculation
 

of pressure anisotropy:
-III.A. 1st,  if take f(z)=f0

 

(I) =fn of constants of motion, 
Hall & McNamara(75) showed[6] that

which implies

and

-However, if                                , can show[6,7] this produces 0 nonambipolar
transport. Thus, nonzero torque implies pressure anisotropy, but

 

pressure anisotropy
but doesn’t necessarily imply torque.

a reln

 

which can also be shown using parallel force-balance from (1).

(2)

Eqs.(3) observe (2).

-Eg, taking
, find[5]

,   with

(3)

, then for
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Using Krook

 

collision operator

with banana-center radial drift velocity

with

allows one to treat nonresonant

 

and resonant                 bd

 

regimes together.

and orbit averaging factor

-Taking                , solve the drift-kinetic equation

)/1~( νD)~( νD

(4)

(5)

(6)

Use model magnetic field (7)with

-Can superpose results for multiple-harmonic δB’s.

(                           )

III.B. pressure anisotropy, cont’d:

(for a single-harmonic pert.)
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-III., cont’d.

-Putting (8) into (1), find

with

,        and

-Then one finds perturbed distribution fn
(8)

(9)
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As usual, compute parallel part of currents
by requiring 

IV.Perturbed
 

flows:

with = curvature.

From (1), have

This gives perpendicular currents

where

(10)

(11)

This yields magnetic differential equation
(12)
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-Specializing to Boozer coordinates, one has 

and
(13)

Then from (11a), 

(14)

and from (12), 
(15)

Decomposing B-2

 

,  

we find the parallel portion of jp

 

: 9

(17)

-IV.B. Flows from scalar pressure: 

(16)
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-IV.C. Flows from anisotropic pressure increment: 

-Analogous to (14), one finds

-Analogous to (15),  one has,  with

(18a)

(18b)

(19)

where the 2nd

 

lines in (18a,b) come from the radial current        .ρj
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V. Radial fluxes:
-Eqs.(14, 18a, 18b) give the radial component of the current:

(28)

-Flux-surface avging

 

this, one finds the radial flux:

with

the thermal value of the radial drift velocity,

(29)

and
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-Of special interest for shielding

 

are the “diagonal”

 

components

 

gAB
nm

 

of gAB

 

,
contributing at the same (n,m)-harmonic as the applied perturbation. 

(20)

corresponds to a current

and gives a surface deformation

with

nonresonant

 

amplitude

resonant amplitude, and with mod-B perturbation

-An applied single-harmonic perturbation (now specializing ρ→r)

VI. Diagonal components & shielding:
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-Writing (9b) as
the 1st

 

& 4th

 

terms in (19) give a nonzero diagonal contribution:
(21)

-One finds

(22)

-Diagonal components & shielding (cont’d):

-Comparing with  (17),          can be comparable with the scalar-pressure 
contribution       , depending on parameters:

nm
ABg

nm
pg

with                      .
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-Diagonal components & shielding (cont’d):

-Analogous to electrostatic shielding:

with susceptibility
one may define a current/magnetic field shielding equation

(23)

(24)

with response function        [defining complex pressure        ] 

(25)

→ expect appreciable shielding/amplification for
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-Diagonal components & shielding (cont’d):

-Using
Eq.(25) simplifies to

(26)

(27)

-Heuristically extend (26) from nonresonant

 

to resonant regime
with resonance factor

Kj has peaks at resonant surface, which decrease with         as  . 
Thus, for fixed pressure, as        increases  the peak in |Kj | will become too small,
for the plasma to fully shield the perturbation.  The larger the

 

pressure,
the larger the capacity of the plasma to produce shielding currents, 
as observed experimentally.

rb~ rb~/1
rb~
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-Other development toward a fuller theory: 

iiν

-Incorporation of pressure-anisotropy expression into a 
perturbed equilibrium code like IPEC would provide for a 
yet more complete description of RMPs

 

in tokamaks.

-Numerical calculation of           , eg, via a         code,  would provide
a yet more complete, self-consistent solution. 

P⋅∇ fδ

-Recent work by Park and Boozer[9] incorporates the
multiple bounce-harmonic contributions
into D, finding damping rates  in improved agreement with
experiment. 0=l only

0=l
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VII.Summary:
-We have obtained analytic expressions (9) for the
pressure anisotropy induced by an applied nonaxisymmetric

 

magnetic
perturbation in a tokamak. These may be used analytically, as here, or 
numerically, in a perturbed mhd

 

equilibrium code such as IPEC.

-We have found expressions (14,17,18,19) for the modifications of

 

the equilbrium
flows/currents due to this perturbation, the 1st

 

self-consistent analytic
calculation of this effect.

-Of special interest is the “diagonal”

 

component of this, at the same (n,m) harmonic
as the applied perturbation,  given by Eq.(22).

-This component provides a shielding response function (25) and shielding
criterion (24), for when the self-consistent response becomes comparable
with the applied perturbation. The form of this function indicates that plasmas
at higher pressure should be able to shield out larger applied perturbations, 
consistent with observations.

-Flux-surface averaging the radial component of the currents [Eq.(29)]
recovers the banana-drift transport fluxes, obtained previously.[1-3]
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