
Free Boundary TRANSP Upgrade

Dick Wieland
PPPL

John Schivell Doug McCune
PPPL

Bernard Balet
JET

Jean-Paul Jeral
JET

Denis O’Brien
JET

Pam Stubberfield
JET

Wolfgang Zwingmann
JET

July 11, 1997

1 Introduction

1.1 Overview

The free boundary equilibrium TRANSP upgrade (code name BRAZIL) is pro-
ceeding in two stages, as described in more detail below. In the first stage,
code name BRAZIL-0, the results of a standalone free-boundary equilibrium
run from either EFIT or VMEC will be used to “drive” the TRANSP run. In
the second stage, code name BRAZIL-2, the EFIT or VMEC free-boundary
equilibrium code (FRBC) will be incorporated wholly into TRANSP, replacing
the fixed-boundary codes that are there now. At one point, we had considered
an intermediate stage, code named BRAZIL-1, where TRANSP was to be gut-
ted into the equivalent of a test “driver” for equilibrium codes. Time constraints
have led us to delay or altogether eliminateits implementation.

A chronology of the steps taken in the implementation of this design can be
found in the Appendix.

1

fbt006.tex 2

BRAZIL-0 Pass FRBC output time series profile data (moments, pressure
and q) into TRANSP, where it will be used in lieu of calls to MAGDIF
and MHDEQ. The idea here is to run TRANSP with a consistent free
boundary equilibrium obtained from one of the FRBC. This means pass-
ing in the complete flux surface geometry, as well as pressure and q, as
functions of the FRBC radial coordinate. The q will be fixed by the
above, while the pressure will evolve in the usual way. The resulting
pressure profile (p∗) can be fed back into the FRBC to continue the loop.

FRBC -

'
&

$
%

Moments
p
q

-

T
R
D
A
T

-

TRANSP

no MAGDIF

no MHDEQ

?

'
&

$
%

p* ��

6

BRAZIL-2 In the second phase the FRBC calculation is internal to TRANSP.
The input data now consists of switches and magnetic coil and probe data.
The pressure profile is developed internally, using the ususal TRANSP
methodology.

Magnetics data -

TRANSP data -

��
��
GFF -

6

T
R
D
A
T

-

TRANSP

FRBC

fbt006.tex 3

BRAZIL-1/frozen The TRANSP “Equilibrium Driver” phase , where FRBC
input data is passed into what is a TRANSP shell, where everything but

the equilibrium code is shut off. In this mode, the profile data that is input
must conform to the profile data used by the FRBC codes in standalone.
So, for VMEC, that means inputing pressure and magnetic field pitch
angle as a function of major radius.

FRBC input data -

��
��
GFF -

6

T
R
D
A
T

-

TRANSP

MHDEQ only

1.2 Prototype vs Production modes for BRAZIL-1 and -2

Certain programming shortcuts can be taken (“Prototype” mode) in getting a
prototype version of BRAZIL-1 (and later -2) working in the shortest period of
time possible. Efficiencies that would otherwise be considered in designing the
code interface and the Green’s Function file (GFF) interface can be sidestepped
in this mode in the interests of getting started more quickly. The interfaces can
be simple, and designed to optimize debugging rather than run-time execution.

Later, after the upgrade has been “validated”, and shown to work properly,
the interfaces can be upgraded to run more efficiently (“Production” mode).

Use of these two terms, “Prototype” and “Production”, throughout the rest
of this document, refer to the ideas expressed in the preceding paragraphs.

1.3 TRDAT Namelist Control

The LEVGEO namelist control will have to be extended to accomodate many
new options and suboptions that will become available under the “free-boundary”
mode of operation. The free boundary options need to distinguish fixed or free
boundary, between VMEC or EFIT, and between up-down symmetry or asym-
metry. EFIT will probably only be run in the full up-down asymmetric mode.
VMEC, on the other hand, will probably be made available with both options,
to accomodate the inherent speed-up available when running on TFTR cases.

A way to define this option tree is as follows:

fbt006.tex 4

Free Boundary Equilibrium TRDAT Namelist Extensions

scalar name Value Description

LEVGEO 8 BRAZIL Mode
NFRBMODE 0 Run in BRAZIL-0 Passthru Mode

1 Run in BRAZIL-1 Test (Driver) Mode
2 Run in BRAZIL-2 Mode

NFRBCODE 1 run with Up-Down Symmetric VMEC
2 run with Up-Down Asymmetric VMEC
3 run with Up-Down Asymmetric EFIT

This more logically divides the specification into “free-boundary”, what kind of
“free-boundary” - TRANSP interaction, which “free-boundary” code.

As we did for LEVGEO=6, we should define internal variables, not in
namelist, that break these options down even further.

1.4 Data Structures and Files

TRDAT and RPLOT will both require data structure changes in order to work
in the new BRAZIL mode. A tabulation of proposed changes is given in the
following sections. Changes will involve new external data files, as well as new
internal data structures in TRDAT, TRANSP and RPLOT. The new file types
and TRDAT items correspond more or less to elements in the existing input
file set used in running VMEC and EFIT standalone at PPPL and JET, re-
spectively. The RPLOT items correspond to the output from VMEC and EFIT
that will be most interesting to view in a time history format.

The FRBC codes require new diagnostic data not currently accomodated
by TRDAT. One such data file is the Green’s Function file (GFF), which is in
a different format for EFIT and VMEC. In fact, for both EFIT and VMEC,
the files are binary. In “Production” mode we want to preserve the ability of
TRANSP to be “prepared” on one machine with TRDAT, and yet run on an
entirely different machine. One way to do this is to have a complete set of
GFF generators and GFF binaries available on each shared disk structure in
the TRANSP machine network. The binaries would be labeled in such a way as
to make them easily identifiable. The name of the particular GFF binary used
in TRANSP run could be input through the TRDAT namelist, and passed to
the FRBC as a line in a marker file. Or, TRDAT could make a local copy of
the named GFF, assigning it a runid like name that the FRBC is hard coded
to read. The GFF generator code should be maintained by the site responsible
for maintaining the FRBC. The tokamak specific input files read by the GFF
generator codes should be maintained by the individual tokamak labs.

fbt006.tex 5

1.5 FRBC - TRANSP interface in BRAZIL-2

Several alternatives are possible for constructing the actual interface between
TRANSP and the FRBC. A common requirement is that each call to FRBC
consists of preparation of a new input data set of “some appropriate type”,
followed by an invocation of the FRBC in “some way”, and concluded by a
retrieval of the necessary information in “some way”.

Plug and Play In this option the transfer of data, both prior to the execution
of the FRBC and after, is through local files that are very similar, if not
exactly like, the files used in running the FRBC standalone. This will
facilitate standalone debugging of a problem timeslice. The execution of
the FRBC itself can be through a simple internal call mechanism, where
all that is passed is the runid. The FRBC will read the locally written
timeslice Namelist file, and can be modified to remember the last solution
as the new starting point for the equilibrium solution iteration. The in-
formation required by TRANSP can be written to a file, and read in by
TRANSP directly.

Morph and Run In this option, the FRBC is converted into a set of subrou-
tines with its own set of data structures, which are separated from the
TRANSP data structures by a “firewall”. All communication between the
two takes place through the argument stack of the calling procedure, as is
currently the case with LEVGEO=6.

The “Plug and “Play” option is currently under development.

1.6 Post-Processing the Results

Two kinds of post-processing can be imagined:

1. Each FRBC now has its own post-processing code suite, and if the FRBC
in TRANSP writes time-slice output files with suitably unique names, they
can be easily referenced by these programs and plots in similar fashion to
how they are now can be processed. FRBC users are used to seeing certain
graphical output for their timeslice runs, and considerable investment has
been made in developing these graphics packages. Rather than try to
incorporate these into RPLOT, it makes more sense (???) to preserve
the capability for running them directly. These files can be processed
after or even during the TRANSP run by the usual set of FRBC post-
processing codes, with hopefully only minor modification. In order to
limit the number of files produced, it might be wise to introduce a Namelist
variable that specifies the frequency at which these output files are written.
In the final “Production” mode, it would make sense to maintain a single
file for output, and append to it, modifying the post-processing codes
accordingly to allow them to select time slices of interest.

fbt006.tex 6

2. RPLOT can be used to plot certain quantities that are of interest as a
function of time, such as convergence parameters, etc. Certain scalar in-
formation, especially the kind that describes the quality of the reconstruc-
tion, can be incorporated into TRANSP data structures (so they must
form part of the data set that is transmitted back to TRANSP across the
TRANSP-FRBC firewall), and be made available to RPLOT users. Early
on, we thought that users might want to use RPLOT to see how well the
reconstructed data agreed with measurements, hence the “error bar” plots
in the next table. These and other possible data sets are listed below.

RPLOT Data Structures
Output Data Item Data Type RPLOT Structure exists ?

Convergence Values f(t) Yes
Total Chi Squared Values f(t) Yes
Individual Chi Squared Values f(t,index) Yes
Data with Error Bars1 f(t, value, index) New - Data w/ Error Bars
Reconstructed profile curves2 f(t, R) New - Curves rather than points
Reconstructed vs Measured Magnetic Data3 fMorR(t, index) New - Multigraphs w/ Error Bars
Reconstructed vs Measured Profile Data4 fMorR(t, R) No - Multigraphs w/ Error Bars
Poloidal Flux Contour Plot5 f(R, Z, t) Post-Process instead ?

Initially, we will concentrate on the “proof of principle” aspects of this
project, and will rely mainly on the FRBC post-processing capability. Once
that is complete, we can more fully integrate the FRBC results into RPLOT.

1. Error bars will become a new RPLOT datatype.
2. Curves will become a new RPLOT datatype. By curves, we mean data points
connected by “lines” rather than represented by symbols. The equilibrium code
will have to return these data on a uniform R grid, possibly as determined from the
TRANSP namelist, or by default from the Green’s function file.
3. These would be represented as multigraphs composed of overlapping point
datatypes and error bar datatypes.
4. These would be represented as multigraphs composed of overlapping point, error
bar and curve datatypes.
5. In order to retain enough flexibility to vary contour resolution, it might be best
for TRANSP to dump the required data for contour post-processing (e.g., coil po-
sitions and currents, plasma current density profiles j(R, Z), limiter locii) into a
separate file. A seperate utility could then reconstruct the poloidal flux plots.

fbt006.tex 7

2 BRAZIL-0 . . . Equilibrium Pass-Thru

In this mode we pass in the complete flux surface geometry, as well as pressure
and q, from a completed time sequence FRBC run. TRANSP then uses this
data in lieu of running MAGDIF and MHDEQ. We use existing trigraphs, where
possible.

2.1 TRDAT Input Files and data Structures

New TRDAT Input File and Data Structures
Input Diagnostic Data Type TRDAT Structure

Scalar Controls Scalar Exists
Equilibrium “Moments”6 C3(t, x

7, (m ∗ ind)8) 3d Ufile (MMX)
Pressure P2(t, x

7) 2d Ufile (MPX)
q-value Q2(t, x

7) 2d Ufile (MQX)
Toroidal Current Density I2(t, x) 2d Ufile (MTC)
Poloidal Current (F) J2(t, x) 2d Ufile (MPC)
Enclosed Poloidal Flux O1(t) 1d Ufile (PLF)
Enclosed Toroidal Flux T1(t) 1d Ufile (TRF)

C3 Ufile Scalar List

scalar name Description Variable

SYMTYPE “SYMMETRIC” or “ASYMMETRIC” SCLAB(2,1)
FRBCTYPE “EFIT” or “VMEC” SCLAB(2,2)
XTYPE “PSINORM” or “PHINORM” (EFIT) SCLAB(2,3)
FRBCID the FRBC run id SCLAB(2,4)
MMAX max value of m SCVAL(5)

P2,Q2, I2,J2,O1, T1 Ufile Scalar Lists

scalar name Description Variable

FRBCTYPE “EFIT” or “VMEC” SCLAB(2,1)
FRBCID the FRBC run id SCLAB(2,2)

6. For the up-down asymmetric case: ind = 1 : Rc
m , ind = 2 : Rs

m , ind = 3 : Zc
m

, ind = 4 : Zs
m ; for the up-down symmetric case: ind = 1 : Rc

m , ind = 2 : Zs
m

7. x is the intrinsic coordinate used by the FRBC code in question. This requires
passing Φ0(t) and Ψ0(t) as 1-d Ufiles so TRANSP can convert to ξ. No conversion
will be done in TRDAT.
8. A combined index, where m is the poloidal index in the Fourier expansion.

fbt006.tex 8

TRDAT Namelist Entries
scalar name or trigraph* Description

LEVGEO 8
NFRBMODE 0
NFRBCODE 1 (VMEC-S) or 2 (VMEC-A) or 3 (EFIT)
MMX* C3 moments Ufile trigraph
MPX* P2 pressure Ufile trigraph
MQX* Q2 q-value Ufile trigraph
MTC* I2 toroidal current Ufile trigraph
MPC* J2 poloidal current Ufile trigraph
PLF* O1 poloidal flux Ufile trigraph
TRF* T1 toroidal flux Ufile trigraph

fbt006.tex 9

3 BRAZIL-1 and 2 . . . Internal Equilibrium [Driver]

In the TRANSP free boundary “Equilibrium Driver” phase (BRAZIL-1), FRBC
input data is passed into the TRANSP driver shell, where everything but the
equilibrium code is shut off. Some file types have to go through TRDAT so
that the data can be available to TRANSP for time interpolation in preparing
input data structures for the FRBC call. Others are referenced only by the
FRBC itself, such as the Green’s Function File (GFF), and usually have very
idiosyncratic data formats that would be silly to translate into TRDAT common
format and then back again. For these file types, cf. the discussion in Section
1.4.

In the TRANSP free boundary equilibrium phase (BRAZIL-2), the only
difference from BRAZIL-1 is that the pressure is no longer input, and now all
the TRANSP modules are fully operational.

3.1 Flux Loop Measurements in EFIT and VMEC

Some machines measure absolute poloidal flux with their flux loops, while others
measure relative flux between adjacent loops (“saddle fluxes”). EFIT accomo-
dates either method by hard coding within the program itself, while VMEC
depends on the GFF to specify the configuration. We might want to modify
these codes so that the configuration setup is handled in the same way by both.

3.2 FRBC specific Namelist Files

Namelist variables for the FRBC can be broken down into two categories, those
that are likely to be changed often, and those that are not. The former need to
be more visible, and should appear in the TRANSP namelist. The latter can
be relegated to one or more additional Namelist files, read in directly by the
FRBC, or by the setup routine for the FRBC. A naming convention similar to
the one proposed for the GFF can be used, where a TRDAT file name entry
can be used to identify the generic namelist file, and the contents copied to a
file named in such a way as to guarantee its uniqueness for the run in question.

3.3 Limiter Parameterization

Both codes require a description of the limiter boundary, both for internal com-
putation, and for graphics post-processing. In the case of VMEC, this parame-
terization is input by means of a separate file, whose name will be specified in
the same way as described in the previous section.

fbt006.tex 10

3.4 Measurement “Weights”

EFIT employs the concept of measurement “weights” to allow the user to vary
the degree to which the data is used in the reconstruction. A set of namelist
variables will be assigned to represent these weights. Because there will be a
disconnect between the location of these weight arrays in TRANSP namelist and
the location of the data in the MDF file (cf. next section for details), it would
be preferable to have TRDAT be able to report on these namelist “weights”.

3.5 TRDAT Input Files and Data Structures

New TRDAT Input File and Data Structures
Input Diagnostic Data Type TRDAT Structure

Scalar Controls9 Scalar Exists
PF Coils Green’s Function File Proprietary TRDAT
Composite Magnetics Data File (MDF)10 M3(t, index, 1 : 211) Indexed 3d Ufile
FRBC Namelist File Proprietary TRDAT
Pressure (NFRBMODE=1 only)) P3(t, R, 1 : 211) New - 3d Ufile
MSE Pitch Angle Q3(t, R, 1 : 211) New - 3d Ufile
Interferometry I3(t, R, 1 : 211) New - 3d Ufile

TRDAT Namelist Entries
scalar name or trigraph* Description

LEVGEO 8
NFRBMODE 1 (Driver) or 2 (let ’er rip!)
NFRBCODE 1 (VMEC-S) or 2 (VMEC-A) or 3 (EFIT)
FRBCGFF name of Green’s Function File (Set)
FRBCNMLF name of the FRBC template Namelist File
EFIT** cf Section 4.2.3 for EFIT Namelist variables
VMEC** cf Section 4.1.? for VMEC Namelist variables
CUR* Plasma Current trigraph12

DFL* existing Diamagnetic Flux trigraph12

MDF* M3 composite magnetics data file trigraph
MPR* P3 pressure Ufile trigraph
MQR* Q3 magnetic field pitch angle Ufile trigraph
MFR* I3 interferometer Ufile trigraph

9. Cf. Sect 3.5.2 for VMEC entries and Sect 3.5.3 for EFIT entries.
10. Contains set of magnetic measurements required by VMEC and EFIT to per-
form reconstruction with free boundary equilibrium. Cf. sect 3.2.1 .
11. Index “1” points to “measured values”, index “2” to “sigmas”.
12. Ufile scalar SIGMA can be used to specify the time independent uncertainty.

fbt006.tex 11

3.5.1 M3 Composite Magnetics Data Ufile (MDF)

Composite Magnetics Data Ufile: M3(t
13, index, 1 : 2)

Measurement = M3(t, index, 1)
σ = M3(t, index, 2)

Input Diagnostic Index, Number14 Data Index15 Units

Flux Loops IFL, NFL ΦFL iFL, . . . , iFL + nFL Webers
Reference Flux Loop ISRF, NSRF ΦFLR iFLR(nFLR = 1) Webers
Saddle Coils ISADDL, NSADDL ΦFL iSDL, . . . , iSDL + nSDL Webers
Magnetic Probes IMPROBE, NMPROBE B iMP , . . . , iMP + nMP Tesla
PF Ohmic Coil16 IIOHMIC, NIOHMIC IOhmic iIOhmic

, . . . , iIOhmic
+ nIOhmic

Amps
PF Shaping Coil17 IISHAPE, NISHAPE IShape iIShape

, . . . , iIShape
+ nIShape

Amps
Current Center IRELIP, NRELIP REllip iRLP (nRLP = 1) Meters
Current Center IZELIP, NZELIP ZEllip iZLP (nZLP = 1) Meters

Other diagnostic information can be present, as may be the case if other
applications make use of these Ufiles. TRDAT will ignore it.

In the case of TFTR, the BR, BZ loops are stored as “Magnetic Probes”, the
Mirnov coils are stored as “Flux Loops”, and the Poloidal Field Coil Currents
(OH,EF,VC,HF) are stored as “PF Shaping Coils”.

13. Each M3 Ufile will be built on a single time base. If data is present on more
than one time base, then additional M3 Ufiles will be present, one per time base. A
naming convention like “Mnnnnn.MDFi” can be used to link them together, with
i = 1, . . . , n covering the n different time base data sets.
14. These parameters are hidden in the MDF. The FRBC knows how to map a
given index to a complete specification of the measurement geometry as given by
the GFF.
15. Each “named” index pair (i, n) will appear as separate scalars in the ufile. Not
every pair has to be present, since not every data type need be present.
16. A useful EFIT terminology labels those PF coils as “E”, or “Ohmic” if they are
not included in the reconstruction fit.
17. A useful EFIT terminology labels those PF coils as “F”, or “Shaping” if they
are included in the reconstruction fit.

fbt006.tex 12

M3 Ufile Scalar List appearing in the MDF

scalar name Description

FRBCID the FRBC run id
MCONFIG name of “shot-independent” magnetics configuration file
SEQNO time base sequence number in ufile series
IFL index value for Flux Loop class of measurements
NFL number of measurements appearing in the Flux Loop class
IIOHMIC index value for IOhmic class of measurements
NIOHMIC number of measurements appearing in the IOhmic class
IISHAPE index value for IShape class of measurements
NISHAPE number of measurements appearing in the IShape class
IMBNDRY index value for plasma boundary parameters
NMBNDRY number of plasma boundary parameters
IMFLUX index value for enclosed plasma flux measurements
NMFLUX number of enclosed plasma flux measurements
IMPROBE index value for Magnetic Probe class of measurements
NMPROBE number of measurements appearing in the Magnetic Probe class
ISADDL index value for Saddle Coil class of measurements
NSADDL number of measurements appearing in the Saddle Coil class
ISRF index value for Reference Flux Loop (one value)
NSRF = 1; a single Reference Flux Loop measurement
IX3 unknown
NX3 unknown
IRELIP index value for IRLP class of parameters
NRELIP number of parameters appearing in the IRLP class
IZELIP index value for IZLP class of parameters
NZELIP number of parameters appearing in the IZLP class

In the case of TFTR, the magnetically determined RC0
, ZC0

, aC , bC param-
eters describing the plasma boundary are stored in the MBNDRY positions,
and the magnetically determined toroidal and poloidal fluxes are stored in the
MFLUX positions.

fbt006.tex 13

TRCOM Non-Namelist Common Block Variables
Variable Description

integer NFEROM Number of Interferometry Measurements
integer NFL Number of Flux Loops
integer NIOHMIC Number of Ohmic PF Coils
integer NISHAPE Number of Shaping PF Coils
integer NITEREQ number of FRBC iterations
integer NMPROBE Number of Magnetic Probes
integer NRELIP Number of Current Centers
integer NZELIP Number of Current Centers
integer NSDL Number of Saddle Coils
integer NSRF Number of Ref Flux Loops (Obsolete?)
real*4 BMP(1:NMPROBE) Magnetic Probe Measurements
real*4 BMPEQ(1:NMPROBE) FRBC Magnetic Probe Values
real*4 BMPSG(1:NMPROBE) Magnetic Probe Sigmas
real*4 CHISEQ Reconstruction chi-squared pdf
real*4 CHISEQP Reconstruction CHISQ for pressure profile
real*4 CHISEQMS Reconstruction CHISQ for MSE
real*4 CHISEQFL Reconstruction CHISQ for flux loops
real*4 CHISEQMP Reconstruction CHISQ for magnetic probes
real*4 CHISEQSD Reconstruction CHISQ for saddle coils
real*4 CHISEQDI Reconstruction CHISQ for diamagnetic flux
real*4 CHISEQIP Reconstruction CHISQ for toroidal current
real*4 CHISQN Reconstruction CHISQ/N
real*4 CHISQPN Reconstruction CHISQ/N for pressure profile
real*4 CHISQMSN Reconstruction CHISQ/N for MSE
real*4 CHISQFLN Reconstruction CHISQ/N for flux loops
real*4 CHISQMPN Reconstruction CHISQ/N for magnetic probes
real*4 CHISQSDN Reconstruction CHISQ/N for saddle coils
real*4 CHISQDIN Reconstruction CHISQ/N for diamagnetic flux
real*4 CHISQIPN Reconstruction CHISQ/N for toroidal current
real*4 CMBNDRY(MBNDRY) Magnetic reconstruction of Plasma Boundary
real*4 CMTFLUX Magnetic reconstruction of Toroidal Flux
real*4 CMPFLUX Magnetic reconstruction of Poloidal Flux
real*4 CONVEQ Equilibrium convergence
real*4 CPFOH(1:NIOHMIC) Ohmic PF Coil Currents
real*4 CPFOHEQ(1:NIOHMIC) FRBC Ohmic PF Coil Currents
real*4 CPFOHSG(1:NIOHMIC) Ohmic PF Coil Current Sigmas
real*4 CPFSH(1:NISHAPE) Shaping PF Coil Currents
real*4 CPFSHEQ(1:NISHAPE) FRBC Shaping PF Coil Currents
real*4 CPFSHSG(1:NISHAPE) Shaping PF Coil Current Sigmas
continued next page

fbt006.tex 14

Variable Description

continued from previous pg
real*4 DFLUX Diamagnetic Flux
real*4 DFLUXEQ FRBC Diamagnetic Flux
real*4 DFLUXMSG Diamagnetic Flux Sigma (M???)
real*4 FEROM(1:NFEROM) Interferometry Measurements
real*4 FEROMSG(1:NFEROM) Interferometry Sigmas
real*4 FEQWGTF(1:300) FRBC Wgts for Flux Loops (Obsolete?)
real*4 FEQWGTI(1:300) FRBC Wgts for Shaping Coil Currents (Obsolete?)
real*4 FEQWGTM(1:300) FRBC Wgts for Magnetic Probes (Obsolete?)
real*4 FRBCWGTF(1:300) FRBC Wgts for Flux Loops
real*4 FRBCWGTI(1:300) FRBC Wgts for Shaping Coil Currents
real*4 FRBCWGTM(1:300) FRBC Wgts for Magnetic Probes
real*4 FRBCWGTR(1:300) FRBC Wgts for Interferometer Data
real*4 FRBCWGTS(1:300) FRBC Wgts for MSE Data
real*4 FRBITMPI(1:300) Minimum magnetic probe signal
real*4 PCUR Plasma Current
real*4 PCUREQ FRBC Plasma Current
real*4 PCURSG Plasma Current Sigma
real*4 PHIFL(1:NFL) Flux Loop Measurements
real*4 PHIFLEQ(1:NFL) FRBC Flux Loop Values
real*4 PHIFLSG(1:NFL) Flux Loop Sigmas
real*4 PHISDL(1:NSDL) Saddle Coil Measurements
real*4 PHISDLEQ(1:NSDL) FRBC Saddle Coil Measurements
real*4 PHISDLSG(1:NSDL) Saddle Coil Sigmas
real*4 SIREF Reference Flux Loop Measurement

3.5.2 VMEC Namelist entries

VMEC Namelist Entries appearing in TRDAT file

Namelist entry Description

NVM8IRAX optimize wrt magnetic axis position
NVM8ITER maximum number of iterations allowed
NVM8MPHI fix toroidal flux
NVM8SIN initial radial grid size
NVM8STEP output status line every nstep lines
NVM8VSKP iterations between updates of vacuum solution
VM8FTOL convergence criteria for MHD force residual
VM8TENSI tension in iota splines
VM8TENSP tension in pressure splines

fbt006.tex 15

3.5.3 EFIT Namelist entries

EFIT Namelist Entries appearing in TRDAT file

Namelist entry Description

EBITFAR Minimum polarimetry angle
EBITSAD Minimum magnetic saddle signal
EERROR Convergence criterion
EFCURBD 1=0 ffprime at boundary, 0= float
EFWTBP Wgt for ffprime and pprime proportional
EFWTCUR Wgt on current measurement
EFWTDLC Wgt on diamagnetic flux
EFWTFAR Wgt for polarimetry
EFWTQA Wgt on q0 measurement
EPCURBD related to edge pressure
ESERROR Standard deviation for fitting
ESVDTOL LSVD tolerance
ERELIP initial guess for R of current centre
EZELIP initial guess for Z of current centre
FRBITMPI(MP2) minimum magnetic coil signals
FRBCWGTF(SIL) weight on the flux loop measurements
FRBCWGTS(MSE) weight for mse pitch-angle measurments
FRBCWGTM(MP2) weight on the pick-up coil measurements
FRBCWGTI(FCOIL) weight on the f-coil measurements
FRBCWGTL(SDL) weight on the saddle measurements
FRBCWGTR(IFEROM) weight on the saddle measurements
NDOKINE Kinetic fitting on
NICONVRE fitting options
NICURRT type of expansion
NIECOILE Plotting switch
NIECURRE 1=include E-coils in calc.
NIEXCALE 1=plot magnetic signals
NIFITVSE 1= fit vessel segments
NKFFCURE No. of terms in ffprime
NKPPCURE No. of terms in pprime
NKPRFITE Pressure fitting on
NKWRIPRE Output switch 1
NMXITERE Max. no of outer iterations
NXITERE Max. no of inner iterations

fbt006.tex 16

3.5.4 EFIT Namelist entries

EFIT Namelist Entries appearing in ESNAP2 file

Namelist entry Description

ICNTOUR ???
IPRES ???
KEQDSK ???
KBOUND ???
KDOSCRUN 0 = regular SCRUNCHER on all contours

1 = like 0 but with Zakharov representation
2 = Lao-Hirshman JET parameterization (65)
3 = Lao-Hirshman JET parameterization (21)
5 = Lao-Hirshman JET parameterization (bdy)
6 = SCRUNCHER on outermost boundary

MPOLSCRUNCH 9 = return m = 0, ..., 8 moments to EFREAD
QVFIT ???
ITEK ???
IERCHK ???
ICFLUX ???
LIMITR number of limiter pts
XLIM limiter positions
YLIM limiter positions
IFITVS ???
KCGAMA ???
CGAMA ???
XGAMA ???
KCALPA ???
CALPA ???
IRON ???
IRONS ???
FWTPER ???
GAINP ???
BITFC ???
PSIBIT ???
IFCURR ???
KDZCUR ???
ICONVR ???
XALPA ???

fbt006.tex 17

4 Calling the FRBC Code from TRANSP

The subroutine MHDEQ contains the TRANSP code that calls whatever equi-
librium package is specified by the LEVGEO Namelist parameter. Up until
LEVGEO=8, the connection has always been made by a subroutine call; i.e.,
the equilibrium package has been subsumed into TRANSP through a callable
interface which additionally serves as a firewall between the TRANSP common
and the equilibrium code common.

With LEVGEO=8, this paradigm will change. The equilibrium code will
be a separate process, invoked by a system call from MHDEQ, and information
will be passed back and forth using namelist reads and writes through “logical”
files (i.e., pipes). In the beginning this IO will be in ASCII format. Eventually,
the IO may become binary.

The advantages of such a calling architecture are

1. Alleviate the necessity of possibly massive code reorganization to convert
the FRBC code into a “callable” entity.

2. Use the exisiting “restart” capability of the FRBC codes

3. Minimum conversion costs when the FRBC needs to be updated

This separation, however, does bear some cost:

1. A “restart” mechanism has to be established for the FRBC. While this
would have to be done in any case, it does increase the amount of logical
file IO that has to go on.

2. A mechanism has to be established so that the FRBC can signal MHDEQ
if and when there is a crash in the FRBC code.

4.1 Calling VMEC from MHDEQ

[To be filled in ...]

fbt006.tex 18

4.2 Calling EFIT from MHDEQ

4.2.1 Required Files

Files required for TRANSP - EFIT operation

File Name Description

for TRANSP ...
./esnap2 K-File template namelist read in EFITRIDE

contains vbls not in TRDAT namelist
./efit beg Unix script used to setup EFIT links
./efitgrunt Unix script used to startup EFIT in STPIPS

as well as make the runid eftdir work directory
for the SED filter ...
runidTE.SCR sed input translation script for TRANSP to EFIT pipe
runidET.SCR sed input translation script for EFIT to TRANSP pipe
for EFIT ...
./brazil EFIT input script referenced in EFITGRUNT
EC3333 Green’s Function file
EP3333 Green’s Function file
RE3333 Green’s Function file
DPROBE Green’s Function file
ANGLE Green’s Function file
TAREAF Green’s Function file
RFCOIL Green’s Function file

Files generated in the course of TRANSP - EFIT operation

File Name Description

by TRANSP ...
./fort.45 a copy of the IN1 namelist being sent to EFIT
by EFIT ...
./EQDSK the EQDSK file
./EQDSKA the EQDSKA file ???
./err stderr for EFIT
./fort.6 stdout for EFIT
./fort.40 ??
./fort.72 ??
./fort.73 a copy of the BNDMOM namelist being sent to TRANSP
./fort.74 ??
./fort.96 ??

4.2.2 Program Flow

In the flow description, below, “Tn” signifies the n-th step in the TRANSP code,
and “En” signifies the n-th step in the EFIT code. “S” signifies an operation
by the SED filters, of which there are two.

fbt006.tex 19

T1. Call MKPIPS ... only once. The order of the following operations is not

significant ...

• Create pipe runidTS.PIP for writing from TRANSP to the filter

• Create pipe runidSE.PIP for writing from the filter to EFIT

• Create pipe runidES.PIP for writing from EFIT to the filter

• Create pipe runidST.PIP for writing from the filter back to TRANSP

T2. Call STPIPS. The order of the following operations is significant ...

• Put the back filter (TRANSP ⇐ EFIT) process in place

• Open T ⇐ S pipe in read mode

• Start EFIT with the command

./efitgrunt runid &

[Cf. E1 for consequence]

• Put the forward filter (TRANSP ⇒ EFIT) process in place

• Open T ⇒ S pipe in write mode

E1. EFIT wakes up ...

• Pipes activity triggered by non-blank arg[1] in command line of efit-
grunt invocation

• in DATA, call EFPIPS ... open EFIT input and output pipes

– Open S ⇐ E pipe (used for WRITEing back to TRANSP)

– Open S ⇒ E pipe (used for READing from TRANSP)

• in DATA, wait for TRANSP by issuing a read for the IN1 namelist

T3. Make a System call to sleep for 3 seconds ... required on the DEC Alpha
to prevent an apparent “race” condition

T4. Call FBEGAT ... interpolate MDF data onto ZT2 time slice and update
the TRCOM arrays

T5. Call EFITRIDE ... generate K File for EFIT from TRCOM

• Read the ESNAP K-File template and then assemble the data arrays

• Write the IN1 namelist to fort.45 for debug purposes

• Write the IN1 namelist to the pipe [Cf. S1 for consequence]

T6. Call HWRPIP ... signal EFIT that the K File is ready with “GO EFIT”

S1. SED reads the TS pipe, filters it into the SE pipe [Cf. E2 for consequence]

fbt006.tex 20

E2. EFIT digests the namelist ...

• in DATA EFIT completes the read of the namelist data

• still in DATA, use HRDPIP to read “GO EFIT” to confirm the
TRANSP transmission of data is complete

E3. EFIT calculates an equilibrium ...

E4. in BETALI EFIT calls SCRUNCHER to parameterize the boundary flux
surface

E5. in BETALI write the BNDMOM namelist to fort.73 for debug purposes

E6. in BETALI write the BNDMOM namelist back into the pipe [Cf. T6 for
consequence]

E7. in BETALI use HWRPIP to signal completion with “GO TRANSP” [Cf.
T7 for consequence]

S2. SED reads the ES pipe, filters it into the ST pipe

T7. Call EFREAD ... wait for EFIT to finish by issuing a read for the returning
namelist

• read the BNDMOM namelist from the S ⇒ T pipe

• interpolate the data into the TRCOM arrays

T8. Call HRDPIP ... wait for EFIT to send “GO TRANSP”

T9. Call VMEC6INI ...

• run the fixed boundary equilibrium code to map the interior of the
free-boundary solution into moment space

• use as many EFIT results as possible

T10. Manually invoke kill-brazil runid at the end of the run to clear out all the
pipes

&%
'$
Unit 8 -

�� ��xxxxTS.PIP - sed -
�� ��xxxxSE.PIP -

&%
'$
Unit 11

�� ��xxxxTE.SCR

6

&%
'$
Unit 9 �

�� ��xxxxST.PIP � sed �
�� ��xxxxES.PIP �

&%
'$
Unit 12

�� ��xxxxET.SCR

6

fbt006.tex 21

4.2.3 Parameter Passing to EFIT through the K File

TRCOM TRANSP Vbl EFIT Namelist Vbl Description

integer NDOKINE NDOKIN Kinetic fitting on
integer NFEROM(nu?) NDEN Number of Interferometry Measurements
integer NICONVRE(nu?) ??? fitting options
integer NICURRT(nu?) ??? type of expansion
integer NIECOILE IECOIL Plotting switch
integer NIECURRE IECURR 1=include E-coils in calc.
integer NIEXCALE IEXCAL 1=plot magnetic signals
integer NIFITVSE(nu?) IFITVS 1= fit vessel segments
integer NKFFCURE KFFCUR No. of terms in ffprime
integer NKPPCURE KPPCUR No. of terms in pprime
integer NKPRFITE KPRFIT Pressure fitting on
integer NKWRIPRE KWRIPRE Output switch 1
integer NMXITERE MXITER Max. no of outer iterations
integer NPRESS NPRESS Number of pressure points
integer NXITERE(nu?) NXITER Max. no of inner iterations
real EBITFAR(nu?) BITFAR Minimum polarimetry angle
real EBITSADA SADBIT Minimum magnetic saddle signal
real EERROR ERROR Convergence criterion
real EFCURBD FCURBD 1=0 ffprime at boundary, 0= float
real EFWTBP FWTBP Wgt for ffprime and pprime proportional
real EFWTCUR FWTCUR Wgt on current measurement
real EFWTDLC FWTDLC Wgt on diamagnetic flux
real EFWTFAR FWTFAR Wgt for polarimetry
real EFWTQA FWTQA Wgt on q0 measurement
real EPCURBD PCURBD related to edge pressure
real ESERROR SERROR Standard deviation for fitting
real ESVDTOL SVDTOL LSVD tolerance
real EZELIP ZELIP Initial guess for current centre
real PRESSR PRESSR Pressure measurement
real RPRESS RPRESS Radial position of pressure measurement
real SIGPRE SIGPRE Pressure sigma
continued next page

fbt006.tex 22

TRCOM TRANSP Variable EFIT Namelist Variable Description

continued from previous pg
real*4 BMP(1:NMPROBE) EXPMP2 Magnetic Probe Measurements
real*4 BMPSG(1:NMPROBE) N/A Magnetic Probe Sigmas
real*4 BZXR/296.0 BTOR Vacuum Toroidal Magnetic Field
real*4 CPFOH(1:NIOHMIC) ECURRT Ohmic PF Coil Currents
real*4 CPFOHSG(1:NIOHMIC) N/A Ohmic PF Coil Current Sigmas
real*4 CPFSH(1:NISHAPE) BRSP Shaping PF Coil Currents
real*4 CPFSHSG(1:NISHAPE) N/A Shaping PF Coil Current Sigmas
real*4 DFLUX DFLUX Diamagnetic Flux
real*4 DFLUXSG SIGDLC Diamagnetic Flux Sigma
real*4 FEROM(1:NFEROM) DN2KG1 Interferometry Measurements
real*4 FEROMSG(1:NFEROM) N/A Interferometry Sigmas
real*4 FRBCWGTF(1:NFL) FWTSI FRBC Wgts for Flux Loops
real*4 FRBCWGTI(1:NISHAPE) FWTFC FRBC Wgts for Shaping Coil Currents
real*4 FRBCWGTL(1:NSDL) FWTSAD FRBC Wgts for Saddle Coils
real*4 FRBCWGTM(1:NMPROBE) FWTMP2 FRBC Wgts for Magnetic Probes
real*4 FRBCWGTR(1:NFEROM) FWTKG1 FRBC Wgts for Interferometer Data
real*4 FRBCWGTS(1:300) FWTTGA ??? FRBC Wgts for MSE Data
real*4 FRBITMPI(1:NMPROBE) BITMPI Minimum Magnetic Probe Signals
real*4 PCUR PLASMA Plasma Current
real*4 PCURSG N/A Plasma Current Sigma
real*4 PHIFL(1:NFL) COILS Flux Loop Measurements
real*4 PHIFLSG(1:NFL) N/A Flux Loop Sigmas
real*4 PHISDL(1:NSDL) SADLS Saddle Coil Measurements
real*4 PHISDLSG(1:NSDL) N/A Saddle Coil Sigmas
real*4 SIREF SIREF Reference Flux Loop Measurement
real*4 ZPRESS ZPRESS Z position of pressure measurement

fbt006.tex 23

4.2.4 Parameter Passing back to MHDEQ

EFIT Namelist Variable TRCOM TRANSP Variable Description

NSURTR integer MSURTR Number of EFIT flux surfaces returned
FPOLTR real(1:MSURTR) ZFPOLTR Poloidal Current array (F)
PRESTR real(1:MSURTR) ZPRESTR Pressure array
PHIN real(1:MSURTR) ZPHIN Normalized toroidal flux array
PHI real(1:MSURTR) ZPHI Toroidal flux array
NMBOUT1 integer MMBOUT not used
RMBOUT real ZRMBOUT(0:8,2,65) Scrunched flux surface moments for R
ZMBOUT real ZZMBOUT(0:8,2,65) Scrunched flux surface moments for Z
not yet implemented ...
TSAISQ real*4 CHISEQ Reconstruction chi-squared pdf
ERRORM real*4 CONVEQ Equilibrium convergence
IXT integer NITEREQ number of FRBC iterations
CPASMA real*4 PCUREQ FRBC Plasma Current
CDFLUX real*4 DFLUXEQ FRBC Diamagnetic Flux
??? real*4 PHIFLEQ(1:NFL) FRBC Flux Loop Values
??? real*4 BMPEQ(1:NMPROBE) FRBC Magnetic Probe Values
??? real*4 CPFOHEQ(1:NIOHMIC) FRBC Ohmic PF Coil Currents
??? real*4 CPFSHEQ(1:NISHAPE) FRBC Shaping PF Coil Currents
??? real ZVMEITOR Toroidal Current

4.3 EFIT - TRANSP interface issues

Cartesian to Moments Mapping It was found that the SCRUNCHER code
was unable to do a satisfactory job of mapping the inidividual flux con-
tours back into a suitable moments representation. The process introduced
radial “noise” into the moment profiles, returned high-curvature theta rep-
resentations at the edge, and was time consuming. What is done instead
now is to use the VMEC6 fixed boundary code to generate the moment
maps, using the boundary and pressure and q profiles supplied by EFIT.
It turns out to be faster than using the SCRUNCHER code.

Profile Interpolation Care must be taken in mapping EFIT profiles back into
TRANSP and on into VMEC6. It was found that, especially at the edge,
too many interpolation stages can lead to spikes in the toroidal current
profile.

SCR pipe filters and Fortran Namelist Fortran Namelist writes are done
differently on the DEC Alphas and the Suns. The SCR sed scripts cannot
depend on any of the following “features” of a namelist write:

1. upper or lower case of the variable names

fbt006.tex 24

2. occurance and positioning of “blanks” in the output line

3. positioning of “equal sign” in the output line

4.4 Initializing the Environment

1. Setup GFF’s in proper directory (cf efitrun)

2. Setup your path correctly

3. Setup links and work subdirectory

setupefit \{normal|debug\} 65 runid

4.4.1 Debugging the Pipes

1. setupefit debug 65 runid

2. Start up TRANSP in or out of the debugger

3. Set a breakpoint somewhere in TRANSP

4. An EFIT dbx window will appear ...

4.4.2 Debugging EFIT off-line

1. Put fort.45 through the filter

cat fort.45 | sed -f X706TE.SCR > fort.efit

2. Debug EFIT in “no-pipes” mode

dbx ./efit14.exe

2

0 3 0.1

junk

junk

0

1

fort.efit

fbt006.tex 25

A Status Report on TRANSP Free Boundary

Project

To review our progress to date in implementing a free-boundary equilibrium
analysis in TRANSP:

Fall 1994
Begin discussions at APS with Lang Lao (EFIT) and Steve Hirshman(VMEC)
on feasibility of using their codes in a free-boundary TRANSP.

Spring 1995
Begin collaboration between PPL and JET, with JET working on the
EFIT implementation and PPL working on the VMEC implementation;
begin writing a specification for the interfaces

Summer 1995
Elaborate on the interface specification; code the interface into the re-
spective codes. Wieland and McCune spend two weeks and one week,
respectively, at JET.

December 1995
O’Brien and Stubberfield spend two weeks at PPL. 1st EFIT iteration
runs in TRANSP in a preliminary set-up using an early version of the
JET EFIT code on a 33 x 33 grid.

Spring 1996
Set up more recent version of JET EFIT to easily work on either a 33 x
33 grid or a 65 x 65 grid. Interfaces between the two codes tidied up and
the start-up phase of TRANSP made to work.

May 1996
1st VMEC iteration runs in TRANSP

Summer 1996
Problems encountered in mapping EFIT equilibrium of a JET shot back
into TRANSP. It had been noticed early on that the set of moments
provided by the SCRUNCHER called in EFIT caused difficulties back in
TRANSP when derivatives were calculated for geometric coefficients. This
was particularly noticeable in the current density profile at the edge. A
slight kink was seen in limiter configuration which became much more
pronounced once the X-point formed. Using the newer EFIT with a bet-
ter grid resolution did not solve this problem. Different methods were
then tried to provide a better set of moments - eg: a more up-to-date
SCRUNCHER, with and without Zahkarov option, Lao-Hirshman repre-
sentation, all with varying number of moments up to max 0:8. All methods
were tested in a stand-alone code on points provided by the contouring

fbt006.tex 26

algorithm in EFIT for the outermost 2 flux surfaces at a time in the mid-
dle of a run where the X-point has formed. Some options gave better fits
than others but overall there was very little improvement when these were
used in TRANSP.

Fall 1996
VMEC mode begins final testing phase on a variety of shots; work continu-
ing on resolving the EFIT to TRANSP mapping problem. The outermost
boundary from EFIT was pulled in slightly by differing amounts, partic-
ularly to get rid of the most pronounced X-point shape. This had the
main effect of shifting the discontinuity in the j profile radially. It was no-
ticed that the contouring algorithm in EFIT CNTOUR was failing on the
outermost boundary in X-point configuration giving fewer points from the
SURFAC subroutine. CNTOUR has now been replaced by the most up-to
date routines from GA and handles X-points without difficulty. However
the problem in TRANSP remained.

Late Fall 1996
Because of the poor performance of the SCRUNCHER in mapping the
EFIT interior flux surfaces back into moment space, we have begun exper-
imenting with using VMEC6 fixed-boundary as a way to do the mapping.
It turns out to be a very good solution. The current profile spike at the
edge was greatly reduced, but now the edge current goes negative.

January 1997
Wieland spends 10 days at JET. EFIT-VMEC6 interface interpolation
problems are identified and fixed. Plans are made for further improve-
ments.

B Mapping EFIT back into TRANSP

This summarizes the scheme that was determined to be unsuitable:

• The EFIT equilibrium is analyzed and contours in R,Z space are generated
on a specified flux coordinate grid.

• These contours are individually Fourier analyzed by the SCRUNCHER
code to extract the Fourier moments needed by the TRANSP code

The problem that develops is in the edge radial behavior of these moment
profiles. The moment profiles develop rapid spike like changes in the edge region.
These reflect the change in geometry near the edge, and particularly the change
in theta representation near the edge. These spikes lead to unrecoverable errors
in TRANSP when calculating flux surface metrics.

fbt006.tex 27

We have gone back and analyzed LEVGEO=6 fixed boundary runs of sim-
ilar JET runs, using SCRUNCHER on the resulting flux surface contours and
comparing the moments thus obtained with the moments from the VMEC fixed
boundary analysis. The results are strikingly different, emphasizing the inde-
terminacy of fixing the theta representation of the surfaces without additional
constraints, such as the force balance equation used in VMEC.

To date the following steps have been taken in attacking this problem:

EFIT contouring
The contouring algorithm in EFIT has been examined to see if there is any
“noise” in the R,Z description of the contours produced. The contouring
subroutines have been updated to reflect the most up-to-date versions
available from GA. We are satisfied that this part of the code is working
correctly.

SCRUNCHER moments analysis
SCRUNCHER has been modified to work in a mode where it uses the
previous solution (i.e., the results of the analysis of a neighboring contour).
This was done because there is concern that this analysis does not provide
any radial smoothness constraints in going from contour to another; they
are treated independently. There is noise in the radial distribution of the
resulting moments, but that does not seem to be the cause of the problem.
We have tried smoothing these profiles, to no avail.

Moments interpolation
The interpolation of moments from EFIT to TRANSP radial grids has
been examined, and improvements have been made in how the interpo-
lations are being done and where. But no improvement in the final flux
surface metrics is seen.

In telephone discussions between the participants, and at a meeting held at
PPL on Friday, November 22 (Balet, McCune, Wieland and Zarnstorff), a short
term plan of attack has been formulated:

• Take the EFIT boundary in the current implementation and discard the
internal solution; run VMEC fixed boundary code to, in effect, obtain a
smooth moments representation in the interior, using the EFIT boundary
and the EFIT pressure and q profiles. It may turn out to be faster than
using SCRUNCHER to analyze the individual contours.A byproduct of
this approach is an easy comparison of the internal solutions provided by
the two codes.

• Investigate the possibility of using a different flux surface representation
for the flux surfaces, one in which the theta representation changes less
drastically near the plasma edge in x-point plasmas. Suggestions include

fbt006.tex 28

using a straight polar representation, or using a heuristic method (as in
the BLOAT algorithm) that begins at the plasma boundary and moves
inward to the magnetic axis.

• Reinvestigate the effect of shrinking the effective plasma boundary on the
radial moments distribution.

• Port the JET TRANSP-EFIT code over to the PPL computers and run
there, to improve the debugging accessibility for PPL folks.

• Test the interface at PPL by plugging in a TFTR version of EFIT and
running on a TFTR shot to see if any spiking behavior appears.

C Plan of Action January, 1997

1. Sort out CNTOUR1,2 problem in EFIT (RMW,PS; done)

2. Upturn in j profile at edge (RMW,PS,DMc)

3. Change EFIT to not read Green’s Functions every call (PS,WZ,JPJ)

4. Tidy up what switches to put in TRANSP namelist and which to put in
the ESNAP2 file (RMW,PS,DOB,WZ)

5. CVS

• move JET iron-core version into the repository (WZ,JPJ)

• discuss tokamak specific modifications with Doug (DOB)

• DOB to contact Lang

6. Timing tests should be run (NB X737 LEVGEO=6 run to 12s cf with
X746)

7. Tie up discrepancies in Ip and Bz BZXRCMP,IPCMP (RMW)

8. Sort out use of NMOMS in VMEC6, put in Namelist? (RMW)

9. PPF or EQDSK output from TRANSP/EFIT version at JET; wait until
we get production version - use facilities from JAC version

10. Extra output from RPLOT to facilitate mhd code comparisons(RMW)

11. IDL - multiplot - discuss with Doug

12. Modify TRANSP to enable running NLMDIF=T option alongside MHD
for comparison (RMW,DMc)

13. Fitting q0 - Ufile input (RMW,PS)

fbt006.tex 29

14. Input magnetic axis from soft X-ray generalise switching from one mode
to another

15. Fitting to j profile

16. Move later version of EFIT to SUN (RAL,JPJ)

17. Effect of rotation

D EFIT Installation and Operation Notes for
JET

Structure of the efit_jet area in the transp.jet.uk computer

==

(Names followed by "/" are directories)

(The programs used to produce to Green’s functions files are sometimes

collectively referred to as "efund")

.* (hidden files, some are links to efit/codesys/SetUp files)

REPO/ (CVS repository)

bin/ (contains shell scripts not under CVS)

own/ (on the side things, e.g. email)

efit/ (main directory)

codesys/ (contains all code under CVS)

SetUp/ (environment files e.g. .login, settrn-)

doc/ (documentation)

TODO

dir.struct.doc (this file)

efit.inputs.doc

efit.notes.doc

greenf.notes.doc

csh/ (shell scripts)

greenrun (script to run the Green’s functions programs)

efitdeblink (links to FORTRAN sources for debugging)

efitrun (script to run efit)

testrun (script to run the e--rgfc test programs)

source/

greenf/ (FORTRAN sources for Green’s Functions - also makefile)

testgf/ (FORTRAN sources for test of Green’s Functions - also makefile)

efit/ (FORTRAN sources for efit - also makefile)

exe/ (contains executable binaries)

log/ (contains temporary logs, e.g. from linking)

fbt006.tex 30

work/

makefile (to produce Green’s functions data output files)

33/

inputefun/ (input files for efund 33x33, renaming of "jac" efund96/input)

outputfrx/ (output of e--frx4)

outputfdn/ (output of e--fdn3)

outputpdx/ (output of e--pdx2)

outputgfc/ (output of e--gfc4)

inputefit/ (input files for efit 33x33, renaming of "jac" efit96/input)

_eftdir or <runid>_eftdir (work/output dir of efit 33x33 if run locally)

65/

inputefun/ (input files for efund 65x65, edited from 33)

outputfrx/ (output of e--frx4)

outputfdn/ (output of e--fdn3)

outputpdx/ (output of e--pdx2)

outputgfc/ (output of e--gfc4)

inputefit/ (input files for efit 65x65, edited from 33)

_eftdir or <runid>_eftdir (work/output dir of efit 65x65 if run locally)

Efit input directories, files and links (-- = 33 or 65) (<- or -> = symlink)

pdx $HOME/efit/work/--/outputpdx <runid>_eftdir

--- ---------------------------- --------------

< MHDIN -> ~/efit/work/--/inputefun/#171195F

> MHDOUT

> ECONTO

> RFCOIL

> EPLASM -- <-

> RECOIL -- <-

> RVESEL (in fact not created)

> RACOIL (in fact not created)

> fort.6 (" >" in command line)

> err ("2>" in command line)

frx $HOME/efit/work/--/outputfrx

--- ----------------------------

< MHDIN -> ~/efit/work/--/inputefun/#171195F

> MHDOUT

> FARADAY

> fort.6 (" >" in command line)

> err ("2>" in command line)

fdn $HOME/efit/work/--/outputfdn

--- ----------------------------

< MHDIN -> ~/efit/work/--/inputefun/#TD3

fbt006.tex 31

> fort.16 (New. NO OPEN STATEMENT!,same var. name)

> ECONTO (Finally Empty!)

> EPLASM (Finally Empty!)

> RFCOIL (Finally Empty!)

> RECOIL (Finally Empty!)

> EDPLAS -- <-

> fort.6 (" >" in command line)

> err ("2>" in command line)

gfc $HOME/efit/work/--/outputgfc

--- ----------------------------

< MHDIN -> ~/efit/work/--/inputefun/#171195F

< ECONTO -> ~/efit/work/--/outputpdx/ECONTO

< RFCOIL -> ~/efit/work/--/outputpdx/RFCOIL

< FARADAY -> ~/efit/work/--/outputfrx/FARADAY

> ECONTO2 --------------------------------------- <-

> RFCOIL2 --------------------------------------- <-

> FARAD2 --------------------------------------- <-

> fort.6 (" >" in command line)

> err ("2>" in command line)

efit $HOME/efit/work/--/inputefit

---- ----------------------------

< ANGLE -------------------------------------- <-

< AUTO ----------(or brazil)----------------- <- fort.5

< CTURNS -------------------------------------- <-

< DPROBE -------------------------------------- <-

< EFITSNAP -------------------------------------- <-

< FILIMT -------------------------------------- <-

< FITWT -------------------------------------- <-

< IRON -------------------------------------- <-

< PPFCURR -------------------------------------- <-

< SLICE -------------------------------------- <- fort.17

< SUBPART -------------------------------------- <- fort.10

< ZTEST -------------------------------------- <-

< fort.81 -------------------------------------- <-

< fort.91 -------------------------------------- <-

< t001 -------------------------------------- <-

t001.README

< t002 -------------------------------------- <-

NOTES FOR THE USER OF EFIT ON THE ’transp’ Sun UNIX SYSTEM

==

Note: the notation "--" in filenames is used to mean either 33 or 65,

fbt006.tex 32

depending of the grid used.

Green’s described in separate note "greenf.notes.doc".

The "home" uid for EFIT sources & input data is ~efit_jet.

The "home" uid for TRANSP is any one of the TRANSP uids, e.g. ~pstubber,

however at this moment only ~pstubber has been used.

The EFIT executables are ~efit_jet/efit/exe/e--efit

The TRANSP executable is ~pstubber/transp/work/JET/<runid>TR.EXE where

<runid> is the run identifier, e.g. X716 (Uppercase where letters are used).

I.e. it is in the ~pstubber’s $WORKDIR/JET directory.

Currently there is only one executable per grid size for EFIT while

any TRANSP run has its own executable. This should be reviewed (esp. for

the use of programs like ps).

1) Running EFIT alone

=====================

1.a) Running EFIT in ~efit_jet

Use the script efitrun (in ~efit_jet/efit/codesys/csh directory).

Usage:

efitrun <function> <context> <mode> <grid> [<runid>]

function: full | init | run | clean

context : alone | pipes

mode : normal | debug

grid : 33 | 65

runid : shot number or any run identifier.

1.a.1) nondebug mode

While we work in efit_jet we seldom use a run or shot identifier, e.g. a

normal run could be (we will always assume in this description a 33x33 grid),

enter:

efitrun full alone normal 33 [runid]

fbt006.tex 33

The other options are used e.g. for establishing the initial environment only,

for debugging, or for cleanup if the operation was incomplete.

The operation start with creating a subdirectory "_eftdir" (in whole

generality "<runid>_eftdir") in the directory ~efit_jet/efit/work/--.

As a next step, symbolic links are created in this subdirectory to the

input data files used by efit, i.e. files in directories

~efit_jet/efit/work/--/inputefit (nb: contains AUTO, t001.kb0, t001.kb1)

~efit_jet/efit/work/--/output(*) where (*) stands for pdx, fdn and gfc.

These (*) files have been produced by the Green’s functions programs.

You might have to edit AUTO beforehand to point to the correct version of t001,

i.e. t001.kb0 for kbound=0 and t001.kb1 for kbound=1.

Note that kbound is also in EFITSNAP (directory --/inputefit).

Next step, the running, will invoke the executable with input from

fort.5 (which is a symbolic link to ~efit_jet/efit/work/--/inputefit/AUTO),

and output to fort.6 (which will be created).

Expect a CPU running time ~ 2 mins for the 33x33 grid.

The next and final step, the cleanup, will remove all the symlinks

from the _eftdir.

1.a.2) debug mode

Enter

efitrun full alone debug 33 [runid]

There are differences with the normal mode:

- In debug mode, additionnal symbolic links are created inside _eftdir

to the FORTRAN sources.

- The debugger will invoke the executable with terminal input & output,

i.e. with fort.5 being ignored, stdin/stdout will come/go to the terminal.

A new xterm window appears and here is the proper dialogue you enter in when

back to the "(dbx)" prompt:

WARNING: in this first prompt enter "run" NOT "run something" !

fbt006.tex 34

|--

|(dbx) run

|Running: /home/tr2/efit_jet/efit/exe/e33efit

|

| EFITD 33 x 33 Version 03/11/91

|

|

| type mode (2=file, 3=snap, 4=time, 5=input, 6=com file, -=laser):

|2

|

| i need nft2: type of fit

| npkg1: no of params

| ene: where fit=0

| use 0 3 .01 for moment

|

| which ppf dda for output ? efit etc..

|xxx

|

| which uid for ppf output ?

|xxx

|

| are we writing a ppf 1=yes,0=no

|0

|

| number of time slices?

|1

|

| type input file names:

| #

|t001.kb0 (that is for kbound=0, for kbound=1 type t001.kb1)

|

...

(lots of output happen here)

...

|

|

|(dbx) quit

|--

1.b) running EFIT alone from a TRANSP uid (for the moment ~pstubber).

This is a preparation for the run with TRANSP. TRANSP will be run

fbt006.tex 35

in $WORKDIR/JET. Note that a few TRANSP runs can take place at the same time

because TRANSP identifiers for files (data and executables) do contain the

runid. But efit has only (in the current set-up) one executable. We

will run it into a directory of $WORKDIR/JET named with the run number.

This directory will be named [<runid>]_eftdir.

(Often in tests it will be only _eftdir, however for the use with

TRANSP there will always be a run number).

There is a symbolic link to the efit_jet script "efitrun" in the script

directory of ~pstubber (referred to as ${SC}). Therefore efitrun is available.

1.b.1) nondebug mode

While in $WORKDIR/JET, enter:

efitrun full alone normal 33 [runid]

This is similar to running in efit_jet, with these differences:

- The <runid>_eftdir is created inside the $WORKDIR/JET directory.

- The terminal input will come from $WORKDIR/JET/brazil and term output will

go to [<runid>]_eftdir/fort.6, with error output to [<runid>]_eftdir/err.

Edit brazil to ensure the use of the desired t001.kb0 or t001.kb1.

1.b.2) debug mode

While in $WORKDIR/JET, enter:

efitrun full alone debug 33

For an example of debug terminal manual input see the previous case 1.a.2).

2) Running EFIT with TRANSP. (i.e. using pipes, not files)

============================

Preliminary remark:

The run of efit will be initiated by TRANSP (which can be seen as the master

program). Therefore the user has no more the possibility to call the script

efitrun, this will be done by TRANSP. The user has to select in advance the

options with which to call efit, and set them in the system. This is done

via the script setupefit in the TRANSP user script library. It HAS to be

executed from the relevant tokamak subdirectory of $WORKDIR. Its usage is:

fbt006.tex 36

setupefit <mode> <grid> <runid>

mode : normal | debug

grid : 33 | 65

runid : run identifier.

This will create two small files, <runid>.efitmode and <runid>.efitgrid

which will be used by transp (via the scripts efit_beg and efitgrunt) to

prepare (once) and initiate (often more than once) efit.

The scripts efit_beg and efitgrunt are in $WORKDIR/JET for the moment.

(This is not good practice & will need cleanup). They call efitrun with

the proper options. The preparation is similar to running without transp,

the <runid>_eftdir directory is cleaned or created and populated with

links to efit input files. Here it also create symlinks to pipes

which will be used when running with TRANSP.

Note: the current version of the pipes library has been modified so

that a copy of what goes to EFIT is copied into /tmp/junk. This provides

(at least for the moment) yet another method of spying on the run.

Two programs will be running, TRANSP and EFIT. Each can be independently

run in debug mode. A program running in debug mode receives a X-window xterm.

A program not in debug mode does not need a xterm.

NOTE THAT *TRANSP* WILL GET SOME INPUT FROM $WORKDIR/esnap2 and this can

include kbound!

We assume a JET run, that our runid is X716, and that we want a 33x33 grid.

2.a) Setting-up the options for EFIT.

Go to $WORKDIR/JET

2.a.1) Set-up for nondebug EFIT.

Enter:

setupefit normal 33 X716

2.a.2) Set-up for debug EFIT.

Enter:

setupefit debug 33 X716

2.b) Next, we want to run TRANSP - this one will call EFIT.

2.b.1) Running TRANSP in normal mode.

Assuming you have already run pretr, enter:

runtr X716

fbt006.tex 37

Alternaltively, assuming that you already have a debug executable that

you want to use, albeit in non-debug mode, enter:

X716db.dbx X716

You don’t need a screen. You can spy on what happen via e.g.

tail -f $WORKDIR/JET/X716tr.log

2.b.2) To debug run TRANSP itself, enter in $WORKDIR/JET:

uplink X716db debug (to get a TRANSP debug executable)

and

debug X716db.dbx

You current xterm becomes the TRANSP debug screen.

In this TRANSP debug screen, the start of the dialogue should be:

|--

|(dbx) run X716

|Running: X716db.dbx X716

|

| %TRANSP DEBUG RUN ID = X716

| OPTIONS:

| C -- READ RUN CRASH DATA

| R -- READ RESTART RECORD, RESTART RUN

| S -- START RUN FROM VERY BEGINNING

| Q -- QUIT

|

|MASTER_DEBUG: ENTER CONTROL OPTION:

|R

|

| READ RESTART RECORD TA = 1.07000E+01

|

...

(lots of output happen here)

...

|

|Subroutine efitride called

|Hwrpip> writing : GO EFIT

|--

If you have also specified EFIT debugging, a pause will occur here

and you will have to enter data into an EFIT debug screen (see next

sections). When the control comes back proceed as for a normal

TRANSP debug session. You will have the possiblity

of specifying a flux surfaces plot.

2.c) The EFIT running.

fbt006.tex 38

This will start when initiated by TRANSP.

2.c.1) EFIT Nondebug running.

Does not need a screen. You can spy on what happens via e.g.

tail -f $WORKDIR/JET/X716_eftdir/fort.6

2.c.2) EFIT Debug running

As far as EFIT is concerned, debug will happen as before, except:

i) the initial answer to the prompt "(dbx) " should be :

|--

|(dbx) run X716

|--

WARNING: THIS TIME NOT just "run" !

ii) the answer to the prompt

|--

| type input file names:

| #

|--

becomes irrelevant.

iii) EFIT may be called more than one, producing each time a

new xterm window. You will have to quit them all.

2.d) End of run

In all cases esp. if abnormal termination check for stray leftover

processes and kill them.

NB: a small script has been written (in ~pstubber/$WORKDIR/JET) "killit"

which kill all processes with .PIP in their ps listing.

Notes on greenf

NAGINT, FLUX, HPINDX and SECOND have been made proper independently compiled

code nagint.f flux.f hpindx.f second.f

datim.f datimx.f errtra.f fileinf.f were unused and are also present in ../efit

sources. Removed from greenf. xuflow.f is also in ../efit. Removed from greenf.

Source still contains many commons defined in the code (instead of via include).

Probably makefile could be shortened using abbreviations.

At that moment we could maybe move the .o files to a specific directory $(OBJ).

fbt006.tex 39

From now on (20-May-1996) all data files names are UPPERCASE.

An useful example of a command line to retrieve I/Os:

egrep ’(nin|NIN|nout|NOUT)’ e--fdn3.f | \

egrep ’(read|READ|write|WRITE|open|OPEN|close|CLOSE|=)’|more

Files I/O Output directory and files (-- = 33 or 65)

===========

pdx $HOME/efit/work/--/outputpdx

--- ----------------------------

old nin 11 < MHDIN -> ~/efit/work/--/inputefun/#171195F

new nout 10 > MHDOUT

new ncontr 35 > ECONTO

new nrspfc 26 > RFCOIL

new nrsppc 25 > EPLASM

new nrsppc 25 > RECOIL

new nrsppc 25 > RVESEL (in fact not created)

new nrsppc 25 > RACOIL (in fact not created)

new 6 > fort.6 (" >" in command line)

new - > err ("2>" in command line)

frx $HOME/efit/work/--/outputfrx

--- ----------------------------

old nin 11 < MHDIN -> ~/efit/work/--/inputefun/#171195F

new nout 10 > MHDOUT

new nffile 16 > FARADAY

new 6 > fort.6 (" >" in command line)

new - > err ("2>" in command line)

fdn $HOME/efit/work/--/outputfdn

--- ----------------------------

old nin 5 < MHDIN -> ~/efit/work/--/inputefun/#TD3

? nout 16 > fort.16 (New. NO OPEN STATEMENT!,same var. name)

old=0 nout 36 > ECONTO (Finally Empty!)

old=0 nout 36 > EPLASM (Finally Empty!)

old=0 nout 36 > RFCOIL (Finally Empty!)

old=0 nout 36 > RECOIL (Finally Empty!)

old=0 nout 36 > EDPLAS

new 6 > fort.6 (" >" in command line)

new - > err ("2>" in command line)

gfc $HOME/efit/work/--/outputgfc

--- ----------------------------

fbt006.tex 40

old nin 35 < MHDIN -> ~/efit/work/--/inputefun/#171195F

old nin 35 < ECONTO -> ~/efit/work/--/outputpdx/ECONTO

old nin 35 < RFCOIL -> ~/efit/work/--/outputpdx/RFCOIL

old nin 35 < FARADAY -> ~/efit/work/--/outputfrx/FARADAY

old=0 nout 36 > ECONTO2

old=0 nout 36 > RFCOIL2

old=0 nout 36 > FARAD2

new 6 > fort.6 (" >" in command line)

new - > err ("2>" in command line)

