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Motivation
• Model resistive MHD events in a tokamak plasma using 

realistic physical values to make quantitative predictions.

– Large tokamaks have large disparities in spatial and temporal 
scales to be resolved.

• Resistive MHD: Current sheet thickness ~ S-1/2

• Two-fluid MHD: ion skin depth ~ n-1/2

– Small tokamaks operate in regimes accessible to present-day 
codes.

• Cross-benchmark two extended MHD codes (M3D and 
NIMROD) in the nonlinear regime.



Characteristics of the Current Drive 
Experiment Upgrade (CDX-U)

• Low aspect ratio tokamak 
(R0/a = 1.4 – 1.5)

• Small (R0 = 33.5 cm)
• Elongation κ ~ 1.6
• BT ~ 2300 gauss
• Ip ~ 70 kA
• ne ~ 4×1013 cm-3

• Te ~ 100 eV → S ∼ 104

• Discharge time ~ 12 ms

• Soft X-ray signals from 
typical discharges indicate 
two predominant types of 
low-n MHD activity:
– sawteeth
– “snakes”



Generating Equilibria
Transport timescale code TSC follows axisymmetric evolution of typical CDX-U discharge.

Equilibria at t=12.40 ms 
(as q0 drops to 0.92) and 
t=12.00 ms (q0=1.04) are 
used to initialize 3D runs.

S. Jardin



Baseline Parameters
Lundquist Number S ~2×104 on axis.

Resistivity η Spitzer profile ∝Teq
-3/2, cut off at 100× η0

Prandtl Number Pr 10 on axis.

Viscosity µ Constant in space and time.

Perpendicular thermal 
conduction κ⊥

0

Density Evolution Turned on for nonlinear phase.

Parallel thermal 
conduction κ||

0

Peak Plasma β ~ 3 × 10-2 (low-beta).



The Multilevel 3D (M3D) Code
• Maintained by a multi-institutional collaboration.
• Can solve resistive MHD, two-fluid MHD, hybrid MHD 

with gyrokinetic hot ions, or hybrid with all gyrokinetic 
ions.

• 3D Toroidal geometry with fixed boundary handles 
tokamaks, spherical tori, and stellarators.

• Can compute linear eigenmodes as well as evolving 
nonlinearly.

• Massively parallel – scales to over 1,000 processors.

W. Park et al., Phys. Plasmas 6, 1796 (1999)



Equations



M3D Numerics

Typical unstructured mesh has 
89 radial zones, up to 267 in θ.

• Uses linear finite elements in-plane.
• Uses finite differences between planes or 

pseudo-spectral derivatives.
• Partially implicit treatment allows efficient 

time advance but requires small time 
steps.

• Nonlinear operation: all components of all 
quantities evolve nonlinearly.

• Linear operation: full nonlinear + filtering, 
active equilibrium maintenance.



Case 1: q0 < 1

• Questions to 
investigate:
– Linear growth rate and 

eigenfunctions
– Nonlinear evolution

• disruption?
• stagnation?
• repeated 

reconnections?

• Equilibrium taken from a 
TSC sequence (Jsolver 
file).

• qmin ≈ 0.922
• q(a) ~ 9
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Low Aspect Ratio:
n=1 Eigenmode

Incompressible velocity
stream function U

Toroidal current density
Jφ

γτA = 8.61× 10-3 → growth time = 116 τA



Predicted Eigenmode Agrees with NIMROD 
Result



Low Aspect Ratio:
Higher n Eigenmodes

Incompressible velocity
stream function U

n = 2

m ≥ 5
γτA = 1.28 × 10-2

n = 3

m ≥ 7
γτA = 1.71 × 10-2

n = 4  (projected)

m ≥ 8
not converged



Low Aspect Ratio: Nonlinear Kinetic Energy History

n=0

n=1: γ = 1.1 × 10-2

n=2: γ = 2.3 × 10-2

n=3: γ = 3.4 × 10-2

n=4: γ
= 4.5 ×

10-2

n=
5: 
γ =

 5.
6 ×

10
-2

n=12 (filtered)

n=11 (filtered)

n=
6: 
γ =

 6.
3 ×

10
-2

n=
7: 
γ =

 6.
4 ×

10
-2

n=
8: 
γ =

 6.
5 ×

10
-2

n=
9

n=
10



“Linear” high-n modes are driven, not eigenmodes
Incompressible velocity stream function U

Component of “linear” mode
in nonlinear run

n=2

m = 2
γ = 2.3 × 10-2

n=3

m = 3
γ = 3.4 × 10-2

n=4

m = 4
γ = 4.5 × 10-2



Low Aspect Ratio: Nonlinear Time Series
Poincaré Plots

t = 1266.17, chopped × 4.470358 t = 1404.57 t = 1548.68



Low Aspect Ratio: Nonlinear Time Series
Poincaré Plots, Continued

t = 1620.62 t = 1686.41 t = 1758.34

Disruption occurs before completion of sawtooth crash.



Extended MHD Effects
(Initial density profile uniform)

MHD MHD  +        term

Evolving
Density

Constant 
Density

v||/vA= 0
(χ|| off, H=0.10)

v||/vA= 2.5
(χ|| on, H=0.15)

n=1 0.0165 0.0137
n=4 0.0304 0.0095

v||/vA= 0
(χ|| off)

v||/vA= 2.5
(χ|| on)

n=1 0.017 0.014
n=4 0.0349 0.0075

v||/vA= 0
(χ|| off)

v||/vA= 2.5
(χ|| on)

n=1 0.017 0.021
n=4 0.0349 0.0132

v||/vA= 0
(χ|| off, H=0.15)

v||/vA= 2.5
(χ|| on, H=0.15)

n=1 0.021 0.021
n=4 0.0354 0.0123

iω
∗

• Large parallel thermal conductivity reduces growth rate of higher n modes.
• term alone does not have stabilizing effect on either mode.iω

∗



Summary of the q0<1 Case
• All toroidal modes of the qmin= 0.92 CDX equilibrium are linearly MHD-
unstable.

• n =1 is an internal kink mode
• n >1 are ballooning instabilities
• Higher n modes have higher growth rates.

• Nonlinear MHD evolution beginning with just an n=1 perturbation 
disrupts within a sawtooth crash time. 

•High poloidal mode number m components of the n=1 mode 
interact to create islands, stochasticity in outer region.

• n =1 mode couples to and drives higher n modes at q=1 rational 
surface to create further stochasticity.

•Adding large parallel thermal conductivity (via artificial sound wave) 
has a stabilizing effect on higher n modes, but not on n=1.

•Adding the ω* term to the MHD equations does not appreciably alter 
the growth rates of either the n =1 or the n >1 modes.



Case 2: q0 > 1
Equilibrium taken from earlier in same TSC sequence as case 1.

qmin ≈ 1.04

qa ≈ 9.35



Eigenmodes
(U, incompressible part of velocity stream function)

n = 3 n = 4

m ≈ 9
γτA ≈ 1.87 × 10-2

m ≈ 7
γτA ≈ 1.42 × 10-2



Nonlinear Kinetic Energy History

Growth Rates
n γτA
1 ———
2     0.00872*
3        0.0128
4        0.0164
5        0.0191
6        0.0208
7        0.0212
8        0.0203
9        0.0178
10       0.0134

η0=2×10-5; κ = 0



Modes Observed Nonlinearly at t=219.6
(U, incompressible part of velocity stream function)

n = 3 n = 4

m ≈ 10
γτA ≈ 1.64 × 10-2

m ≈ 8
γτA ≈ 1.28 × 10-2



Poincaré Plotst=569.49 t=619.51



Poincaré Plots, continuedt=639.52 t=692.03



Resistivity Scaling

Growth Rates
(gcut=11)
n γτA
1 ——
2        0.0345
3        0.0498
4        0.0607
5        0.0682
6        0.0726
7        0.0738
8        0.0714
9        0.0646
10       0.0516

η0→2×10-4

η0→6.325×10-5
Growth Rates

(gcut=12)
n γτA
1 ——
2        0.0184
3        0.0270
4        0.0337
5        0.0387
6        0.0416
7        0.0425
8        0.0409
9        0.0363
10       0.0281

n α
2 0.597
3 0.590
4 0.568
5 0.553
6 0.543
7 0.542
8 0.546
9 0.560
10 0.586

For each toroidal mode 
number n, the linear growth 
rate γ is found to be 
proportional to ηα:



Parallel Heat Conduction Stabilizes Some Modes

n= 1

η0=2×10-5; κ⊥ = 0; κ║ onGrowth Rates
n γτA
1 ———
2        ———
3        ———
4        0.00504
5        0.00761
6        0.00900
7        0.00945
8        0.00869
9        0.00652
10        ———



Moderate Isotropic Heat Conduction Has Stronger Stabilizing 
Effect n= 1

η0=2×10-5; κ⊥ = 9.09×10-5; κ║ offGrowth Rates
n γτA
1 ———
2        0.00134
3        0.00092
4        0.00133
5        0.00179
6        0.00208
7        0.00215
8        0.00200
9         0.00156
10        0.00097



High Perpendicular Heat Conduction Stabilizes All Modes

n= 1n=1

η0=2×10-5; κ⊥ = 9.09×10-4; κ║ off



Conclusions
• The cross-code benchmark was a success.

• The CDX equilibrium is MHD-unstable to resistive 
ballooning modes in the absence of large perpendicular 
thermal diffusivity.

• Extended MHD effects may be needed to account for the 
relative quiescence of the CDX edge.

or
• The modes may be present but saturated as a result of 

high transport levels arising from stochasticity caused by 
their nonlinear interaction.



Topics for Further Study
• Determine sensitivity of high-n modes to two-fluid 

parameters.

• Determine whether high-n modes saturate with parallel 
heat conduction.

• Re-run q0<1 case with realistic heat conduction.


