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There are two main drives for ideal MHD instabilities:
pressure gradient ⇒ ballooning modes

current gradient ⇒ kink, or peeling, modes

In the pedestal region, large pressure gradients can build up
directly drives ballooning modes

drives bootstrap current ⇒ kink, or peeling, modes

Ideal MHD Instabilities
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Field-line bending:
strongly stabilising unless 

k|| is small

Pressure gradient/curvature
drive: destabilising if average

curvature is “bad”

Current density gradient/edge
current drives kink/peeling

modes
σ=normalised current densityKink drive

Peeling drive



Stability influenced by current and pressure

Peeling mode Ballooning mode
Current  Destabilising Stabilising

Pressure Stabilising Destabilising
Radial extent Highly

localised
Extended across
pedestal region

Ballooning
unstable
(extended)

Peeling
unstable
(localised)
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A model for the ELM cycle: 
the peeling ballooning model
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The ELM Triangle
• It is important to understand each element of the ELM triangle

– To understand how to access small ELM regimes
– To understand how to control ELMs

• A complete ELM model must involve the integration of all stages
– A range of different physics phenomena are involved

• We shall address some of the issues involved in such an integrated model

The Recovery

The TriggerThe Crash



The Recovery: Largely understood?
• Important as it determines the ELM frequency

• Presumably “simply” a transport model issue

• Thus, a transport model is a key ingredient, but even here there are open 
questions:
– What processes govern the transport in the pedestal region?
– Is current diffusion neoclassical or anomalous? (could be important if edge 

current density plays a role in the ELM trigger)
– Is standard neoclassical theory applicable in the pedestal region?



The linear theory can provide the trigger and, possibly a 
qualitative model for ELM size

JT-60U
32511

JT-60U
32358

Small ELMs Large ELMs

one can postulate that ELM energy loss 
is correlated with radial extent of 

eigenmode
for example, some evidence from JT60-U 

but this can only ever be qualitative 
[Snyder, et al]

The linear theory can provide 
quantitative information about when

the ELM occurs; eg for ELMs on DIII-
D [Snyder, et al]



Ballooning theory and solar eruptions

• A rigorous model for the crash will require a non-linear theory

• Non-linear ballooning theory has previously been explored for 
understanding solar eruptions (Hurricane et al)

• Field lines are “tied” at the two ends, and the theory predicts:
– explosive growth, even close to linear marginal stability
– a filament of plasma is ejected
– reconnection is not a necessary part of the theory

• We explore the predictions of the theory for a tokamak:
– the theory must be modified to take account of the toroidal geometry
– the field lines are effectively infinitely long, wrapping many times around 

the torus
– can we establish a link between solar eruptions and ELMs?



The linear ballooning mode equation
The ballooning mode equation has the form:

Functions with square brackets denote equilibrium functions, 
periodic in θ. At large θ, h(θ)→sθ

Close to marginal stability, we can identify three regions in θ:
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The notion of ∆′
H(θ)

θ

“Ideal region”: Inertia 

is a perturbative

correction

“Matching region”
“Inertial region”:

Inertia important
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If we match the two solutions, then we have:

Exponential fall-off

H=H(γθ)
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The notion of ∆′
H(θ)

θ

“Ideal region”: Inertia 

is a perturbative

correction

“Matching region”
“Inertial region”:

Inertia important
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Allowing for the perturbative correction due to γ2 in the ideal 
region:

Exponential fall-off

H=H(γθ)
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Where are non-linearities important?
H(θ)

θ

“Ideal region”: Inertia 

is a perturbative

correction

“Matching region”
“Inertial region”:

Inertia important
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The “radial” perturbed displacement is

Thus, for λs>1, non-linearities are dominant in the ideal region
For λs<1, non-linearities are dominant in the inertial region
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Summary of regions
DM λs−λL Inertia Non-linearities

>0 (eg near q=1) λs−λL <1 ~γλs−λL+2

(inertial region)
Dominant in

inertial region
−3/4<DM<0 1<λs−λL <2 ~γλs−λL+2

(inertial region)
Dominant in
ideal region

<−3/4 λs−λL >2 ~γ2

(ideal region)
Dominant in
ideal region

For DM<−3/4 (strong shaping) line tied boundary conditions are 
adequate: problem solved by Hurricane et al

For DM>0 (weak shaping, q<1) this could be relevant for sawtooth: 
future work

For the pedestal, we are interested in the intermediate regime



Ideal region: The ordering

Starting from the full non-linear ideal MHD equations, we develop 
an expansion in ε, assuming we are close to marginal stability (ie 

∂/∂t<<1)

We anticipate an ordering of length scales motivated by the linear 
theory

note, for linear theory, ε=1/n1/2

In addition, we order

no “overtaking”; σ is chosen appropriately
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Schematic derivation: Ideal region (1)

From the first three orders we find that the radial component of the 
plasma displacement satisfies the standard linear ballooning 

equation:

µ is determined as an eigenvalue, and close to marginal stability, 
µ≈1

NOTE: H(θ) is not periodic
This is OK provided that the field line does not wrap round on itself before 

the eigenmode has decayed
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Schematic derivation: Ideal region (2)

The fourth order provides useful results, which are used to 
simplify the fifth order equations

A solubility condition on the fifth order equations provides an 
equation for ∆′ in terms of the envelope function:

The coefficients are derived from averages along the field line of 
functions involving H(θ):

the C2 coefficient is logarithmically divergent as DM→0 (low β, large aspect 
ratio, circular cross-section)
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The inertial region is characterised by θ>>1; θ ∂/∂t ~1

The perturbations are described by linear equations
In this region we can average out short-scale (periodic) θ variation and 

Laplace-transform perturbed quantities:

The small θ ∂/∂t limit of the Laplace-transformed equations 
provides another expression for ∆′ which, after inverting the 

Laplace transform, becomes: 

τ0 is a small positive time; 1<d=λs−λL<2
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We can now equate the two expressions for ∆′ obtained from the 
two regions to derive our final result:

The final equation:
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Form of solution: time dependence

We balance the non-linear drive with inertia, to predict explosive 
growth as the time t approaches t0:

Favours a given α, ie that for which t0 is a minimum.
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Form of solution: spatial structure
To understand spatial structure, consider our solution:

Balancing the two non-linear terms, we find radial width broadens 
while the extent in α narrows:

Numerical solution confirms these features:
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Our picture of a non-linear ballooning mode is the following:
A picture of the non-linear ballooning mode

Original field line

position

Ballooning
mode pulls 
field line out
on outboard side

Field line unperturbed on inboard side
⇒ remains connected into the core plasma



Non-linear MHD code, BOUT, shows similar feature

Separatrix

• R,φ plots on outer midplane.  Linear phase, n=20.  Burst occurs asymmetrically at a 
particular toroidal location. “Finger” is an extended filament along the field - similarities to 
observations (MAST, DIII-D) and nonlinear ballooning theory

P B Snyder, EPS 2004



A photograph of a MAST ELM
Filament erupting from the 
surface of the MAST plasma

Reconstruction of the MAST magnetic 
geometry, with 10 field lines highlighted

A Kirk, R Akers

• Since the MAST observation last year, experimentalists have searched for, 
and found, filamentary structures on ASDEX Upgrade, JET and DIII-D



A picture of the ELM
• As the pedestal pressure (and current) build, the linear stability threshold is 

crossed

• The ballooning mode ejects a hot plasma filament into the scrape-off layer 
plasma on the outboard side

• This filament remains connected into the hot core on the inboard side:
– it provide a “hosepipe” through which hot plasma can drain from the core
– if this filament were to strike the vessel wall on ITER it could do damage
– this theory could, therefore, have significant implications for ITER

• The heat and particles must somehow leave the pedestal and enter the 
scrape-off layer
– goes beyond ideal MHD
– what is the role of the filaments in this process?



Do the filaments cause heat/particle loss?
• Could heat/particles escape from the filament into the SOL?

– Recall that the filament narrows as it evolves
• enhanced radial diffusion

– Hot filament in “cold” SOL plasma likely leads to “secondary” instabilities
• These could further enhance the transport from the filaments into the SOL

– Subject of future research

• But there is another possibility:
– The filament must twist to squeeze between field lines on adjacent 

surfaces

– It can only do this if the shear in the flow is suppressed
• Does the ballooning mode suppress the shear flow, or does the flow 

suppress the ballooning mode?

– If the sheared flow is suppressed, one would expect a transition to L-
mode



Coupled Transport-MHD Model: 
Towards an integrated ELM model

• Essential ingredients:
– Transport model for inter-ELM period
– Couple to ideal MHD code to determine

• Instability threshold
• Mode structure

– Provide a crash model
• Option (1):

– Barrier transport reverts to L-mode in region of instability (filament suppresses 
flow)

– Enhanced transport for characteristic time of explosive event
– This seems do-able in the near term

• Option (2)
– Identify transport processes of heat and particles out of filament
– Will require long-term development

• This would still leave us with a need to understand the impact of the 
kink/peeling component

– SOL transport model



Summary

To understand the ELM crash dynamics, requires the integration 
of several plasma processes

Transport to model the post-ELM recovery
Linear MHD stability analysis to determine the ELM trigger

Non-linear MHD analysis to determine ELM structure
Novel theory to describe the impact of the filaments

SOL transport to predict heat loads at the target plates and/or wall

A complete ELM model is clearly a challenging task:
this should remain our vision, and we are making progress

in the meantime, there are useful models that can be adopted and
developed to at least test some aspects


