
Transport Simulation with High Resolution RF
Analysis Using the Common-Component

Architecture

Lee A. Berry

US-Japan Workshop on
Integrated Modeling

PPPL
September 21-23, 2004

2

Outline

• Why components?
• A “proof” of principle” project to gain

experience.
• Overview of the Common-Component

Architecture (CCA).
• Summary of project status.
• Experience.

3

Acknowledgements I: The CCA
• ANL –Steve Benson, Jay Larson, Ray Loy, Lois Curfman McInnes,

Boyana Norris, Everest Ong, Jason Sarich…
• Binghamton University - Madhu Govindaraju, Michael Lewis, …
• Indiana University - Randall Bramley, Dennis Gannon, …
• JPL – Dan Katz, …
• LANL - Craig Rasmussen, Matt Sotille, …
• LLNL – Lori Freitag Diachin, Tom Epperly, Scott Kohn, Gary

Kumfert, …
• NASA/Goddard – Shujia Zhou
• ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
• PNNL - Jarek Nieplocha, Theresa Windus, …
• SNL - Rob Armstrong, Ben Allan, Lori Freitag Diachin, Curt

Janssen, Jaideep Ray, …
• University of Oregon – Allen Malony, Sameer Shende, …
• University of Utah - Steve Parker, …

and many more!

Excerpts from CCA tutorials were used for much of this talk.

4

Acknowledgements II: Project Team

• Physics:
– Fred Jaeger, Wayne Houlberg, Don Batchelor.

• Applied math—algorithms:
– Ed D’Azevedo.

• Computer Science:
– David Bernholdt, Wael Elwasif, James Kohl.

This is a two-year, ~ 2-py/y effort with the goal of exploring the
advantages/disadvantages of the CCA for fusion simulation

5

Needs of large simulations

• High performance.
• Rapid development cycle.
• Language interoperability, ready use of

legacy code.
• Multiple third-party libraries.
• Range of applications with common

elements.
• Efficient implementation with large teams.

6

The Common Component Architecture
(CCA) Forum

• Combination of standards body and user group for the CCA.
• Define Specifications for High-Performance Scientific

Components & Frameworks.
• Promote and Facilitate Development of Domain-Specific

“Standard” Interfaces.
• Goal: Interoperability between components developed by

different expert teams across different institutions.
• Quarterly Meetings, Open membership….

http://www.cca-forum.org/

Mailing List: cca-forum@cca-forum.org

7

What are Components?
• A unit of software deployment/reuse:

– Ideally, has functionality that someone else might be able to
(re)use;

– Can be developed independently of other components;
– Has significant computational work to pay for overhead.

• Interacts with the outside world only through well-
defined interfaces:
– Implementation is opaque to the outside world;
– Components may maintain state information;
– But external access to state info must be through an interface.
– File-based interactions can be recast using an “I/O component”.

• Can be composed with other components:
– “Plug and play” model to build applications;
– Composition based on interfaces.

8

What is a Component Architecture?

• A set of standards that allows:
– multiple groups to write units of software (components)
– and have confidence that their components will work

with other components written in the same architecture.

• These standards define:
– the rights and responsibilities of a component;
– how components express their interfaces;
– the environment in which are composed to form an

application and executed (framework);
– the rights and responsibilities of the framework.

9

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

10

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Provided

Components

Hides complexity: Driver
doesn’t care that
MonteCarloIntegrator
needs a random
number generator

11

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

12

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

13

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

14

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports.
– In OO languages, a port is a class or interface.
– In Fortran, a port is a bunch of subroutines or a module.

• Components may provide ports – implement the
class or subroutines of the port ().

• Components may use ports – call methods or
subroutines in the port ().

• Links between ports denote a procedural
(caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out

Result).

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

15

Special Needs of Scientific HPC
• Support for legacy software

– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?

• Both parallel and distributed computing are important
– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

16

Commodity Component Models

• CORBA Component Model (CCM), COM,
Enterprise JavaBeans:
– arise from business/internet software world.

• Componentization requirements can be high.
• Can impose significant performance overheads.
• No recognition of tightly-coupled parallelism.
• May be platform specific.
• May have language constraints.
• May not support common scientific data types.

17

Language interoperability

• Existing language
interoperability approaches
are “point-to-point” solutions

• Babel provides a unified
approach in which all
languages are considered
peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

Babel is a compiler that processes
Scientific Interface Definition Language (SIDL) files.

18

greetings.sidl: A Sample SIDL File

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

19

Library Developer Does This...

1. `babel --server=C++ greetings.sidl`
2. Add implementation details
3. Compile & Link into Library/DLL

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

20

Adding the Implementation

// Implementation for setName() above

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

// Implementation for setName() above

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

// Skip to impl for setName()

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

// Skip to impl for setName()

21

Library User Does This...

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code & Runtime
3. Place DLL in suitable location

SIDL
interface

description

Babel
Compiler IOR

Headers

F90 Stubs

libgreetings.so

Babel
Runtime

Application

22

F90/Babel “Hello World”
Application

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

These subroutines
come from directly
from the SIDL

These subroutines
come from directly
from the SIDL

Some other subroutines
are “built in” to every
SIDL class/interface

Some other subroutines
are “built in” to every
SIDL class/interface

23

Step I: Develop the design

• Interfaces for components and their methods
(ports) SIDL:
– forces team design;
– provides a language independent design;
– focuses attention on data exchange and

functionality.

24

Design Is Reflected in a CCA
Application Composed with

Model Components

25

Scalability on a Linux Cluster

• Newton method with
line search

• Solve linear systems
with the conjugate
gradient method and
block Jacobi
preconditioning (with
no-fill incomplete
factorization as each
block’s solver, and 1
block per process)

• Negligible component
overhead; good
scalability

Total execution time for the minimum surface minimization
problem using a fixed-sized 250x250 mesh.

26

Experience I
The good news.

• What you do inside of a component is
your own business.

• Interface design is a necessary part of
CCA.

• Babel, SIDL use is growing, features are
being added.

27

Experience II
Characteristics you can live with.

• Data types
– int, long int, bool, char;
– single/double, complex single/double;
– arrays of the above;
– strings, opaque.

• Arrays are a structure.
• No optional arguments.
• Row/column ordering is not fixed.

28

Experience III
Issues

• Project must provide CompSci support:
– physics/applied math staff provide modules,

procedures etc., experts convert to components.
• Babel is operating system, compiler,

dependent. (No storage standard for F90,
varied .so/.dll imlementation.)

• File, build environment is complex—expert
maintenance required. Stability is key.

• Long-term existence of
support/development is not guaranteed.

29

Summary

• A CCA based project must be of sufficient size to
justify necessary superstructure.

• Language interoperability works, eliminates
endless discussions.

• Interface design is painful, but akin to design
requirements, interface documents for fabrication
projects.

• Component-based methodology should address
need for wide range of uses for physics
packages.

• We will be getting to some physics this year.

