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Fluctuation dominated by large scale convective cells
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Toward the control of fluctuation and transport

Key parameter to change the partition

“Fluctuation”
= Turbulent part + Laminar-like flow part
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Key parameter to control the fluctuation and the structure

Need to identify the “energy transfer channel” in wide frequency 
and wave number space.

cf .  Possibility for driving strong flow using nonlinear energy source 
without using external source ?  



Hierarchy of transport simulation

1. Application level: [TRANSP (PPPL),  TASK, TOPICS, JETRO (JET)]

Predictable transport simulation with parameterized transport coefficient

2. Intermediate level: 

[Newman, et al.,  Yagi et al., Fukuyama, et al.]
2.1 Extended transport approach with fluctuation-flow equation  

2.1  Classical transport linked with coefficients from local GK/GF simulation
Linkage with fundamental level [GS2 (PPPL), GLF23 (Waltz et al.,)]

3. Fundamental level :
3.1  Local/global gyro-fluid (GF) simulation, GF based transport-

MHD approach with renormalized transport coefficients
[Gabert et al., Lebeuf et al, Yagi, et al., Miyato et al. etc.]

Treat the wide dynamical range with less accuracy, but keeping fundamental 
physical issues like non-local and transient process, EM effect etc. 

3.2 Local/global gyro-kinetic simulation
[Lin, et.al., Idomura, et al., Candy et al., Naitoh et al., Watanabe et al. etc.]



ETG turbulence and zonal flows 

[Kishimoto,Li, et al., IAEA ’02]
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ETG turbulence and zonal flows 
Condensation of turbulent energy in flow dominated plasma
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Modulational analysis for convective cell by ETG mode

Bump wave:
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Structure of turbulence  and convective cell

Streamer
like pump

Zonal 
flow

Zonal flow
like pump Streamers

( ) 1 kkk  4,Φ 2
y

2
x00 =+==

yx kk << yx k~k yx kk >>

Zonal flow-like pumpHomogeneous pumpStreamer-like pump

Zonal flow generation General secondary
fluctuation (GKH)

Streamer generation



Control of fluctuation via magnetic shear
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0.1ŝ =

0.4ŝ =
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Heat Flux PDF from ETG driven GF simulation
Similarity of PDF in ETG driven turbulent plasma

[Matsumoto et al, Toki-conf., ’03]
ZF dominant plasma shows a Gaussian, but not diffusive process

turbulent plasma ZF dominated plasma

-12 -8 -4 0 4 8 12

s=0.1,eta =3,w /o
s=0.1,eta =6,w /o
s=0.1,eta=
s=0.15,eta=
s=0.2,eta=
Gaussi a

Normalized Heat Flux

10- 5

10- 4

10- 3

10- 2

10- 1

100

Pr
ob

ab
ili

ty

-12 -8 -4 0 4 8 12
Normalized Heat Flux

10- 5

10- 4

10- 3

10- 2

10- 1

100

Pr
ob

ab
ili

ty

s=0.1, 
eta=6s=0.15, 
eta=6s=0.2, 
eta=6Gaussia

6η    0.1ŝ e ==
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PDF from GTC Simulation
[courtesy of  Lin and Hahm]

• Spectrum broadening due to 
Scattering to high-k

[Hahm, et al. IAEA, ’02 ]

• Heat flux PDF is almost Gaussian 
process



Dimension of ETG driven turbulent plasma

Lowering of dimensionality in plasma dominated by zonal flows 
[Matsumoto et al, Toki-conf., ’03]
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Dimension of ETG driven turbulent plasma
Constraint of dimensionality in ZF dominant plasma

[Matsumoto et al, to be submitted ’04]
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Interaction among different scale fluctuation
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[Hahm-Burrel, PoP, ’02, 
Hahm, et al., PoP, ’99]

[Li-Kishimoto, PRL, ’02, 
Idomura, et al., NF, ’02]

Energy transfer channel in wide frequency and wave number space

Overlapping of different linear free energy sources 

Indirect interaction through quasi-coherent zonal flows
• From macro flow to micro turbulence and vice-versa
• Action to direct turbulent vortices and to secondary instabilities

Direct interaction between turbulent fluctuations
• Eddy (turbulent) viscosity and noise trigger



ITG transport modulation due to small scale flow
GF-ITG simulation with micro-scale ETG driven flows [Li-Kishimoto, PRL  ’02] 
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ITG transport modulation due to small scale flow
[courtesy of Miura, Ido and JFT-2M group]

L-state

H-state

The amplitude of bursting increases in transition phase,
suggesting  the increase of PDF tail



Modulational analysis including external flow
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[by Uzawa, Kyoto-univ.]



Modulational analysis including external flow (2)
[by Uzawa, Kyoto-univ.]Homogeneous pump case

: wave number
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Nonlinear free energy source
Nonlinear turbulent-convective cell system 

with complex “activator” and “suppressor” roles 
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Zonal flow dynamics in toroidal geometry
Oscillation between zonal low, asymmetric pressure and parallel flow
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GAM term is a sink or a source 
for zonal flows ?

[Scott 2003, Hallatschek-Biskamp 2001]



Zonal flow dynamics in toroidal geometry
5-field Landau-fluid EM global toridal simulation : H-P closure�elecron LD
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Control of zonal flow dynamics via q-profile

(a) q=1.05+2(r/a)2

(b) q=1.05+2(r/a)3

Expansion of steady state 
ZF region by lowering q-value
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Other effects that affect on convective cell 

1. Rigorous electron response, specifically trapped electron mode  

2. Electromagnetic effect
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From MHD to EM-ITG turbulence simulation 
Simulation of wide dynamical range with less accuracy, but keeping 
fundamental physical issues based on fluid model
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Coupling between ion and electron system
Nonlinear term in ion response:
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Summary

Key parameters to change the ratio of zonal flow energy to that of total 
fluctuations are investigated based of fluid simulation.  Magnetic 
structure, i.e. safety factor and shear, plays an important role.

ETG and ITG driven turbulent plasmas dominated by zonal flows and 
related statistical characteristics are investigated.   Quasi-coherent 
secondary KH-like mode sustains the heat flux and dimensionality 
lowering is observed.

GAM’s plays an important role for the global structure of zonal flows.  
Energy back transfer from zonal flow and the maternal turbulence is 
observed, but the channel direction sensitively depends on beta-value.

Indirect interaction between ITG turbulence and ETG driven micro-
scale flow is investigated.   Complex interplay leads to an intermittent 
transport dynamics in the case of weak ITG drive. 


