# Integrated Modeling of Burning Plasmas with TSC

#### C. Kessel

#### Princeton Plasma Physics Laboratory

U.S.-Japan Workshop on Integrated Modeling, 9/21-24/2004, PPPL





#### **Integrating Results of Separate Analyses**



#### Ideal $\beta_N$ limits and accessible limit with feedback **JSOLVER** 7. L-mode edge PEST2 lp = 4.5 MA6.0 with wall, b/a = 1.355.0 βN 4.0 3.0 no wall 2.0 H-mode edge lp = 4.8 MAtoroidal mode number Can reach 90% of with wall limit 10 $qain = 10^{7}$ 10<sup>5</sup> VALEN gain = 10^8 growth rate 104 10<sup>3</sup> cassive 07/08 10<sup>2</sup> n 07 G=10% passive 07 G=10% a 07 G=10% 10<sup>1</sup> 10<sup>0</sup> betan=4.150 10 10 3.5 4.0 4.5 2.5 3.0 5.0 $\beta_N$

#### **Integrated Results of Separate Analyses**



### **Modeling of FIRE Burning H-mode**

#### **FIRE H-mode Discharge Simulation**

**Free-boundary Energy and current transport GLF23** core energy transport **Density profiles assumed** Assumed pedestal height/location **ICRF** heating, data from SPRUCE Bootstrap current, Sauter single ion Porcelli sawtooth model **Coronal equilibrium radiation** Impurities with electron density profile **PF** coils and conducting structures Feedback systems on position, shape, current

Use stored energy control

$$Ip = 7.7 MA, B_T = 10 T$$



#### **Modeling of FIRE Burning H-mode**



#### **Applied the GLF23 Transport Model in TSC**

#### Parametrics for FIRE Hmode fusion performance $T_{ped}^* \approx 3.5-5.5 \text{ keV}$ $Q \approx 10$ $P_{aux} \approx 7.5-20 \text{ MW}$

**\*ITER Pedestal Database (2003)** projects about 5.4 keV for FIRE

| <u>FIRE</u> | Q    | Paux(MW) | Tped(keV) |
|-------------|------|----------|-----------|
| TSC         | 10.3 | 13.5     | 4.5       |
| GLF         |      |          |           |
|             | 10.0 | 7.5      | 3.8       |
|             | 10.0 | 10.0     | 4.1       |
|             | 10.0 | 12.5     | 4.4       |
|             | 10.0 | 15.0     | 4.7       |
|             | 10.0 | 20.0     | 5.4       |



### **Modeling of ITER Burning H-mode**

#### **ITER H-mode Discharge Simulation**

**Free-boundary Energy and current transport Density profiles assumed GLF23** core energy transport Assumed pedestal height/location **ICRF** heating, data from SPRUCE NBI heating data from Phys. Basis Doc. Bootstrap current, Sauter single ion Porcelli sawtooth model **Coronal equilibrium radiation** Impurities with electron density profile **PF** coils and conducting structures Feedback systems on position, shape, current

Use stored energy control

$$Ip = 15 MA, B_T = 5.3 T$$



#### **Modeling of ITER Burning H-mode**



## **Modeling FIRE Burning Advanced Tokamak**

#### **FIRE Advanced Tokamak**

Free boundary Energy and current transport Density profile assumed Empirical thermal diffusivities ICRF/FW from AORSA LHCD from LSC/ACCOME Bootstrap current, Sauter single ion Coronal equilibrium impurities Ar introduced to radiate more power PF coils and structures Control of plasma current, position and shape

 $Ip = 4.5 \text{ MA} \stackrel{\text{O}}{=} B_T = 6.5 \text{ T} \stackrel{\text{O}}{=} B_T$ 





#### **Modeling FIRE Burning Advanced Tokamak**



## **Examining Perturbations of FIRE Burning AT**



### **TSC Focused Studies for Burning Plasmas**

#### Impact of sawteeth on fusion performance



Plasma disruption simulations provide plasma evolution, \_\_\_\_\_ structure toroidal and poloidal currents, and halo currents

Plasma shape control with MIMO controller in spite of li,  $\beta_p$  variations









### Integrated Modeling of Burning Plasmas with TSC

- TSC's most prominent feature is free-boundary evolution which is critical in advanced plasma modeling and transients
  - Strong li and plasma boundary coupling
  - Impact of plasma boundary shape on MHD stability, H-mode and pedestal/ELM behavior,....
  - Plasma control
- TSC needs more source modeling and can do more focused modeling
  - Presently I do a lot of off-line source modeling and iterating with TSC
  - Although there are numerous areas where off-line modeling will probably be the only method for some time
  - Interfaces between TSC and other codes are being expanded
  - In the mean time, must consider available models, running time, and pseudo-models of some phenomena
- Work has begun on using TSC to model experimental discharge behavior on DIII-D and NSTX in an interpretive mode