
Component Approach to
Integrated Modeling

Johan Carlsson

Tech-X Corporation

US-Japan Workshop on Integrated Modeling

September 21–24, 2004



We have to rethink how we code

as code complexity grows!
• <1955: Binary code (zeros and ones)

– Practical code size is a few hundred lines

• 1955–1960: Assembly language

– Practical code size is a few thousand lines

• 1960–1990: High-level languages

– Compiler translates portable, readable source code to binary

– Subroutines are used to structure the code

• 1990–2005: Object-oriented programming

– Data and associated operations grouped together in objects

– Inheritance and polymorphism lets us add capability to

existing, validated objects (code reuse)

• >2005: Components

– Compose application at run time



Modern code design thinking could be

particularly beneficial to fusion codes

• Focus has typically been on physics content

• Fairly well structured codes in terms of subroutines

• But, subroutines often act on global data (common or module

variables) making their full effect non-obvious (hidden

interactions)

• Codes have complicated internal state: high threshold to

gaining the expertise needed to safely modify code

• A fusion code is never finished!

• More modular codes could simplify code maintenance and

upgrades and make it easier to become a productive developer

• Makes it less impossible to get code work done at the dreaded

25% funding level



Components are a good fit for the

Fusion Simulation Projects

Evolution of object-oriented ideas:

• Applications composed at runtime by loading components into

a framework (somewhat similar to how a web browser loads

plugins)

• Framework keeps track of the components and glues them

together

• For the Fusion Simulation Project, existing fusion codes would

be converted into components

– Gives needed flexibility: to simulate RF-induced ITBs we

compose an application from the RF and transport modules

– We won’t be doing the whole enchilada for a while



Common Component Architecture

has a lot of what we need for FSP

The Common Component Architecture (CCA) is a DOE-funded

framework developed specifically for HPC applications

• Very lightweight

• Framework supports components written in F77, F90, C, C++,

Java, Python

• Allows components to share multi-dimensional arrays

• Does not yet support distributed components

– We have an OASCR grant to investigate how to add a

distributed capability

• Does not support multiple instantiations of components

(loading the same component multiple times)



CCA components can be written in

F77/90, C/C++, Python or Java

The Scientific Interface

Description Language

(SIDL) lets us specify

component interfaces

independently of imple-

mentation language.

package foo version 0.1 {

class bar {

static void baz(in double x, out float f);

}

}

Run the Babel SIDL

compiler to generate the

glue code:

$ babel --server=F77 --output-dir=test test.sidl

Retrofit the interface to

your legacy code:

subroutine foo_bar_baz_fi(x, f)

implicit none

double precision x

real f

C DO-NOT-DELETE splicer.begin(foo.bar.baz)

C Insert the implementation here...

C DO-NOT-DELETE splicer.end(foo.bar.baz)

end



Abuse of global variables in legacy

codes makes componentization hard

Heavy use of global data (variables

in common blocks or F90 modules)

is a bad, old F77 habit!

Exposes internal state of component

(violates encapsulation).

Hard to avoid in F77, in F90 derived

types provide the means to solve the

problem (pass local variables of de-

rived type on the stack).

program foo

call dostuf

call output

end

subroutine dostuf

real*8 bar

common /cmblok/ bar

bar = 2.0

return

end

subroutine output

real*8 bar

common /cmblok/ bar

write(*, *) bar

return

end

}



We’re working on adding distributed

capability to CCA

CCA currently doesn’t support distributed components. Rather

than bloating the framework, we have suggested a Remoting

Component to add a distributed capability. The DOE Office of

Advanced Scientific Computing (OASCR) has provided funding for

this project.

��������	
��������

������	��
��

�����	��
��

��

�
�
��
��
�	
�
�

�
�

� �
� �
� �
	�
�

 �
�

���

������

���

���������	���������


��
�����

��
��

���� ���������
�����

��
��
�������



Multiple component instantiation is

needed for efficient time stepping

For Eulerian (first-order) time stepping we have (symbolically):

A(t + ∆t) = A(t) + f [A(t)]∆t

Even for a simple second-order scheme (RK2), we get:

Ā = A(t) +
1

2
f [A(t)]∆t

A(t + ∆t) = A(t) + f [Ā]∆t

Note that we need to copy Ā = A! This is currently not possible

(more about this later).

Similar for implicit schemes.

We expect this to be important for handling multi-scale problems

(averaging over fast time scales).



Implementation of CCA components

makes multiple instantiation hard

In CCA components are built on top of Shared Objects (.so files), aka
Dynamically Loaded Libraries, and loaded using the function dlopen().
dlopen() returns a handle to a shared object. If called a second time, it
returns a handle to the same Shared Object. Not what we want!

int Asc_DynamicLoad(CONST char *path, CONST char *initFun)

{

#define ASCDL_OK /* this line should appear inside each Asc_DynamicLoad */

void *xlib;

int (*install)();

int result, addresult;

char* _initFun;

AscCheckDuplicateLoad(path); /* whine if we’ve see it before */

/*

* If the named library does not exist, if it’s not loadable or if

* it does not define the named install proc, report an error

*/

xlib = dlopen(path, 1);

if (xlib == NULL) {

FPRINTF(stderr,"%s\n",(char *)dlerror());

return 1;

}



Conclusion: CCA good foundation

for FSP, some work needed

• Only component framework with support for Fortran modules

• Only component framework that supports multi-dimensional

arrays

• Has momentum: DOE funded and very actively developed

• CCA people susceptible to FSP needs

• No distributed capability (yet)

• Multiple component instantiation (loading) not possible

making implicit time stepping hard


