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Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6
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Before You Begin

This book describes how to use the Sun™ specific extensions and features included

with the Sun Performance Library™ subroutines that are supported by the Sun

WorkShop™ 6 FORTRAN 77, Fortran 95, and C compilers.

Who Should Use This Book

This book is a user’s guide intended for programmers who have a working

knowledge of the Fortran or C language and some understanding of the base

LAPACK, BLAS, FFTPACK, VFFTPACK, and LINPACK libraries available from

Netlib (http://www.netlib.org ).

How This Book Is Organized

This book is organized into the following chapters and appendixes:

Chapter 1, “Introduction,” describes the benefits of using the Sun Performance

Library and the features of the Sun Performance Library.

Chapter 2, “Using Sun Performance Library,” describes how to use the f77 , f95 ,

and C interfaces provided with the Sun Performance Library.

Chapter 3, “SPARC Optimization and Parallel Processing,” shows how to use

compiler and linking options to maximize library performance for specific SPARC™

instruction set architectures and different parallel processing modes.
1
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Chapter 4, “Working With Matrices,” includes information on matrix storage

schemes, matrix types, and sparse matrices.

Chapter 5, “Using Sun Performance Library Fast Fourier Transform Routines,”

describes the one-dimensional, two-dimensional, and three-dimensional fast Fourier

transform routines provided with the Sun Performance Library.

Chapter 6, “Using Sun Performance Library Convolution and Correlation Routines,”

provides examples of using the convolution and correlation routines provided with

the Sun Performance Library.

Appendix A, “Sun Performance Library Routines,” lists the Sun Performance Library

routines organized according to name, routine, and library.

What Is Not in This Book

This book does not repeat information included in existing LAPACK books or

sources on Netlib. Refer to the section “Related Documents and Web Sites” for a list

of sources that contain reference material for the base routines upon which Sun

Performance Library is based.

Related Documents and Web Sites

A number of books and web sites provide reference information on the routines in

the base libraries (LAPACK, LINPACK, BLAS, and so on) upon which the Sun

Performance Library is based. The following books augment this manual and

provide essential information:

■ LAPACK Users’ Guide. 3rd ed., Anderson E. and others. SIAM, 1999.

■ LINPACK User’s Guide. Dongarra J. J. and others. SIAM, 1979.

The LAPACK Users’ Guide, 3rd ed. is the official reference for the base LAPACK

version 3.0 routines. An online version of the LAPACK 3.0 Users’ Guide is available at

http://www.netlib.org/lapack/lug/ , and the printed version is available from

the Society for Industrial and Applied Mathematics (SIAM) http://www.siam.org .

Sun Performance Library routines contain performance enhancements, extensions,

and features not described in the LAPACK Users’ Guide. However, because Sun

Performance Library maintains compatibility with the base LAPACK routines, the

LAPACK Users’ Guide can be used as a reference for the LAPACK routines and the

FORTRAN 77 interfaces.
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Online Resources

Online information describing the performance library routines that form the basis

of the Sun Performance Library can be found at the following URLs.

Typographic Conventions

LAPACK version 3.0 http://www.netlib.org/lapack/

BLAS, levels 1 through 3 http://www.netlib.org/blas/

FFTPACK version 4 http://www.netlib.org/fftpack/

VFFTPACK version 2.1 http://www.netlib.org/vfftpack/

Sparse BLAS http://www.netlib.org/sparse-
blas/index.html

NIST (National Institute of Standards

and Technology) Fortran Sparse BLAS

http://math.nist.gov/spblas/

LINPACK http://www.netlib.org/linpack/

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.
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Shell Prompts

Supported Platforms

This Sun WorkShop™ Sun Performance Library release supports versions 2.6, 7, and

8 of the Solaris™ SPARC™ Platform Edition operating environment.

Accessing Sun WorkShop Development

Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Sun

WorkShop compilers and tools, you must have the Sun WorkShop component

directory in your PATHenvironment variable. To access the Sun WorkShop man

pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1) man

pages. For more information about the MANPATHvariable, see the man(1) man page.

For more information about setting your PATHand MANPATHvariables to access this

release, see the Sun WorkShop 6 update 2 Installation Guide or your system

administrator.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
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Note – The information in this section assumes that your Sun WorkShop 6 update 2

products are installed in the /opt directory. If your product software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

% echo $PATH
Before You Begin 5



To Determine If You Need to Set Your MANPATHEnvironment
Variable

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in the next

section for setting your MANPATHenvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Sun WorkShop

Documentation

You can access Sun WorkShop product documentation at the following locations:

■ The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser

to the following file:

/opt/SUNWspro/docs/index.html

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

% man workshop
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■ Manuals are available from the docs.sun.comsm Web site.

The docs.sun.com Web site (http://docs.sun.com ) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Ordering Sun Documentation

You can order product documentation directly from Sun through the docs.sun.com
Web site or from Fatbrain.com, an Internet bookstore. You can find the Sun

Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Document Collection Document Title Description

Solaris 8 Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris 8 Software

Developer Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris 8 Software

Developer Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
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Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com
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CHAPTER 1

Introduction

Sun Performance Library is a set of optimized, high-speed mathematical subroutines

for solving linear algebra and other numerically intensive problems. Sun

Performance Library is based on a collection of public domain applications available

from Netlib at http://www.netlib.org . Sun has enhanced these public domain

applications and bundled them as the Sun Performance Library.

The Sun Performance Library User’s Guide explains the Sun-specific enhancements to

the base applications available from Netlib. Reference material describing the base

routines is available from Netlib and the Society for Industrial and Applied

Mathematics (SIAM).

Libraries Included With Sun
Performance Library

Sun Performance Library contains enhanced versions of the following standard

libraries:

■ LAPACK version 3.0 – For solving linear algebra problems.

■ BLAS1 (Basic Linear Algebra Subprograms) – For performing vector-vector

operations.

■ BLAS2 – For performing matrix-vector operations.

■ BLAS3 – For performing matrix-matrix operations.

■ FFTPACK version 4 – For performing the fast Fourier transform.

■ VFFTPACK version 2.1 – A vectorized version of FFTPACK for performing the

fast Fourier transform.

■ LINPACK – For solving linear algebra problems in legacy applications containing

routines that have not been upgraded to LAPACK 3.0.
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Note – LAPACK version 3.0 supersedes LINPACK and all previous versions of

LAPACK. Use LAPACK for new development and LINPACK to support legacy

applications.

Sun Performance Library is available in both static and dynamic library versions

optimized for the V8, V8+, and V9 architectures. Sun Performance Library supports

static and shared libraries on Solaris 2.6, Solaris 7, and Solaris 8 and adds support

for multiple processors.

Sun Performance Library LAPACK routines have been compiled with a Fortran 95

compiler and remain compatible with the Netlib LAPACK version 3.0 library. The

Sun Performance Library versions of these routines perform the same operations as

the Fortran callable routines and have the same interface as the standard Netlib

versions.

LAPACK contains driver, computational, and auxiliary routines. Sun Performance

Library does not support the auxiliary routines, because auxiliary routines can

change or be removed from LAPACK without notice. Because the auxiliary routines

are not supported, they are not documented in the Sun Performance Library User’s

Guide or the section 3P man pages.

Many auxiliary routines contain LA as the second and third characters in the routine

name; however, some do not. Appendix B of the LAPACK Users’ Guide contains a list

of auxiliary routines.

Auxiliary routines are not available in the shared (dynamic) libraries, but the

auxiliary routines are still available in the static libraries. However, there is no

guarantee that auxiliary routines will continue to be available in any form in future

versions of the Sun Performance Library.

Netlib

Netlib is an online repository of mathematical software, papers, and databases

maintained by AT&T Bell Laboratories, the University of Tennessee, Oak Ridge

National Laboratory, and professionals from around the world.

Netlib provides many libraries, in addition to the libraries used in Sun Performance

Library. While some of these libraries can appear similar to libraries used with Sun

Performance Library, they can be different from, and incompatible with Sun

Performance Library.

Using routines from other libraries can produce compatibility problems, not only

with Sun Performance Library routines, but also with the base Netlib LAPACK

routines. When using routines from other libraries, refer to the documentation

provided with those libraries.
10 Sun Performance Library User’s Guide for Fortran and C • July 2001



For example, Netlib provides a CLAPACK library, but the CLAPACK interfaces

differ from the C interfaces included with Sun Performance Library. A LAPACK 90

library package is also available on Netlib. The LAPACK 90 library contains

interfaces that differ from the Sun Performance Library Fortran 95 interfaces and the

Netlib LAPACK version 3.0 interfaces. If using LAPACK 90, refer to the

documentation provided with that library.

For the base libraries supported by Sun Performance Library, Netlib provides

detailed information that can supplement this user’s guide. The LAPACK 3.0 Users’
Guide describes LAPACK algorithms and how to use the routines, but it does not

describe the Sun Performance Library extensions made to the base routines.

Sun Performance Library Features

Sun Performance Library routines can increase application performance on both

serial and MP platforms, because the serial speed of many Sun Performance Library

routines has been increased, and many routines have been parallelized that might be

serial in other products. Sun Performance Library routines also have SPARC specific

optimizations that are not present in the base Netlib libraries.

Sun Performance Library provides the following optimizations and extensions to the

base Netlib libraries:

■ Extensions that support Fortran 95 and C language interfaces

■ Fortran 95 language features, including type independence, compile time

checking, and optional arguments.

■ Consistent API across the different libraries in Sun Performance Library

■ Compatibility with LAPACK 1.x, LAPACK 2.0, and LAPACK 3.0 libraries

■ Increased performance, and in some cases, greater accuracy

■ Optimizations for specific SPARC instruction set architectures

■ Support for 64-bit enabled Solaris operating environment

■ Support for parallel processing compiler options

■ Support for multiple processor hardware options
Chapter 1 Introduction 11



Mathematical Routines

The Sun Performance Library routines are used to solve the following types of linear

algebra and numerical problems:

■ Elementary vector and matrix operations – Vector and matrix products; plane

rotations; 1, 2-, and infinity-norms; rank-1, 2, k, and 2k updates

■ Linear systems – Solve full-rank systems, compute error bounds, solve Sylvester

equations, refine a computed solution, equilibrate a coefficient matrix

■ Least squares – Full-rank, generalized linear regression, rank-deficient, linear

equality constrained

■ Eigenproblems – Eigenvalues, generalized eigenvalues, eigenvectors, generalized

eigenvectors, Schur vectors, generalized Schur vectors

■ Matrix factorizations or decompositions – SVD, generalized SVD, QL and LQ, QR

and RQ, Cholesky, LU, Schur, LDLT and UDUT

■ Support operations – Condition number, in-place or out-of-place transpose, inverse,

determinant, inertia

■ Sparse matrices – Solve symmetric, structurally symmetric, and unsymmetric

coefficient matrices using direct methods and a choice of fill-reducing ordering

algorithms, and user-specified orderings

■ Convolution and correlation in one and two dimensions

■ Fast Fourier transforms, Fourier synthesis, cosine and quarter-wave cosine

transforms, cosine and quarter-wave sine transforms

■ Complex vector FFTs and FFTs in two and three dimensions

Compatibility With Previous LAPACK
Versions

The Sun Performance Library routines that are based on LAPACK support the

expanded capabilities and improved algorithms in LAPACK 3.0, but are completely

compatible with both LAPACK l.x and LAPACK 2.0. Maintaining compatibility with

previous LAPACK versions:

■ Reduces linking errors due to changes in subroutine names or argument lists.

■ Ensures results are consistent with results generated with previous LAPACK

versions.

■ Minimizes programs terminating due to differences between argument lists.
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Getting Started With Sun Performance
Library

This section shows the most basic compiler options used to compile an application

that uses the Sun Performance Library routines.

To use the Sun Performance Library, type one of the following commands.

or

Because Sun Performance Library routines are compiled with -dalign , the

-dalign option should be used for compilation of all files if any routine in the

program makes a Sun Performance Library call. If -dalign cannot be used,

enabling Trap 6, described in the section “Enabling Trap 6” on page 14, is a low-

performance workaround that allows misaligned data.

Sun Performance Library is linked into an application with the -xlic_lib switch

rather than the -l switch that is used to link in other libraries. The -xlic_lib
switch gives the same effect as if -l was used to specify the Sun Performance

Library and added -l switches for all of the supporting libraries that Sun

Performance Library requires.

To summarize, use the following:

■ -dalign on all files at compile time or enable trap 6

■ The same command line options for compiling and linking

■ -xlic_lib=sunperf

Additional compiler options exist that optimize application performance for the

following:

■ Specific SPARC instruction set architectures, as described in “Compiling for

SPARC Platforms” on page 28.

■ Parallel processing, as described in “Parallel Processing” on page 33.

my_system% f95 -dalign my_file.f -xlic_lib=sunperf

my_system% cc -dalign my_file.c -xlic_lib=sunperf
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Enabling Trap 6

If an application cannot be compiled using -dalign , enable trap 6 to provide a

handler for misaligned data. To enable trap 6 on SPARC, do the following:

1. Place this assembly code in a file called trap6_handler.s .

2. Assemble trap6_handler.s .

my_system% fbe trap6_handler.s

The first parallelizable subroutine invoked from Sun Performance Library will call a

routine named trap6_handler_ . If a trap6_handler_ is not specified, Sun

Performance Library will call a default handler that does nothing. Not supplying a

handler for any misaligned data will cause a trap that will be fatal. (fbe (1) is the

Solaris assembler for SPARC platforms.)

3. Include trap6_handler.o on the command line.

.global trap6_handler_

.text

.align 4
trap6_handler_:

retl
ta    6

my_system% f95 any.f trap6_handler.o -xlic_lib=sunperf
14 Sun Performance Library User’s Guide for Fortran and C • July 2001



CHAPTER 2

Using Sun Performance Library

This chapter describes using the Sun Performance Library to improve the execution

speed of applications written in FORTRAN 77, Fortran 95, or C. The performance of

many applications can be increased by using Sun Performance Library without

making source code changes or recompiling. However, some modifications to

applications might be required to gain peak performance with Sun Performance

Library.

Improving Application Performance

The following sections describe ways of using Sun Performance Library routines

without making source code changes or recompiling.

Replacing Routines With Sun Performance

Library Routines

Many applications use one or more of the base Netlib libraries, such as LAPACK or

BLAS. Because Sun Performance Library maintains the same interfaces and

functionality of these libraries, base Netlib routines can be replaced with Sun

Performance Library routines. Application performance is increased, because Sun

Performance Library routines can be faster than the corresponding Netlib routines or

similar routines provided by other vendors.
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Improving Performance of Other Libraries

Many commercial math libraries are built around a core of generic BLAS and

LAPACK routines. When an application has a dependency on proprietary interfaces

in another library that prevents the library from being completely replaced, the

BLAS and LAPACK routines used in that library can be replaced with the Sun

Performance Library BLAS and LAPACK routines. Because replacing the core

routines does not require any code changes, the proprietary library features can still

be used, and the other routines in the library can remain unchanged.

Using Tools to Restructure Code

Some libraries that do not directly use Sun Performance Library routines can be

modified by using automatic code restructuring tools that replace existing code with

Sun Performance Library code. For example, a source- to- source conversion tool can

replace existing BLAS code structures with calls to the Sun Performance Library

BLAS routines. These conversion tools can also recognize many user written matrix

multiplications and replace them with calls to the matrix multiplication subroutine

in Sun Performance Library.

Fortran f77 /f95 Interfaces

Sun Performance Library f77 /f95 interfaces use the following conventions:

■ All arguments are passed by reference.

■ Types of arguments must be consistent within a call (For example, do not mix

REAL*8 and REAL*4 parameters in the same call.

■ Arrays are stored columnwise.

■ Indices are based at one, in keeping with standard Fortran practice.

When calling Sun Performance Library routines:

■ Do not prototype the subroutines with the Fortran 95 INTERFACEstatement. Use

the USE SUNPERFstatement instead.

■ Do not use -ext_names=plain to compile routines that call routines from Sun

Performance Library.
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Fortran SUNPERFModule for Use with Fortran 95

Sun Performance Library provides a Fortran module for additional ease-of-use

features with Fortran 95 programs. To use this module, include the following line in

Fortran 95 codes.

USE SUNPERF

USEstatements must precede all other statements in the code, except for the

PROGRAMor SUBROUTINEstatement.

The SUNPERFmodule contains interfaces that simplify the calling sequences and

provides the following features:

■ Type Independence – Sun Performance Library supports interfaces where the type

of the data arguments will automatically be recognized, eliminating the need for

type-dependent prefixes (S, D, C, or Z). In the FORTRAN 77 routines, the type

must be specified as part of the routine name. For example, DGEMMis a double

precision matrix multiply and SGEMMis a single precision matrix multiply. When

calling GEMMwith the Fortran 95 interfaces, Fortran will infer the type from the

arguments that are passed. Passing single-precision arguments to GEMMgets

results that are equivalent to specifying SGEMM, and passing double-precision

arguments gets results that are equivalent to DGEMM. For example, CALL
DSCAL(20,5.26D0,X,1) could be changed to CALL SCAL(20, 5.26D0, X, 1) .

■ Compile-Time Checking – In FORTRAN 77, it is generally impossible for the

compiler to determine what arguments should be passed to a particular routine.

In Fortran 95, the USE SUNPERFstatement allows the compiler to determine the

number, type, size, and shape of each argument to each Sun Performance Library

routine. It can check the calls against the expected value and display errors

during compilation.

■ Optional Arguments – Sun Performance Library supports interfaces where some

arguments are optional. In FORTRAN 77, all arguments must be specified in the

order determined by the interface for all routines. All interfaces will support f95
style OPTIONALattributes on arguments that are not required. Using routines with

optional arguments, such as GEMM, are useful for new development. Specifically

named routines, such as DGEMM, are maintained to support legacy code. To

determine the optional arguments for a routine, refer to the section 3P man pages.

In the section 3P man pages, optional arguments are enclosed in square brackets

[ ].
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■ 64-bit Integer Support– When using the 64-bit interfaces provided with Sun

Performance Library, integer arguments need to be promoted to 64-bits, and the

routine name needs to be modified by appending _64 to the routine name. With

the SUNPERFmodule, 64-bit integers will automatically be recognized, which

eliminates the need for appending _64 to the routine name, as shown in the

following code example.

When using Sun Performance Library routines with optional arguments, the _64

suffix is required for 64-bit integers, as shown in the following code example.

For a detailed description of using the Sun Performance Library 64-bit interfaces, see

“Compiling Code for a 64-Bit Enabled Solaris Operating Environment” on page 29.

Because the sunperf.mod file is compiled with -dalign , any code that contains the

USE SUNPERFstatement must be compiled with -dalign . The following error

occurs if the code is not compiled with -dalign .

SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL DAXPY(N,ALPHA,X,1_8,Y,1_8)

END

SUBROUTINE SUB(N,ALPHA,X,Y)
USE SUNPERF
INTEGER(8) N
REAL(8) ALPHA, X(N), Y(N)

! EQUIVALENT TO DAXPY_64(N,ALPHA,X,1_8,Y,1_8)
CALL AXPY_64(ALPHA=ALPHA,X=X,Y=Y)

END

 use sunperf
              ^

"test_code.f", Line = 2, Column = 11: ERROR: Procedure "SUNPERF"
and this compilation must both be compiled with -a dalign, or
without -a dalign.
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Optional Arguments

Sun Performance Library routines support Fortran 95 optional arguments, where

argument values that can be inferred from other arguments can be omitted. For

example, the SAXPYroutine is defined as follows in the man page.

The N, INCX, and INCY arguments are optional. Note the square bracket notation in

the man pages that denotes the optional arguments.

Suppose the user tries to call the SAXPYroutine with the following arguments.

If mismatches in the type, shape, or number of arguments occur, the compiler would

issue the following error message:

ERROR: No specific match can be found for the generic subprogram
call "AXPY".

Using the arguments defined above, the following examples show incorrect calls to

the SAXPYroutine due type, shape, or number mismatches.

■ Incorrect type of the arguments–If SAXPYis called as follows:

A compiler error occurs because mixing parameter types, such as COMPLEX ALPHA
and REAL X, is not supported.

■ Incorrect shape of the arguments– If SAXPYis called as follows:

A compiler error occurs because the XA argument is two dimensional, but the

interface is expecting a one-dimensional argument.

SUBROUTINE SAXPY([N], ALPHA, X, [INCX], Y, [INCY])
REAL ALPHA
INTEGER INCX, INCY, N
REAL X(*), Y(*)

USE SUNPERF
COMPLEX ALPHA
REAL    X(100), Y(100), XA(100,100), RALPHA
INTEGER INCX, INCY

CALL AXPY(100, ALPHA, X, INCX, Y, INCY)

CALL AXPY(N, RALPHA, XA, INCX, Y, INCY)
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■ Incorrect number of arguments– If SAXPYis called as follows:

A compiler error occurs because the compiler cannot find a routine in the AXPY
interface group that takes four arguments of the following form.

In the following example, the f95 keyword parameter passing capability can

allow a user to make essentially the same call using that capability.

This is a valid call to the AXPYinterface. It is necessary to use keyword parameter

passing on any parameter that appears in the list after the first OPTIONAL
parameter is omitted.

The following calls to the AXPYinterface are valid.

CALL AXPY(RALPHA, X, INCX, Y)

AXPY(REAL, REAL 1-D ARRAY, INTEGER, REAL 1-D ARRAY)

CALL AXPY(ALPHA=RALPHA,X=X,INCX=INCX,Y=Y)

CALL AXPY(N,RALPHA,X,Y=Y,INCY=INCY)
CALL AXPY(N,RALPHA,X,INCX,Y)
CALL AXPY(N,RALPHA,X,Y=Y)
CALL AXPY(ALPHA=RALPHA,X=X,Y=Y)
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Fortran Examples

To increase the performance of single processor applications, identify code

constructs in an application that can be replaced by calls to Sun Performance Library

routines. Performance of multiprocessor applications can increased by identifying

opportunities for parallelization.

To increase application performance by modifying code to use Sun Performance

Library routines, identify blocks of code that exactly duplicate the capability of a Sun

Performance Library routine. The following code example is the matrix-vector

product y ← Ax + y, which can be replaced with the DGEMVsubroutine.,

In other cases, a block of code can be equivalent to several Sun Performance Library

calls or contain portions of code that can be replaced with calls to Sun Performance

Library routines. Consider the following code example.

The code example can be rewritten to use the Sun Performance Library routine

DGER, as shown here.

      DO I = 1, N
          DO J = 1, N
              Y(I) = Y(I) + A(I,J) * X(J)
          END DO
      END DO

      DO I = 1, N
          IF (V2(I,K) .LT. 0.0) THEN
              V2(I,K) = 0.0
          ELSE
              DO J = 1, M
                  X(J,I) = X(J,I) + Vl(J,K) * V2(I,K)
              END DO
          END IF
      END DO

      DO I = 1, N
          IF (V2(I,K) .LT. 0.0) THEN
             V2(I,K) = 0.0
          END IF
      END DO
      CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)
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The same code example can also be rewritten using Fortran 95 specific statements, as

shown here.

Because the code to replace negative numbers with zero in V2 has no natural analog

in Sun Performance Library, that code is pulled out of the outer loop. With that code

removed to its own loop, the rest of the loop is a rank- 1 update of the general matrix

x that can be replaced with the DGERroutine from BLAS.

The amount of performance increase can also depend on the data the Sun

Performance Library routine uses. For example, if V2 contains many negative or zero

values, the majority of the time might not be spent in the rank- 1 update. In this case,

replacing the code with a call to DGERmight not increase performance.

Evaluating other loop indexes can affect the Sun Performance Library routine used.

For example, if the reference to K is a loop index, the loops in the code sample shown

above might be part of a larger code structure, where the loops over DGEMVor DGER
could be converted to some form of matrix multiplication. If so, a single call to a

matrix multiplication routine can increase performance more than using a loop with

calls to DGER.

Because all Sun Performance Library routines are MT-safe (multithread safe), using

the auto-parallelizing compiler to parallelize loops that contain calls to Sun

Performance Library routines can increase performance on MP platforms.

An example of combining a Sun Performance Library routine with an

auto-parallelizing compiler parallelization directive is shown in the following code

example.

Sun Performance Library contains a routine named DGBMVto multiply a banded

matrix by a vector. By putting this routine into a properly constructed loop, use Sun

Performance Library routines can be used to multiply a banded matrix by a matrix.

The compiler will not parallelize this loop by default, because the presence of

subroutine calls in a loop inhibits parallelization. However, Sun Performance Library

routines are MT-safe, so a user can use parallelization directives that instruct the

compiler to parallelize this loop.

WHERE (V(1:N,K) .LT. 0.0) THEN
       V(1:N,K) = 0.0
END WHERE
CALL DGER (M, N, 1.0D0, X, LDX, Vl(l,K), 1, V2(1,K), 1)

      C$PAR DOALL
      DO I = 1, N
             CALL DGBMV ('No transpose', N, N, ALPHA, A, LDA,
     $     B(l,I), 1, BETA, C(l,I), 1)
      END DO
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Compiler directives can also be used to parallelize a loop with a subroutine call that

ordinarily would not be parallelizable. For example, it is ordinarily not possible to

parallelize a loop containing a call to some of the linear system solvers, because

some vendors have implemented those routines using code that is not MT-safe.

Loops containing calls to the expert drivers of the linear system solvers (routines

whose names end in SVX) are usually not parallelizable with other implementations

of LAPACK. Because the implementation of LAPACK in Sun Performance Library

allows parallelization of loops containing such calls, users of MP platforms can get

additional performance by parallelizing these loops.

C Interfaces

The Sun Performance Library routines can be called from within a FORTRAN 77,

Fortran 95, or C program. However, C programs must still use the FORTRAN 77

calling sequence.

Sun Performance Library contains native C interfaces for each of the routines

contained in LAPACK, BLAS, FFTPACK, VFFTPACK, and LINPACK. The Sun

Performance Library C interfaces have the following features:

■ Function names have C names

■ Function interfaces follow C conventions

■ C functions do not contain redundant or unnecessary arguments for a C function

The following example compares the standard LAPACK Fortran interface and the

Sun Performance Library C interfaces for the DGBCONroutine.

CALL DGBCON (NORM, N, NSUB, NSUPER, DA, LDA, IPIVOT, DANORM,

             DRCOND, DWORK, IWORK2, INFO)

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,

            int lda, int *ipivot, double danorm, double drcond,

            int *info)

Note that the names of the arguments are the same and that arguments with the

same name have the same base type. Scalar arguments that are used only as input

values, such as NORMand N, are passed by value in the C version. Arrays and scalars

that will be used to return values are passed by reference.

The Sun Performance Library C interfaces improve on CLAPACK, available on

Netlib, which is an f2c translation of the standard libraries. For example, all of the

CLAPACK routines are followed by a trailing underscore to maintain compatibility

with Fortran compilers, which often postfix routine names in the object (.o ) file with

an underscore. The Sun Performance Library C interfaces do not require a trailing

underscore.
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Sun Performance Library C interfaces use the following conventions:

■ Input-only scalars are passed by value rather than by reference. Complex and

double complex arguments are not considered scalars because they are not

implemented as a scalar type by C.

■ Complex scalars can be passed as either structures or arrays of length 2.

■ Types of arguments must match even after C does type conversion. For example,

be careful when passing a single precision real value, because a C compiler can

automatically promote the argument to double precision.

■ Arrays are stored columnwise. For Fortran programmers, this is the natural order

in which arrays are stored. For C programmers, this is the transpose of the order

in which they usually work. References in the documentation and man pages to

rows refer to columns and vice versa.

■ Array indices are based at zero in conformance with C conventions, rather than

being based at one in conformance with Fortran conventions.

For example, the Fortran interface to IDAMAX, which C programs access as

idamax_ , would return a 1 to indicate the first element in a vector. The C

interface to idamax , which C programs access as idamax , would return a 0 to

indicate the first element of a vector. This convention is observed in function

return values, permutation vectors, and anywhere else that vector or array indices

are used.

Note – Some Sun Performance Library routines use malloc internally, so user codes

that make calls to Sun Performance Library and to sbrk might not work correctly.

Sun Performance Library uses global integer registers %g2, %g3, and %g4 in 32-bit

mode and %g2through %g5in 64-bit mode as scratch registers. User code should not

use these registers for temporary storage, and then call a Sun Performance Library

routine. The data will be overwritten when the Sun Performance Library routine

uses these registers.
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C Examples

Transforming user-written code sequences into calls to Sun Performance Library

routines increases application performance. The following code example adapted

from LAPACK shows one example.

No Sun Performance Library routine exactly replicates the functionality of this code

example. However, the code can be accelerated by replacing it with several calls to

the Sun Performance Library routine isamax , as shown in the following code

example.

int    i;
float a[n], b[n], largest;

largest = a[0];
for (i = 0; i < n; i++)
{
if (a[i] > largest)
    largest = a[i];
    if (b[i] > largest
    largest = b[i];
}

int    i, large_index;
float a[n], b[n], largest;

large_index = isamax (n, a, l);
largest = a[large_index];
large_index = isamax (n, b, l);
if (b[large_index] > largest)
     largest = b[large_index];
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Compare the differences between calling the native C isamax routine in Sun

Performance Library, shown in the previous code example, with calling the isamax
routine in CLAPACK, shown in the following code example.

/* 1. Declare scratch variable to allow 1 to be passed by value */
int one = l;
/* 2. Append underscore to conform to FORTRAN naming system */
/* 3. Pass all arguments, even scalar input -only, by reference */
/* 4. Subtract one to convert from FORTRAN indexing conventions */
large_index = isamax_ (&n, a, &one) - l;
largest = a[large_index]; large_index = isamax_ (&n, b, &one) - l;
if (b[large_index] > largest)
     largest = b[large_index];
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CHAPTER 3

SPARC Optimization and Parallel
Processing

This chapter describes how to use compiler and linking options to optimize

applications for:

■ Specific SPARC instruction set architectures

■ 64-bit enabled Solaris operating environment

■ Parallel processing

TABLE 3-1 shows a comparison of the 32-bit and 64-bit operating environments. These

items are described in greater detail in the following sections.

TABLE 3-1 Comparison of 32-bit and 64-bit Operating Environments

32-bit (ILP 32) 64-bit (LP64)

-xarch v8 , v8plusa , v8plusb v9 , v9a , v9b

Fortran Integers INTEGER, INTEGER*4 INTEGER*8

C Integers int long

Floating-point S/D/C/Z S/D/C/Z

API Names of routines Names of routines with _64 suffix
27



Using Sun Performance Library on
SPARC Platforms

The Sun Performance Library was compiled using the f95 compiler provided with

this release. The Sun Performance Library routines were compiled using -dalign
and -xarch set to v8, v8plusa, or v9a.

For each -xarch option used to compile the libraries, there is a library compiled

with -xparallel and a library compiled without -xparallel . When linking the

program, use -dalign , -xlic_lib=sunperf , and the same command line options

that were used when compiling. If -dalign cannot be used in the program, supply

a trap 6 handler as described in “Getting Started With Sun Performance Library” on

page 13. If compiling with a value of -xarch that is not one of [v8|v8plusa|v9a] ,

the compiler driver will select the closest match.

Sun Performance Library is linked into an application with the -xlic_lib switch

rather than the -l switch that is used to link in other libraries, as shown here.

Compiling for SPARC Platforms

Applications using Sun Performance Library can be optimized for specific SPARC

instruction set architectures and for a 64-bit enabled Solaris operating environment.

The optimization for each architecture is targeted at one implementation of that

architecture and includes optimizations for other architectures when it does not

degrade the performance of the primary target.

Compile with the most appropriate -xarch= option for best performance. At link

time, use the same -xarch= option that was used at compile time to select the

version of the Sun Performance Library optimized for a specific SPARC instruction

set architecture.

Note – Using SPARC-specific optimization options increases application

performance on the selected instruction set architecture, but limits code portability.

When using these optimization options, the resulting code can be run only on

systems using the specific SPARC chip from Sun Microsystems and, in some cases, a

specific Solaris operating environment (32-bit or 64-bit Solaris 7 or Solaris 8).

my_system% f95 -dalign my_file.f -xlic_lib=sunperf
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The SunOS™ command isalist (1) can be used to display a list of the native

instruction sets executable on a particular platform. The names output by isalist
are space-separated and are ordered in the sense of best performance.

For a detailed description of the different -xarch options, refer to the Fortran User’s
Guide or the C User’s Guide.

Use the following command line options to compile for 32-bit addressing in a 32-bit

enabled Solaris operating environment:

■ UltraSPARC I™ or UltraSPARC II™ systems. Use -xarch=v8plus or

-xarch=v8plusa .

■ UltraSPARC III™ systems. Use -xarch=v8plus or -xarch=v8plusb .

Use the following command line options to compile for 64-bit addressing in a 64-bit

enabled Solaris operating environment.

■ UltraSPARC I or UltraSPARC II systems. Use -xarch=v9 or -xarch=v9a .

■ UltraSPARC III systems. Use -xarch=v9 or -xarch=v9b .

Compiling Code for a 64-Bit Enabled
Solaris Operating Environment

To compile code for a 64- bit enabled Solaris operating environment, use

-xarch=v9[a|b] and convert all integer arguments to 64- bit arguments. 64-bit

routines require the use of 64-bit integers.

Sun Performance Library provides 32-bit and 64-bit interfaces. To use the 64-bit

interfaces:

■ Modify the Sun Performance Library routine name. For C, FORTRAN 77, and

Fortran 95 code, append _64 to the names of Sun Performance Library routines

(for example, rfftf_64 or CFFTB_64) . For Fortran 95 code with the USE
SUNPERFstatement, the _64 suffix is not strictly required for specific interfaces,

such as DGEMM. The _64 suffix is still required for the generic interfaces, such as

GEMM.

■ Promote integers to 64 bits. Double precision variables and the real and

imaginary parts of double complex variables are already 64 bits. Only the integers

are promoted to 64 bits.
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64-Bit Integer Arguments

These additional 64-bit-integer interfaces are available only in the v9, v9a, and v9b

libraries. Codes compiled for 32-bit operating environments (-xarch set to v8plusa
or v8plusb ) can not call the 64-bit-integer interfaces.

To call the 64-bit-integer interfaces directly, append the suffix _64 to the standard

library name. For example, use daxpy_64() in place of daxpy() .

However, if calling the 64-bit integer interfaces indirectly, do not append _64 to the

name of the Sun Performance Library routine. Calls to the Sun Performance Library

routine will access a 32-bit wrapper that promotes the 32-bit integers to 64-bit

integers, calls the 64-bit routine, and then demotes the 64-bit integers to 32-bit

integers.

For best performance, call the routine directly by appending _64 to the routine

name.

For C programs, use long instead of int arguments. The following code example

shows calling the 64-bit integer interfaces directly.

The following code example shows calling the 64-bit integer interfaces indirectly.

For Fortran programs, use 64-bit integers for all integer arguments. The following

methods can be used to convert integer arguments to 64-bits:

■ To promote all default integers (integers declared without explicit byte sizes) and

literal integer constants from 32 bits to 64 bits, compile with

-xtypemap=integer:64 .

■ To promote specific integer declarations, change INTEGERor INTEGER*4 to

INTEGER*8.

■ To promote integer literal constants, append _8 to the constant. This is Fortran 95

style syntax, but it is also recognized by the FORTRAN 77 compiler.

#include <sunperf.h>
long n, incx, incy;
double alpha, *x, *y;
daxpy_64(n, alpha, x, incx, y, incy);

#include <sunperf.h>
int  n, incx, incy;
double alpha, *x, *y;
daxpy   (n, alpha, x, incx, y, incy);
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Consider the following code example.

INTEGER*8 arguments cannot be used in a 32-bit environment. Routines in the 32-

bit libraries, v8 , v8plusa , v8plusb , cannot be called with 64-bit arguments.

However, the 64-bit routines can be called with 32-bit arguments.

When passing constants in Fortran 95 code that have not been compiled with

-xtypemap , append _8 to literal constants to effect the promotion. For example,

when using Fortran 95, change CALL DSCAL(20,5.26D0,X,1) to CALL
DSCAL(20_8,5.26D0,X,1_8) . This example assumes USE SUNPERFis included in

the code, because the _64 has not been appended to the routine name.

The following code example shows calling CAXPYfrom Fortran 95 using 32-bit

arguments.

The following code example shows calling CAXPYfrom Fortran 95 (without the USE
SUNPERFstatement) using 64-bit arguments.

When using 64-bit arguments, the _64 must be appended to the routine name if the

USE SUNPERFstatement is not used.

INTEGER*8 N
REAL*8 ALPHA, X(N), Y(N)

! _64 SUFFIX: N AND 1_8 ARE 64-BIT INTEGERS
CALL DAXPY_64(N,ALPHA,X,1_8,Y,1_8)

       PROGRAM TEST
       COMPLEX ALPHA
       INTEGER INCX, INCY, N
       COMPLEX X(*), Y(*)

       CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

       PROGRAM TEST
       COMPLEX   ALPHA
       INTEGER*8 INCX, INCY, N
       COMPLEX   X(*), Y(*)

       CALL CAXPY_64(N, ALPHA, X, INCX, Y, INCY)
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The following Fortran 95 code example shows calling CAXPYusing 64-bit arguments.

In C routines, the size of long is 32 bits when compiling for V8 or V8plus and 64 bits

when compiling for V9. The following code example shows calling the dgbcon
routine using 32-bit arguments.

The following code example shows calling the dgbcon routine using 64-bit arguments.

       PROGRAM TEST
       USE SUNPERF
       .
       .
       .
       COMPLEX   ALPHA
       INTEGER*8 INCX, INCY, N
       COMPLEX   X(*), Y(*)

       CALL CAXPY(N, ALPHA, X, INCX, Y, INCY)

void dgbcon(char norm, int n, int nsub, int nsuper, double *da,
            int lda, int *ipivot, double danorm, double drcond,
            int *info)

void dgbcon_64 (char norm, long n, long nsub, long nsuper,
double *da, long lda, long *ipivot, double danorm,

                double *drcond, long *info)
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Parallel Processing

If using multithreading, use one of the following options:

■ For code compiled with automatic or explicit compiler parallelization, use the

same parallelization option (-xparallel , -xexplicitpar , or -xautopar ) at

link time as at compile time, as shown in the following example.

■ For code that uses POSIX/Solaris threads, use -mt on the link line, as shown in

the following example.

Sun Performance Library does not support mixing compiler parallelization and

POSIX/Solaris multithreading.

Note – The Fortran compiler parallelization features require a Forte for HPC license.

Run-time Issues

At run time, if running with compiler parallelization, Sun Performance Library uses

the same pool of threads that the compiler does. The per-thread stack size must be

set to at least 4 Mbytes with the STACKSIZE environment variable, as follows:

% setenv STACKSIZE 4000

Setting the STACKSIZE environment variable is not required for programs running

with POSIX/Solaris threads. In this case, Sun Performance Library will create its

own threads and ensure that the stack sizes are large enough to accommodate the

program’s needs.

% cc  -dalign -xarch=... -xparallel a.c   -xlic_lib=sunperf
or

% f95 -dalign -xarch=... -xparallel a.f95 -xlic_lib=sunperf

% cc  -dalign -xarch=... -mt        a.c   -xlic_lib=sunperf
or

% f95 -dalign -xarch=... -mt        a.f95 -xlic_lib=sunperf
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Degree of Parallelism

Sun Performance Library will attempt to parallelize each Sun Performance Library

call according to the user’s parallelization model by using either explicit threads or

loop-based compiler multithreading.

The number of threads Sun Performance Library routines will attempt to use is set at

run time by the user with the PARALLELenvironment variable. The PARALLEL
environment variable can be overridden by calls to the Sun Performance Library

USE_THREADSroutine.

For example, if user programs with POSIX/Solaris-thread codes are linked with -mt,

each Sun Performance Library call will produce PARALLELthreads. The code will

oversubscribe the machine if:

■ One bound thread per CPU is created

■ Each thread makes a Sun Performance Library call

■ PARALLELis set to a value greater than one

For codes using compiler parallelization, Sun Performance Library routines are

parallelized with loop-based compiler directives. Because nested parallelism is not

supported, Sun Performance Library calls made from a parallel region will not be

further parallelized.

In the following code example, none of the calls to DGEMMis parallelized, because the

loop is parallelized and only one level of parallelization is supported.

The loop consists of many DGEMMinstances running in parallel with one another, but

each DGEMMinstance uses only one thread.

In the following code example, the loop is not parallelized.

If the code is linked for parallelization with -mt, -xparallel , -xexplicitpar , or

-xautopar , the individual calls to DGEMMwill be parallelized. The number of

threads used by each DGEMMcall will be taken from the run-time value of the

environment variable PARALLEL. However, if a higher-level loop has already

parallelized this region, no further parallelization would be performed.

 !$<some parallelization directive>
  DO I = 1, N
    CALL DGEMM(...)
  END DO

DO I = 1, N
    CALL DGEMM(...)
END DO
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The number of OpenMP threads can be set by a variety of means. For example, by

setting the PARALLELor the OMP_NUM_THREADSenvironment variable or by setting

the OMP_SET_NUM_THREADS()run-time call. If both environment variables are set,

they must be set to the same value. If the run-time function is called, it overrides any

environment variable setting.

The degree of parallelization within a pure-OpenMP code can be set by either the

PARALLELor the OMP_NUM_THREADSenvironment variable. The Sun Performance

Library USE_THREADS()routine can also be used to set the degree of parallelism for

Sun Performance Library calls, which overrides the PARALLELvalue.

In the following code example, each DGEMMcall would be parallelized.

Note that the DOSERIAL* directive suppresses parallelization, but only for the loop

nest within the same subroutine and it is overridden by any other directive within

that nest. The DOSERIAL* directive does not impact parallelization within Sun

Performance Library.

In the following code example, there will be at most 2-way parallelism, regardless of

the setting of PARALLELor of the number of OpenMP threads.

Only one level of parallelism exists, which are the two sections. Further parallelism

within a DGEMM()call is suppressed.

 !$PAR DOSERIAL*
  DO I = 1, N
    CALL DGEMM(...)
  END DO

 !$OMP PARALLEL SECTIONS
  !$OMP SECTION
  DO I = 1, N / 2
    CALL DGEMM(...)
  END DO
  !$OMP SECTION
  DO I = N / 2 + 1, N
    CALL DGEMM(...)
  END DO
  !$OMP END PARALLEL SECTIONS
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Synchronization Mechanisms

The underlying parallelization model determines the Sun Performance Library

behavior.

The two basic modes of multithreading, compiler parallelization and POSIX/Solaris

threads, use two different types of synchronization mechanisms. Compiler

parallelized code uses spin waits, which produce the most responsive

synchronization operations, but aggressively consume CPU cycles. Compiler

parallelized code produces optimal performance when each thread has a dedicated

CPU, but wastes resources when other jobs or threads are also competing for CPUs.

However, codes that explicitly use POSIX/Solaris threads use synchronization

functions from libthread . These synchronization functions are less responsive, but

they relinquish the CPU when the thread is idle, providing good throughput and

resource usage in a shared (oversubscribed) environment.

With compiler parallelization, the environment variable SUNW_MP_THR_IDLEcan be

used at run time to alter the spin-wait characteristics of the threads. Legal settings of

SUNW_MP_THR_IDLEare as follows.

These settings would cause threads to spin wait (default behavior), spin for 2

seconds before sleeping, or spin for 100 milliseconds before sleeping, respectively.

The link-time option -xlic_lib=sunperf links in Sun Performance Library

functions that employ the same parallelization model as the user code, as indicated

by -mt or by a compiler-parallelization option (-xparallel , -xexplicitpar , or

-xautopar ). Using Sun Performance Library routines do not change the spin-wait

behavior of the code.

% setenv SUNW_MP_THR_IDLE spin
% setenv SUNW_MP_THR_IDLE 2s
% setenv SUNW_MP_THR_IDLE 100ms
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Parallel Processing Examples

The following sections demonstrate using the PARALLELenvironment variable and

the compile and linking options for creating code that supports using:

■ A single processor

■ Multiple processors

Using a Single Processor

To use a single processor:

1. Call one or more of the routines.

2. Link with -xlic_lib=sunperf specified at the end of the command line.

Do not compile or link with -xparallel , -xexplicitpar , or -xautopar.

3. Make sure the PARALLELenvironment variable is unset or set equal to 1.

To following example shows how to compile and link with libsunperf.so .

Using Multiple Processors

To compile for multiple processors:

■ Use the same parallelization option for the compiling and linking commands.

■ Specify the number of processors at runtime with the PARALLELenvironment

variable before running the executable.

For example, to use 24 processors, type the following commands.

The previous example allows Sun Performance Library routines to run in parallel,

but no part of the user code my_app.f will run in parallel. For the compiler to

attempt to parallelize my_app.f , either -xparallel or -explicitpar is required

on the compile line.

cc -dalign -xarch=... any.c -xlic_lib=sunperf
or

f95 -dalign -xarch=... any.f95 -xlic_lib=sunperf

 my_system% f95 -dalign -mt my_app.f -xlic_lib=sunperf
 my_system% setenv PARALLEL 24
 my_system% ./a.out
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Note – Parallel processing options require using either the -dalign command- line

option or establishing a trap 6 handler, as described in “Enabling Trap 6” on page 14.

When using C, do not use -misalign .

To use multiple processors:

1. Call one or more of the routines.

2. Link with -xlic_lib=sunperf specified at the end of the command line.

Compile and link with -xparallel , -xexplicitpar , or -xautopar.

3. Set PARALLELto the number of available processors.

To following example shows how to compile and link with libsunperf_mt.so .

FFT Example

FFT and VFFT routines have been modified to take advantage of parallelization

enhancements. For example, FFT and VFFT routines can be used in parallelized

loops, as shown here.

cc -dalign -xarch=... -xparallel any.c -xlic_lib=sunperf
or

f95 -dalign -xarch=... -xparallel any.f95 -xlic_lib=sunperf

      CALL CFFTI (M, WSAVE)
C$PAR DOALL SHARED(M, WSAVE, N, C), PRIVATE(I)
      DO I = 1, N
        CALL CFFTF (M, C(1, I), WSAVE)
        CALL CFFTB (M, C(1, I), WSAVE)
      END DO
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CHAPTER 4

Working With Matrices

Most matrices can be stored in ways that save both storage space and computation

time. Sun Performance Library uses the following storage schemes:

■ Banded storage

■ Packed storage

The Sun Performance Library processes matrices that are in one of four forms:

■ General

■ Triangular

■ Symmetric

■ Tridiagonal

Storage schemes and matrix types are described in the following sections.

Matrix Storage Schemes

Some Sun Performance Library routines that work with arrays stored normally have

corresponding routines that take advantage of these special storage forms. For

example, DGBMVwill form the product of a general matrix in banded storage and a

vector, and DTPMVwill form the product of a triangular matrix in packed storage

and a vector.
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Banded Storage

A banded matrix is stored so the jth column of the matrix corresponds to the jth
column of the Fortran array.

The following code copies a banded general matrix in a general array into banded

storage mode.

Note that this method of storing banded matrices is compatible with the storage

method used by LAPACK, BLAS, and LINPACK, but is inconsistent with the method

used by EISPACK.

Packed Storage

A packed vector is an alternate representation for a triangular, symmetric, or

Hermitian matrix. An array is packed into a vector by storing the elements

sequentially column by column into the vector. Space for the diagonal elements is

always reserved, even if the values of the diagonal elements are known, such as in a

unit diagonal matrix.

 C     Copy the matrix A from the array AG to the array AB. The
C matrix is stored in general storage mode in AG and it will

 C     be stored in banded storage mode in AB. The code to copy
 C     from general to banded storage mode is taken from the
 C     comment block in the original DGBFA by Cleve Moler.
 C
       NSUB = 1
       NSUPER = 2
       NDIAG = NSUB + 1 + NSUPER
       DO ICOL = 1, N
         I1 = MAX0 (1, ICOL - NSUPER)
         I2 = MIN0 (N, ICOL + NSUB)
         DO IROW = I1, I2
           IROWB = IROW - ICOL + NDIAG
           AB(IROWB,ICOL) = AG(IROW,ICOL)
         END DO
       END DO
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An upper triangular matrix or a symmetric matrix whose upper triangle is stored in

general storage in the array A, can be transferred to packed storage in the array APas

shown below. This code comes from the comment block of the LAPACK routine

DTPTRI.

Similarly, a lower triangular matrix or a symmetric matrix whose lower triangle is

stored in general storage in the array A, can be transferred to packed storage in the

array AP as shown below:

Matrix Types

The general matrix form is the most common matrix, and most operations

performed by the Sun Performance Library can be done on general arrays. In many

cases, there are routines that will work with the other forms of the arrays. For

example, DGEMMwill form the product of two general matrices and DTRMMwill form

the product of a triangular and a general matrix.

   JC = 1
   DO J = 1, N
      DO I = 1, J
         AP(JC+I-1) = A(I,J)
      END DO
      JC = JC + J
    END DO

   JC = 1
   DO J = 1, N
      DO I = J, N
         AP(JC+I-1) = A(I,J)
      END DO
      JC = JC + N - J + 1
   END DO
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General Matrices

A general matrix is stored so that there is a one-to-one correspondence between the

elements of the matrix and the elements of the array. Element Aij of a matrix A is

stored in element A(I,J) of the corresponding array A. The general form is the

most common form. A general matrix, because it is dense, has no special storage

scheme. In a general banded matrix, however, the diagonal of the matrix is stored in

the row below the upper diagonals.

For example, as shown below, the general banded matrix can be represented with

banded storage. Elements shown with the symbol × are never accessed by routines

that process banded arrays.

Triangular Matrices

A triangular matrix is stored so that there is a one-to-one correspondence between

the nonzero elements of the matrix and the elements of the array, but the elements of

the array corresponding to the zero elements of the matrix are never accessed by

routines that process triangular arrays.

A triangular matrix can be stored using packed storage.

General Banded Matrix General Banded Array in Banded Storage

Triangular Matrix Triangular Array in Packed Storage

a11 a12 a13 0 0

a21 a22 a23 a24 0

0 a32 a33 a34 a35

0 0 a43 a44 a45

0 0 0 a54 a55

✕ ✕ a13 a24 a35

✕ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ✕

a11 0 0

a21 a22 0

a31 a32 a33

a11

a21

a31

a22

a32

a33
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A triangular banded matrix can be stored using banded storage as shown below.

Elements shown with the symbol × are never accessed by routines that process

banded arrays.

Symmetric Matrices

A symmetric matrix is similar to a triangular matrix in that the data in either the

upper or lower triangle corresponds to the elements of the array. The contents of the

other elements in the array are assumed and those array elements are never accessed

by routines that process symmetric or Hermitian arrays.

A symmetric matrix can be stored using packed storage.

Triangular Banded Matrix Triangular Banded Array
in Banded Storage

Symmetric Matrix Symmetric Array in Packed Storage

a11 0 0

a21 a22 0

0 a32 a33

a11 a22 a33

a21 a32 ✕

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11

a21

a31

a22

a32

a33
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A symmetric banded matrix can be stored using banded storage as shown below.

Elements shown with the symbol × are never accessed by routines that process

banded arrays.

Tridiagonal Matrices

A tridiagonal matrix has elements only on the main diagonal, the first

superdiagonal, and the first subdiagonal. It is stored using three 1-dimensional

arrays.

Sparse Matrices

The Sun Performance Library sparse solver package is a collection of routines that

efficiently factor and solve sparse linear systems of equations. Use the sparse solver

package to:

■ Solve symmetric, structurally symmetric, and unsymmetric coefficient matrices

■ Specify a choice of ordering methods, including user-specified orderings

The sparse solver package contains interfaces for FORTRAN 77. Fortran 95 and C

interfaces are not currently provided. To use the sparse solver routines from

Fortran 95, use the FORTRAN 77 interfaces. To use the sparse solver routines with C,

append an underscore to the routine name (dgssin_() , dgssor_() , and so on),

pass arguments by reference, and use 1-based array indexing.

Symmetric Banded Matrix Symmetric Banded Array
in Banded Storage

Tridiagonal Matrix Tridiagonal Array in Tridiagonal Storage

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

✕ a12 a23 a34

a11 a22 a33 a44

a21 a32 a43 ✕

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

a21

a32

a43

a11

a22

a33

a44

a12

a23

a34
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Sparse Solver Matrix Data Formats

Sparse matrices are usually represented in formats that minimize storage

requirements. By taking advantage of the sparsity and not storing zeros,

considerable storage space can be saved. The storage format used by the general

sparse solver is the compressed sparse column (CSC) format (also called the

Harwell-Boeing format).

The CSC format represents a sparse matrix with two integer arrays and one floating

point array. The integer arrays (colptr and rowind) specify the location of the

nonzeros of the sparse matrix, and the floating point array (values) is used for the

nonzero values.

The column pointer (colptr) array consists of n+1 elements where colptr(i) points to

the beginning of the ith column, and colptr(i + 1) – 1 points to the end of the ith
column. The row indices (rowind) array contains the row indices of the nonzero

values. The values arrays contains the corresponding nonzero numerical values.

The following matrix data formats exist for a sparse matrix of neqns equations and

nnz nonzeros:

■ Symmetric

■ Structurally symmetric

■ Unsymmetric

The most efficient data representation often depends on the specific problem. The

following sections show examples of sparse matrix data formats.

Symmetric Sparse Matrices

A symmetric sparse matrix is a matrix where a(i, j) = a(j, i) for all i and j. Because of

this symmetry, only the lower triangular values need to be passed to the solver

routines. The upper triangle can be determined from the lower triangle.
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An example of a symmetric matrix is shown below. This example is derived from A.

George and J. W-H. Liu. “Computer Solution of Large Sparse Positive Definite

Systems.”

To represent A in CSC format:

■ colptr: 1, 6, 7, 8, 9, 10

■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 5

■ values: 4.0, 1.0, 2.0, 0.5, 2.0, 0.5, 3.0, 0.625, 16.0

Structurally Symmetric Sparse Matrices

A structurally symmetric sparse matrix has nonzero values with the property that if

a(i, j) ≠ 0, then a(j, i) ≠ 0 for all i and j. When solving a structurally symmetric

system, the entire matrix must be passed to the solver routines.

An example of a structurally symmetric matrix is shown below.

To represent A in CSC format:

■ colptr: 1, 3, 6, 7, 9

■ rowind: 1, 2, 1, 2, 4, 3, 2, 4

■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

A

4.0 1.0 2.0 0.5 2.0

1.0 0.5 0.0 0.0 0.0

2.0 0.0 3.0 0.0 0.0

0.5 0.0 0.0 0.625 0.0

2.0 0.0 0.0 0.0 16.0

=

A

1.0 3.0 0.0 0.0

2.0 4.0 0.0 7.0

0.0 0.0 6.0 0.0

0.0 5.0 0.0 8.0

=
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Unsymmetric Sparse Matrices

An unsymmetric sparse matrix does not have a(i, j) = a(j, i) for all i and j. The

structure of the matrix does not have an apparent pattern. When solving an

unsymmetric system, the entire matrix must be passed to the solver routines. An

example of an unsymmetric matrix is shown below.

To represent A in CSC format:

■ colptr: 1, 6, 7, 8, 9, 11

■ rowind: 1, 2, 3, 4, 5, 2, 3, 4, 2, 5

■ values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

Sun Performance Library Sparse BLAS

The Sun Performance Library sparse BLAS package is based on the following two

packages:

■ Netlib Sparse BLAS package, by Dodson, Grimes, and Lewis consists of sparse

extensions to the Basic Linear Algebra Subroutines that operate on sparse vectors.

■ NIST (National Institute of Standards and Technology) Fortran Sparse BLAS

Library consists of routines that perform matrix products and solution of

triangular systems for sparse matrices in a variety of storage formats.

Refer to the following sources for additional sparse BLAS information.

■ For information on the Sun Performance Library Sparse BLAS routines, refer to

the section 3P man pages for the individual routines.

■ For more information on the Netlib Sparse BLAS package refer to

http://www.netlib.org/sparse-blas/index.html .

■ For more information on the NIST Fortran Sparse BLAS routines, refer to

http://math.nist.gov/spblas/

A

1.0 0.0 0.0 0.0 0.0

2.0 6.0 0.0 0.0 9.0

3.0 0.0 7.0 0.0 0.0

4.0 0.0 0.0 8.0 0.0

5.0 0.0 0.0 0.0 10.0

=
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Naming Conventions

The Netlib Sparse BLAS and NIST Fortran Sparse BLAS Library routines each use

their own naming conventions, as described in the following two sections.

Netlib Sparse BLAS

Each Netlib Sparse BLAS routine has a name of the form Prefix-Root-Suffix where

the:

■ Prefix represents the data type.

■ Root represents the operation.

■ Suffix represents whether or not the routine is a direct extension of an existing

dense BLAS routine.

TABLE 4-1 lists the naming conventions for the Netlib Sparse BLAS vector routines.

The prefix can be one of the following data types:

■ S: SINGLE
■ D: DOUBLE
■ C: COMPLEX
■ Z: COMPLEX*16or DOUBLE COMPLEX

The I , CI , and UI suffixes denote sparse BLAS routines that are direct extensions to

dense BLAS routines.

TABLE 4-1 Netlib Sparse BLAS Naming Conventions

Operation Root of Name Prefix and Suffix

Dot product -DOT- S-I  D-I  C-UI Z-UI C-CI Z-CI

Scalar times a vector

added to a vector

-AXPY- S-I  D-I  C-I  Z-I

Apply Givens

rotation

-ROT- S-I  D-I

Gather x into y -GTHR- S- D- C- Z- S-Z D-Z C-Z Z-Z

Scatter x into y -SCTR- S-   D-   C-   Z-
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NIST Fortran Sparse BLAS

Each NIST Fortran Sparse BLAS routine has a six-character name of the form

XYYYZZ where:

■ X represents the data type.

■ YYY represents the sparse storage format.

■ ZZ represents the operation.

TABLE 4-2 shows the values for X, Y, and Z.

TABLE 4-2 NIST Fortran Sparse BLAS Routine Naming Conventions

X: Data Type

X S: single precision

D: double precision

YYY: Sparse Storage Format

YYY Single entry formats: COO: coordinate

CSC: compressed sparse column

CSR: compressed sparse row

DIA: diagonal

ELL: ellpack

JAD: jagged diagonal

SKY: skyline

Block entry formats: BCO: block coordinate

BSC: block compressed sparse column

BSR: block compressed sparse row

BDI: block diagonal

BEL: block ellpack

VBR: block compressed sparse row

ZZ: Operation

ZZ MM: matrix-matrix product

SM: solution of triangular system (supported for all formats except

COO)

RP: right permutation (for JAD format only)
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Sparse Solver Routines

The Sun Performance Library sparse solver package contains the routines listed in

TABLE 4-3.

Use the regular interface to solve multiple matrices with the same structure, but

different numerical values, as shown below:

TABLE 4-3 Sparse Solver Routines

Routine Function

DGSSFS() One call interface to sparse solver

DGSSIN() Sparse solver initialization

DGSSOR() Fill reducing ordering and symbolic factorization

DGSSFA() Matrix value input and numeric factorization

DGSSSL() Triangular solve

Utility Routine Function

DGSSUO() Sets user-specified ordering permutation.

DGSSRP() Returns permutation used by solver.

DGSSCO() Returns condition number estimate of coefficient matrix.

DGSSDA() De-allocates sparse solver.

DGSSPS() Prints solver statistics.

call dgssin() ! {initialization, input coefficient matrix
              !  structure}
call dgssor() ! {fill-reducing ordering, symbolic factorization}
do m = 1, number_of_structurally_identical_matrices
    call dgssfa() ! {input coefficient matrix values, numeric
                  ! factorization}
    do r = 1, number_of_right_hand_sides
        call dgsssl() ! {triangular solve}
    enddo
enddo
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The one-call interface is not as flexible as the regular interface, but it covers the most

common case of factoring a single matrix and solving some number right-hand

sides. Additional calls to dgsssl() are allowed to solve for additional right-hand

sides, as shown below.

Routine Calling Order

To solve problems with the sparse solver package, use the sparse solver routines in

the order shown in TABLE 4-4.

call dgssfs() ! {initialization, input coefficient matrix
              ! structure}
              ! {fill-reducing ordering, symbolic factorization}
              ! {input coefficient matrix values, numeric
              ! factorization}
              ! {triangular solve}
do r = 1, number_of_right_hand_sides
    call dgsssl() ! {triangular solve}
enddo

TABLE 4-4 Sparse Solver Routine Calling Order

One Call Interface: For solving single matrix

Start

DGSSFS() Initialize, order, factor, solve

DGSSSL() Additional solves (optional): repeat dgsssl() as needed

DGSSDA() Deallocate working storage

Finish

End of One-Call Interface
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Sparse Solver Examples

CODE EXAMPLE 4-1 shows solving a symmetric system using the one-call interface,

and CODE EXAMPLE 4-2 on page 55 shows solving a symmetric system using the

regular interface.

Regular Interface: For solving multiple matrices with the same structure

Start

DGSSIN() Initialize

DGSSOR() Order

DGSSFA() Factor

DGSSSL() Solve: repeat dgssfa() or dgsssl() as needed

DGSSDA() Deallocate working storage

Finish

End of Regular Interface

CODE EXAMPLE 4-1 Solving a Symmetric System–One-Call Interface

my_system% cat example_1call.f

      program example_1call

c

c This program is an example driver that calls the sparse solver.

c    It factors and solves a symmetric system, by calling the

c    one-call interface.

c

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(6), rowind(9)

      double precision  values(9), rhs(5), xexpct(5)

      integer           i

c

c Sparse matrix structure and value arrays. From George and Liu,

c  page 3.

TABLE 4-4 Sparse Solver Routine Calling Order (Continued)
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c    Ax = b, (solve for x) where:

c

c      4.0   1.0   2.0   0.5   2.0       2.0       7.0

c      1.0   0.5   0.0   0.0   0.0       2.0       3.0

c  A = 2.0   0.0   3.0   0.0   0.0   x = 1.0   b = 7.0

c      0.5   0.0   0.0   0.625 0.0      -8.0      -4.0

c      2.0   0.0   0.0   0.0  16.0      -0.5      -4.0

c

      data colstr / 1, 6, 7, 8, 9, 10 /

      data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0, 3.0d0,

     &              0.625d0, 16.0d0 /

      data rhs    / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

      data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c  set calling parameters

c

      mtxtyp= 'ss'

      pivot = 'n'

      neqns  = 5

      nrhs   = 1

      ldrhs  = 5

      outunt = 6

      msglvl = 0

      ordmthd = 'mmd'

c

c  call single call interface

c

      call dgssfs ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              values, nrhs  , rhs,    ldrhs , ordmthd,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

CODE EXAMPLE 4-1 Solving a Symmetric System–One-Call Interface (Continued)
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      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

& ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12) ! i/sol/xexpct values

  400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_1call.f -xlic_lib=sunperf

my_sytem% a.out

i rhs(i) expected rhs(i) error

1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13

2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12

3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13

4 -0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13

5 -0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14

CODE EXAMPLE 4-1 Solving a Symmetric System–One-Call Interface (Continued)
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CODE EXAMPLE 4-2 Solving a Symmetric System–Regular Interface

my_system% cat example_ss.f

      program example_ss

c

c This program is an example driver that calls the sparse solver.

c  It factors and solves a symmetric system.

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(6), rowind(9)

      double precision  values(9), rhs(5), xexpct(5)

      integer           i

c

c Sparse matrix structure and value arrays. From George and Liu,

c  page 3.

c    Ax = b, (solve for x) where:

c

c      4.0   1.0   2.0   0.5   2.0       2.0       7.0

c      1.0   0.5   0.0   0.0   0.0       2.0       3.0

c  A = 2.0   0.0   3.0   0.0   0.0   x = 1.0   b = 7.0

c      0.5   0.0   0.0   0.625 0.0      -8.0      -4.0

c      2.0   0.0   0.0   0.0  16.0      -0.5      -4.0

c

      data colstr / 1, 6, 7, 8, 9, 10 /

      data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

      data values / 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0,

     &             3.0d0, 0.625d0, 16.0d0 /

      data rhs    / 7.0d0, 3.0d0, 7.0d0, -4.0d0, -4.0d0 /

      data xexpct / 2.0d0, 2.0d0, 1.0d0, -8.0d0, -0.5d0 /

c

c  initialize solver

c

      mtxtyp= 'ss'

      pivot = 'n'

      neqns  = 5

      outunt = 6

      msglvl = 0
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c

c  call regular interface

c

      call dgssin ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

c

c  ordering and symbolic factorization

c

      ordmthd = 'mmd'

      call dgssor ( ordmthd, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  numeric factorization

c

      call dgssfa ( neqns, colstr, rowind, values, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  solution

c

      nrhs   = 1

      ldrhs  = 5

      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

CODE EXAMPLE 4-2 Solving a Symmetric System–Regular Interface (Continued)
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c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

& ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12) ! i/sol/xexpct values

  400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_ss.f -xlic_lib=sunperf

my_sytem% a.out

i rhs(i) expected rhs(i) error

1 0.200000000000D+01 0.200000000000D+01 -0.528466159722D-13

2 0.200000000000D+01 0.200000000000D+01 0.105249142734D-12

3 0.100000000000D+01 0.100000000000D+01 0.350830475782D-13

4 -0.800000000000D+01 -0.800000000000D+01 0.426325641456D-13

5 -0.500000000000D+00 -0.500000000000D+00 0.660582699652D-14

CODE EXAMPLE 4-2 Solving a Symmetric System–Regular Interface (Continued)
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CODE EXAMPLE 4-3 Solving a Structurally Symmetric System With Unsymmetric Values–
Regular Interface

my_system% cat example_su.f

      program example_su

c

c This program is an example driver that calls the sparse solver.

c    It factors and solves a structurally symmetric system

c    (w/unsymmetric values).

c

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(5), rowind(8)

      double precision  values(8), rhs(4), xexpct(4)

      integer           i

c

c  Sparse matrix structure and value arrays.  Coefficient matrix

c    has a symmetric structure and unsymmetric values.

c    Ax = b, (solve for x) where:

c

c      1.0   3.0   0.0   0.0       1.0        7.0

c      2.0   4.0   0.0   7.0       2.0       38.0

c  A = 0.0   0.0   6.0   0.0   x = 3.0   b = 18.0

c      0.0   5.0   0.0   8.0       4.0       42.0

c

      data colstr / 1, 3, 6, 7, 9 /

      data rowind / 1, 2, 1, 2, 4, 3, 2, 4 /

data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

     &              8.0d0 /

      data rhs    / 7.0d0, 38.0d0, 18.0d0, 42.0d0 /

      data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0 /

c

c  initialize solver

c

      mtxtyp= 'su'

      pivot = 'n'

      neqns  = 4

      outunt = 6

      msglvl = 0
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c

c  call regular interface

c

      call dgssin ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110

c

c  ordering and symbolic factorization

c

      ordmthd = 'mmd'

      call dgssor ( ordmthd, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  numeric factorization

c

      call dgssfa ( neqns, colstr, rowind, values, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  solution

c

      nrhs   = 1

      ldrhs  = 4

      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

CODE EXAMPLE 4-3 Solving a Structurally Symmetric System With Unsymmetric Values–
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c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

& ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12)     ! i/sol/xexpct values

400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_su.f -xlic_lib=sunperf

my_system% a.out

i rhs(i) expected rhs(i) error

1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00

2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00

3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00

4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00

CODE EXAMPLE 4-3 Solving a Structurally Symmetric System With Unsymmetric Values–
Regular Interface (Continued)
60 Sun Performance Library User’s Guide for Fortran and C • July 2001



CODE EXAMPLE 4-4 Solving an Unsymmetric System–Regular Interface

my_system% cat example_uu.f

      program example_uu

c

c This program is an example driver that calls the sparse solver.

c    It factors and solves an unsymmetric system.

c

      implicit none

      integer           neqns, ier, msglvl, outunt, ldrhs, nrhs

      character         mtxtyp*2, pivot*1, ordmthd*3

      double precision  handle(150)

      integer           colstr(6), rowind(10)

      double precision  values(10), rhs(5), xexpct(5)

      integer           i

c

c Sparse matrix structure and value arrays. Unsummetric matrix A.

c    Ax = b, (solve for x) where:

c

c      1.0   0.0   0.0   0.0   0.0       1.0        1.0

c      2.0   6.0   0.0   0.0   9.0       2.0       59.0

c  A = 3.0   0.0   7.0   0.0   0.0   x = 3.0   b = 24.0

c      4.0   0.0   0.0   8.0   0.0       4.0       36.0

c      5.0   0.0   0.0   0.0  10.0       5.0       55.0

c

      data colstr / 1, 6, 7, 8, 9, 11 /

      data rowind / 1, 2, 3, 4, 5, 2, 3, 4, 2, 5 /

data values / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0, 6.0d0, 7.0d0,

     &              8.0d0, 9.0d0, 10.0d0 /

      data rhs    / 1.0d0, 59.0d0, 24.0d0, 36.0d0, 55.0d0 /

      data xexpct / 1.0d0, 2.0d0, 3.0d0, 4.0d0, 5.0d0 /

c

c  initialize solver

c

      mtxtyp= 'uu'

      pivot = 'n'

      neqns  = 5

      outunt = 6

      msglvl = 3

      call dgssin ( mtxtyp, pivot,  neqns , colstr, rowind,

     &              outunt, msglvl, handle, ier             )

      if ( ier .ne. 0 ) goto 110
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c

c  ordering and symbolic factorization

c

      ordmthd = 'mmd'

      call dgssor ( ordmthd, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  numeric factorization

c

      call dgssfa ( neqns, colstr, rowind, values, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  solution

c

      nrhs   = 1

      ldrhs  = 5

      call dgsssl ( nrhs, rhs, ldrhs, handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  deallocate sparse solver storage

c

      call dgssda ( handle, ier )

      if ( ier .ne. 0 ) goto 110

c

c  print values of sol

c

      write(6,200) 'i', 'rhs(i)', 'expected rhs(i)', 'error'

      do i = 1, neqns

        write(6,300) i, rhs(i), xexpct(i), (rhs(i)-xexpct(i))

      enddo

      stop

  110 continue

CODE EXAMPLE 4-4 Solving an Unsymmetric System–Regular Interface (Continued)
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c

c call to sparse solver returns an error

c

      write ( 6 , 400 )

& ' example: FAILED sparse solver error number = ', ier

      stop

  200 format(a5,3a20)

  300 format(i5,3d20.12)     ! i/sol/xexpct values

400 format(a60,i20) ! fail message, sparse solver error number

      end

my_system% f95 -dalign example_uu.f -xlic_lib=sunperf

my_system% a.out

  i              rhs(i)     expected rhs(i)               error

1 0.100000000000D+01 0.100000000000D+01 0.000000000000D+00

2 0.200000000000D+01 0.200000000000D+01 0.000000000000D+00

3 0.300000000000D+01 0.300000000000D+01 0.000000000000D+00

4 0.400000000000D+01 0.400000000000D+01 0.000000000000D+00

5 0.500000000000D+01 0.500000000000D+01 0.000000000000D+00

CODE EXAMPLE 4-4 Solving an Unsymmetric System–Regular Interface (Continued)
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CHAPTER 5

Using Sun Performance Library Fast
Fourier Transform Routines

Many problems involve computing the discrete Fourier transform (DFT) of a

periodic sequence of length N, where N is the number of data points or samples. The

number of calculations required to compute the DFT is proportional to N2. The fast

Fourier transform (FFT) was developed to efficiently compute the DFT, where the

number of calculations required to compute the FFT is proportional to Nlog2N.

Sun Performance Library™ provides routines for computing the FFT or inverse

transform (synthesis) of a sequence of length N. The FFT routines are based on

FFTPACK and VFFTPACK, which are collections of public domain subroutines

available from Netlib (http://www.netlib.org ). These routines have been

enhanced and optimized for SPARC™ platforms, and then bundled with the Sun

Performance Library. The Sun Performance Library also includes two-dimensional

FFT routines, three-dimensional FFT routines, and convolution and correlation

routines.

This chapter describes how to use the Sun Performance Library FFT routines and

provides examples of their use. This chapter does not describe the details of the FFT

algorithms or the mathematics of the DFT. For more information on these topics, see

the sources listed in “References” on page 134.

For information on the Fortran and C interfaces and types of arguments used with

each FFT routine, see the section 3P man pages for the individual routines. For

example, to display the man page for the RFFTI routine, type man -s 3P rffti .

The man page routine names use lowercase letters.
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Introduction to the FFTPACK and
VFFTPACK Packages

Sun Performance Library contains FFT routines based on FFTPACK and VFFTPACK.

Sun Performance Library also contains two-dimensional and three-dimensional FFT

routines, which are not a part of FFTPACK or VFFTPACK.

FFTPACK routines operate on a single data sequence of length N. The sequence is

stored in a one-dimensional array from which the fast sine, fast cosine, fast Fourier

transform, or inverse transform can be computed.

VFFTPACK routines are extensions of FFTPACK routines that operate on two or

more data sequences simultaneously. The sequences are stored in a two-dimensional

array and are processed individually.

VFFTPACK routines store multiple data sequences in a two-dimensional array, but

they compute a linear Fourier transform in only one direction. That is, a one-

dimensional Fourier transform is computed for each sequence. The two- and three-

dimensional FFT routines in the Sun Performance Library differ from the

VFFTPACK routines in that they compute the FFT in more than one direction. The

two-dimensional FFT routines compute the FFT on the rows and columns of the

input data stored in a two-dimensional array. The three-dimensional FFT routines

perform a three-dimensional transform of input data stored in a three-dimensional

array.
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TABLE 5-1 summarizes some of the similarities and differences between the single

vector FFTPACK, multiple vector VFFTPACK routines, two-dimensional FFT

routines, and three-dimensional FFT routines.

TABLE 5-1 Comparison Between Single Vector and Multiple Vector Routines

Single Vector Multiple Vector

One-Dimensional Routines

Input Vector of length N An array of vectors

Output Single transform or

inverse transform

Multiple transforms or

inverse transform (one

transform or inverse

transform per sequence)

Results Unnormalized1

1. Results of inverse transform must be divided by a normalization factor proportional to N.

Normalized

Two-Dimensional Routines

Input Two-dimensional array Multiple vector two-

dimensional routines are

not supported
Output Two-dimensional

transform or inverse

transform

Results Unnormalized

Three-Dimensional Routines

Input Three-dimensional array Multiple vector three-

dimensional routines are

not supported
Output Three-dimensional

transform or inverse

transform

Results Unnormalized
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Extensions to FFTPACK and VFFTPACK

Sun Performance Library provides the following extensions to the standard Netlib

FFTPACK and VFFTPACK packages.

■ Double precision and double complex transforms. Because routines that process

double precision and double complex data are not available in the standard

package from Netlib, calls to these routines might not be portable.

■ Two-dimensional and three-dimensional FFTs. Netlib FFTPACK and VFFTPACK

routines support one-dimensional FFTs.

■ Convolution and correlation routines.

■ Fortran 95 and C interfaces to FFTPACK and VFFTPACK.

■ Optimizations for specific SPARC instruction set architectures.

■ Support for a 64-bit enabled Solaris™ operating environment.

■ Support for parallel processing compiler options.

■ Support for multiple processor hardware options.

The Discrete Fourier Transform (DFT)

The FFT and VFFT routines provide an efficient means of computing the complex or

real discrete Fourier transform and the discrete Fourier sine transform or discrete

Fourier cosine transform of a real symmetric sequence.

The following definition of the DFT is used when calculating the complex discrete

Fourier transform of a periodic sequence, where .

When calculating the inverse complex discrete Fourier transform, the following

definition is used.

The results on the inverse transform are unnormalized and can be normalized by

dividing each value by N.

i 1–=

Xk xne i2π n 1–( ) k 1–( ) N⁄– ,
n 1=

N

∑= k 1 … N, ,=

xn Xkei2π n 1–( ) k 1–( ) N⁄ ,
k 1=

N

∑= n 1 … N, ,=
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When computing the DFT of a real sequence, the resulting array of Fourier

coefficients is conjugate symmetric, where for k > 1, when using a

one-based notation, or for k > 0, when using a zero-based notation. The

asterisk * denotes complex conjugation, where . The number of

calculations required to compute the DFT is reduced by taking advantage of this

symmetry.

When computing the transform of a real sequence, the complex discrete Fourier

transform can be rewritten in the real trigonometric form shown in TABLE 5-2. In

TABLE 5-2, equals the real part of , equals the imaginary part of ,

and equals the real part of .

TABLE 5-2 Formulas for Real FFT Routines

Transform

Odd N ,

Even N ,

Xk
∗ XN k– 2–=

Xk
∗ XN k–=

a ib+( )∗ a ib–=

X 2k 2–( ) Xk X 2k 1–( ) Xk
XN X N 2⁄( ) 1+

 For k 2 … N 1+( ) 2⁄, ,=

X1 xn
n 1=

N

∑=

X 2k 2–( ) xn
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos
n 1=

N

∑=

X 2k 1–( ) x– n
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin
n 1=

N

∑=

 For k 2 … N 2⁄, ,=

X1 xn
n 1=

N

∑=

X 2k 2–( ) xn
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos
n 1=

N

∑=

X 2k 1–( ) x– n
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin
n 1=

N

∑=

XN 1–( ) n 1–( )xn
n 1=

N

∑=
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The FFT routines can be used to compute the discrete Fourier cosine transform,

discrete Fourier sine transform, and inverse transforms of the functions listed in

TABLE 5-3.

Inverse Transform

Odd N ,

Even N ,

TABLE 5-3 Symmetries Supported by FFT and VFFT Routines

Symmetry Definition Trigonometric Expansion

Cosine Even-Wave An even function f(t) that

satisfies the condition f(-t) = f(t).
Trigonometric series containing

only cosine terms.

Cosine Quarter-Wave A even function with half-wave

symmetry ,

where T is the period of the

function.

Trigonometric series containing

only cosine terms with odd

wave numbers.

Sine Odd-Wave An odd function f(t) that

satisfies the condition f(-t) =-f(t).
Trigonometric series containing

only sine terms.

Sine Quarter-Wave A odd function with half-wave

symmetry .

Trigonometric series containing

only sine terms with odd wave

numbers.

TABLE 5-2 Formulas for Real FFT Routines (Continued)

 For n 1 … N, ,=

xn X1 +=

2X 2k 2–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos 2X 2k 1–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin– 
 

k 2=

N 1+( ) 2⁄

∑

 For n 1 … N, ,=

xn X1 +=

2X 2k 2–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos 2X 2k 1–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin– 
 

k 2=

N 2⁄

∑ +

1–( )n 1–
XN

f t( ) f t T 2⁄+( )–=

f t( ) f t T 2⁄+( )–=
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The formulas for the symmetries listed in TABLE 5-3 are shown in TABLE 5-4.

For additional information on the formulas used to calculate the discrete transforms

of symmetric sequences, see the documentation provided with FFTPACK, available

on Netlib at http://www.netlib.org/fftpack/doc .

TABLE 5-4 Formulas for Symmetries Supported by FFT and VFFT Routines

Cosine Even-Wave 1

1. The cosine even-wave and sine odd-wave routines perform either the transform or inverse transform, depend-
ing upon whether the input array contains the Fourier coefficients or the periodic sequence.

Transform/
Inverse Transform ,

Cosine Quarter-Wave

Transform ,

Inverse Transform ,

Sine Odd-Wave 1

Transform/
Inverse Transform ,

Sine Quarter-Wave

Transform ,

Inverse Transform ,

Xk x1 2 xn
k 1–( ) n 1–( )π

N 1–
------------------------------------- 

 cos
n 1=

N 1–

∑ 1–( ) k 1–( )
xN+ += k 1 … N, ,=

Xk x1 2 xn
2k 1–( ) n 1–( )π

2N
---------------------------------------- 

 cos
n 2=

N

∑+= k 1 … N, ,=

xn 4 Xk
2k 1–( ) n 1–( )π

2N
---------------------------------------- 

 cos
k 1=

N

∑= n 1 … N, ,=

Xk 2 xn
knπ

N 1+( )
------------------ 

 sin
n 1=

N

∑= k 1 … N, ,=

Xk 2 xn
2k 1–( )nπ

2N
-------------------------- 

 sin
n 1=

N 1–

∑ 1–( ) k 1–( )
xN+= k 1 … N, ,=

xn 4 Xk
2k 1–( )nπ

2N
-------------------------- 

 sin
k 1=

N

∑= n 1 … N, ,=
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Naming Conventions

The name of each FFT or VFFT routine is made up of a base name that denotes the

operation performed and a prefix that denotes the operand data type. For example,

the routine CFFTF performs a fast Fourier transform of a complex sequence.

Prefixes used with FFT and VFFT base names are shown in TABLE 5-5.

FFT and VFFT base names are shown in TABLE 5-6 on page 73. The last character of

the base name is one of the following:

■ I: Initialize the Fourier transform or inverse Fourier transform routine

■ F: Compute the forward transform (the Fourier transform)

■ B: Compute the backward transform (the inverse Fourier transform or synthesis)

TABLE 5-5 Prefix and Operand Data Types

Prefix Operand Data Type

FFT Routines No prefix REAL, REAL*4, REAL(4)

R REAL, REAL*4, REAL(4)

D DOUBLE, REAL*8, REAL(8)

C COMPLEX, COMPLEX*8, COMPLEX(4)

Z DOUBLE COMPLEX, COMPLEX*16, COMPLEX(8)

VFFT Routines VR REAL, REAL*4, REAL(4)

VD DOUBLE, REAL*8, REAL(8)

VC COMPLEX, COMPLEX*8, COMPLEX(4)

VZ DOUBLE COMPLEX, COMPLEX*16, COMPLEX(8)
72 Sun Performance Library User’s Guide for Fortran and C • July 2001



In this manual, the following conventions are used when referring to routines that

exist for multiple data types:

■ The prefix x is added to the base name when the information applies to REAL,
DOUBLE, COMPLEX, and DOUBLE COMPLEXversions of that routine.

■ Specific prefixes are listed in square brackets [ ] before the base name when

information does not apply to all versions of the routine.

The following example shows samples of these naming conventions.

TABLE 5-6 FFT and VFFT Base Names

Base Name Operation

COSQB Inverse cosine quarter-wave transform (synthesis)

COSQF Cosine quarter-wave transform

COSQI Initialize cosine quarter-wave transform or inverse transform

COST Cosine even-wave transform

COSTI Initialize cosine even-wave transform

EZFFTB Inverse EZ transform (synthesis)

EZFFTF EZ transform

EZFFTI Initialize EZ transform

FFTB Inverse transform (synthesis)

FFTF Forward transform

FFTI Initialize before computing a transform or inverse transform

SINQB Inverse sine quarter-wave transform (synthesis)

SINQF Sine quarter-wave transform

SINQI Initialize sine quarter-wave transform or inverse transform

SINT Sine odd-wave transform

SINTI Initialize sine odd-wave transform

Convention Routines

xFFTF RFFTF, DFFTF, CFFTF, and ZFFTF

[R,D]FFTI RFFTI or DFFTI

[C,Z]FFTF CFFTF or ZFFTF

V[R,D,C,Z]FFTF VRFFTF , VDFFTF, VCFFTF, or VZFFTF
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Sun Performance Library FFT Routines

Sun Performance Library contains the routines shown in TABLE 5-8. The data type of

the arguments follows the conventions shown in TABLE 5-7.

TABLE 5-7 Argument Data Types

Argument Data Type

AZERO, A, B, R (EZFFT routines) Real

FULL, PLACE, ROWCOL Character

N, M, K, LDA, LD2A, LDB, LWORK, MDIMX Integer

A, B, X, XT Same as data type of routine called

WSAVE, WORK See TABLE 5-10 on page 79

TABLE 5-8 FFT Routines

Routine Arguments Function

COSQB, DCOSQB N,X,WSAVE Inverse cosine quarter-wave transform

VCOSQB, VDCOSQB M,N,X,XT,MDIMX,WSAVE Inverse cosine quarter-wave transform

(Vector)

COSQF, DCOSQF N,X,WSAVE Cosine quarter-wave transform

VCOSQF, VDCOSQF M,N,X,XT,MDIMX,WSAVE Cosine quarter-wave transform

(Vector)

COSQI, DCOSQI N,WSAVE Initialize cosine quarter-wave

transform and inverse transform

VCOSQI, VDCOSQI N,WSAVE Initialize cosine quarter-wave

transform and inverse transform

(Vector)

COST, DCOST N,X,WSAVE Cosine even-wave transform

VCOST, VDCOST M,N,X,XT,MDIMX,WSAVE Cosine even-wave transform (Vector)

COSTI, DCOSTI N,WSAVE Initialize cosine even-wave transform

VCOSTI, VDCOSTI N,WSAVE Initialize cosine even-wave transform

(Vector)
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EZFFTB N,R,AZERO,A,B,WSAVE EZ inverse Fourier transform

EZFFTF N,R,AZERO,A,B,WSAVE EZ Fourier transform

EZFFTI N,WSAVE Initialize EZ Fourier transform and

inverse transform

RFFTB, DFFTB,

CFFTB, ZFFTB
N,X,WSAVE Inverse Fourier transform

VRFFTB, VDFFTB M,N,X,XT,MDIMX,WSAVE Inverse Fourier transform (Vector)

VCFFTB, VZFFTB M,N,X,XT,MDIMX,
ROWCOL,WSAVE

RFFTF, DFFTF,
CFFTF, ZFFTF

N,X,WSAVE Fourier transform

VRFFTF, VDFFTF M,N,X,XT,MDIMX,WSAVE Fourier transform (Vector)

VCFFTF, VZFFTF M,N,X,XT,MDIMX,
ROWCOL,WSAVE

RFFTI , DFFTI ,

CFFTI , ZFFTI
N,WSAVE Initialize Fourier transform and

inverse transform

VRFFTI , VDFFTI,
VCFFTI , VZFFTI

N,WSAVE Initialize Fourier transform and

inverse transform (Vector)

SINQB, DSINQB N,X,WSAVE Inverse sine quarter-wave transform

VSINQB, VDSINQB M,N,X,XT,MDIMX,WSAVE Inverse sine quarter-wave transform

(Vector)

SINQF, DSINQF N,X,WSAVE Sine quarter-wave transform

VSINQF, VDSINQF M,N,X,XT,MDIMX,WSAVE Sine quarter-wave transform (Vector)

SINQI , DSINQI N,WSAVE Initialize sine quarter-wave transform

and inverse transform

VSINQI , VDSINQI N,WSAVE Initialize sine quarter-wave transform

and inverse transform (Vector)

SINT, DSINT N,X,WSAVE Sine odd-wave transform

VSINT, VDSINT M,N,X,XT,MDIMX,WSAVE Sine odd-wave transform (Vector)

SINTI , DSINT N,WSAVE Initialize sine odd-wave transform

VSINTI , VDSINTI N,WSAVE Initialize sine odd-wave transform

(Vector)

TABLE 5-8 FFT Routines (Continued)

Routine Arguments Function
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Sequence Length N
The efficiency of the FFT computation depends upon the length N of the input data

set. The FFT computation is most efficient if N can be decomposed into one or more

factors for which the Sun Performance Library contains highly optimized transform

routines.

It is desirable if N can be factored into 2, 3, 4, or 5 for real-to-complex and complex-

to-real transforms and into 2, 3, 4, 5, 7, 11, or 13 for complex-to- complex transforms.

These transforms are of order N log_2 N. However, if N is a large prime or cannot be

factored into the above values, the computation is of order N2.

RFFT2B, DFFT2B PLACE,M,N,A,LDA,
B,LDB,WORK,LWORK

Inverse two-dimensional Fourier

transform

CFFT2B, ZFFT2B M,N,A,LDA,WORK,LWORK

RFFT2F, DFFT2F PLACE,FULL,M,N,A,LDA,
B,LDB,WORK,LWORK

Two-dimensional Fourier transform

CFFT2F, ZFFT2F M,N,A,LDA,WORK,LWORK

RFFT2I , DFFT2I,
CFFT2I , ZFFT2I

M,N,WORK Initialize two-dimensional Fourier

transform and inverse transform

RFFT3B, DFFT3B PLACE,M,N,K,A,LDA,
B,LDB,WORK,LWORK

Inverse three-dimensional Fourier

transform

CFFT3B, ZFFT3B M,N,K,A,LDA,LD2A,
WORK,LWORK

RFFT3F, DFFT3F PLACE,FULL,M,N,K,
A,LDA,B,LDB,WORK,LWORK

Three-dimensional Fourier transform

CFFT3F, ZFFT3F M,N,K,A,LDA,LD2A,
WORK,LWORK

RFFT3I , DFFT3I,
CFFT3I , ZFFT3I

M,N,K,WORK Initialize three-dimensional Fourier

transform and inverse transform

TABLE 5-8 FFT Routines (Continued)

Routine Arguments Function
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Computing the Fourier transform, fast cosine transform, fast sine transform, or

multi-dimensional FFT is most efficient when the sequence length can be factored

into powers of the supported prime factors, as summarized in TABLE 5-9.

The function xFFTOPTcan be used to determine the optimal sequence length, as

shown in CODE EXAMPLE 5-1.

TABLE 5-9 Values That Must Have 2, 3, 4, 5, 7, 11, or 13 as Factors for Best Performance

Routine Values

COST, DCOST, VCOST, VDCOST N - 1

SINT, DSINT, VSINT, VDSINT N + 1

All other one-dimensional FFT and VFFT routines N

Two-dimensional FFT routines Mand N

Three-dimensional FFT routines M, N, and K

CODE EXAMPLE 5-1 RFFTOPT Example

my_system% cat fft_ex01.f

      PROGRAM TEST

      INTEGER         N, N1, N2, N3, RFFTOPT

C

      N = 1024

      N1 = 1019

      N2 = 71

      N3 = 49

C

      PRINT *, ’N Original  N Suggested’

      PRINT ’(I5, I12)’, (N, RFFTOPT(N))

      PRINT ’(I5, I12)’, (N1, RFFTOPT(N1))

      PRINT ’(I5, I12)’, (N2, RFFTOPT(N2))

      PRINT ’(I5, I12)’, (N3, RFFTOPT(N3))

      END

my_system% f95 -dalign fft_ex01.f -xlic_lib=sunperf

my_system% a.out

 N Original  N Suggested

 1024        1024

 1019        1024

   71          72

   49          49
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The size of the sequence affects performance. When N is small, such as 8 or 16, the

overhead of calling the routine is large compared to the actual computational work

performed by the routine. Also, when the size of N is too large for the data to fit in

the cache, performance again degrades.

Work Array WSAVEfor FFT and VFFT
Routines

Each FFT or VFFT routine uses a work array that stores the tabulation of

trigonometric functions computed while generating the Fourier transform or inverse

transform. WSAVEalso stores scratch (temporary) values generated during the

transform or inverse transform.

Note – When using the VFFT routines, an extra work array, XT, is used to store

temporary values generated from performing Fourier transforms or inverse

transforms on multiple sequences.

Before performing the first transform or inverse transform:

1. Specify the minimum dimension and data type of the work array WSAVE.

The minimum dimension and data type depends upon the operand data type and

FFT or VFFT routine, as shown in TABLE 5-10 on page 79.

2. Initialize the work array by calling the corresponding FFT or VFFT routine whose
base name ends with the character I.

For example, when using RFFTF or RFFTB, initialize the work array by calling

RFFTI .

When using CFFTF or CFFTB, initialize the work array by calling CFFTI.

INTEGER N
REAL WSAVE (2 * N + 15)
CALL RFFTI (N, WSAVE)

INTEGER N
REAL WSAVE (4 * N + 15)
CALL CFFTI (N, WSAVE)
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The same work array can be used for both the transform or inverse transform as

long as N remains unchanged. Different WSAVEarrays are required for different

values of N. As long as N and WSAVEremain unchanged, subsequent transforms can

be obtained faster than the first transform, because the initialization does not have to

be repeated between calls to the transform or inverse transform routines.

TABLE 5-10 Minimum Dimensions and Data Types for WSAVEWork Array

Routine Minimum Work Array Size ( WSAVE) Type

One-Dimensional Routines

COSQI, DCOSQI 3N + 15 REAL, REAL*8

COSQB, DCOSQB 3N + 15 REAL, REAL*8

COSQF, DCOSQF 3N + 15 REAL, REAL*8

COST, DCOST 3N + 15 REAL, REAL*8

COSTI, DCOSTI 3N + 15 REAL, REAL*8

EZFFTB 3N + 15 REAL, REAL*8

EZFFTF 3N + 15 REAL, REAL*8

EZFFTI 3N + 15 REAL, REAL*8

RFFTB, DFFTB 2N + 15 REAL, REAL*8

RFFTF, DFFTF 2N + 15 REAL, REAL*8

RFFTI, DFFTI 2N + 15 REAL, REAL*8

CFFTB, ZFFTB 4N + 15 REAL, REAL*8

CFFTF, ZFFTF 4N + 15 REAL, REAL*8

CFFTI, ZFFTI 4N + 15 REAL, REAL*8

SINQB, DSINQB 3N + 15 REAL, REAL*8

SINQF, DSINQF 3N + 15 REAL, REAL*8

SINQI, DSINQI 3N + 15 REAL, REAL*8

SINT, DSINT 2N + N/2 + 15 REAL, REAL*8

SINTI, DSINTI 2N + N/2 + 15 REAL, REAL*8

VFFT Routines

VRFFTB, VDFFTB N + 15 REAL, REAL*8

VRFFTF, VDFFTF N + 15 REAL, REAL*8

VRFFTI, VDFFTI N + 15 REAL, REAL*8

VCFFTB, VZFFTB If transforming rows: 2 * M + 15
If transforming columns: 2 * N + 15

REAL, REAL*8
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VCFFTF, VZFFTF If transforming rows: 2 * M + 15
If transforming columns: 2 * N + 15

REAL, REAL*8

VCFFTI, VZFFTI N + 15 REAL, REAL*8

VCOSQB, VDCOSQB 2 * N + 15 REAL, REAL*8

VCOSQF, VDCOSQF 2 * N + 15 REAL, REAL*8

VCOSQI, VDCOSQI 2 * N + 15 REAL, REAL*8

VCOST, VDCOST 2 * N + 15 REAL, REAL*8

VCOSTI, VDCOSTI 2 * N + 15 REAL, REAL*8

VSINQB, VDSINQB 2 * N + 15 REAL, REAL*8

VSINQF, VDSINQF 2 * N + 15 REAL, REAL*8

VSINQI, VDSINQI 2 * N + 15 REAL, REAL*8

VSINT, VDSINT N + N/2 + 15 REAL, REAL*8

VSINTI, VDSINTI N + N/2 + 15 REAL, REAL*8

Two-Dimensional Routines

RFFT2B, DFFT2B (M + 2N + MAX(M, 2N) + 30) REAL, REAL*8

RFFT2F, DFFT2F (M + 2N + MAX(M, 2N) + 30) REAL, REAL*8

RFFT2I, DFFT2I (M + 2N + MAX(M, 2N) + 30) REAL, REAL*8

CFFT2B, ZFFT2B (4 * (M + N) + 30) REAL, REAL*8

CFFT2F, ZFFT2F (4 * (M + N) + 30) REAL, REAL*8

CFFT2I, ZFFT2I (4 * (M + N) + 30) REAL, REAL*8

Three-Dimensional Routines

RFFT3B, DFFT3B ( M + 2 * (N + K) + 4K + 45) REAL, REAL*8

RFFT3F, DFFT3F ( M + 2 * (N + K) + 4K + 45) REAL, REAL*8

RFFT3I, DFFT3I ( M + 2 * (N + K) + 30) REAL, REAL*8

CFFT3B, ZFFT3B (4 * ( M + N + K) + 45) REAL, REAL*8

CFFT3F, ZFFT3F (4 * ( M + N + K) + 45) REAL, REAL*8

CFFT3I, ZFFT3I (4 * ( M + N + K) + 45) REAL, REAL*8

TABLE 5-10 Minimum Dimensions and Data Types for WSAVEWork Array (Continued)

Routine Minimum Work Array Size ( WSAVE) Type
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One-Dimensional FFT and Inverse
Transform Routines

The routines in this section use the fast Fourier transform to compute the discrete

Fourier transform and the inverse Fourier transforms. Routines are also available

that compute the fast cosine transform, fast sine transform, and the inverses of these

transforms.

Arguments for One-Dimensional FFT and VFFT

Routines

FFT and VFFT routines use the arguments shown in TABLE 5-11. Some routines use

additional arguments that are described in the sections for those routines.

TABLE 5-11 Arguments for FFT and VFFT Routines

Arguments Description

FFT Routines

N Length of the sequence to be transformed, where N ≥ 0.

X On entry, an array of length N containing the sequence to be

transformed.

WSAVE On entry, a work array with a minimum dimension that depends

upon the type of routine used and the data type of the operands.

See TABLE 5-10 for a complete list of minimum work array

dimensions.
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Data Storage for One-Dimensional FFT and VFFT

Routines

The data storage format for the computed Fourier coefficients depends upon

whether the sequence is complex or real.

Storage of Complex Sequences

The results of a complex one-dimensional FFT are stored in-place (in the original

input array). Storage problems do not occur when performing the Fourier transform

of a complex sequence, because the number of calculated Fourier coefficients equals

the number of input values. The real and imaginary values of the Fourier coefficients

are stored in the original complex array without additional storage manipulations.

Storage of Real Sequences

Computing the Fourier transform of a real sequence produces complex Fourier

coefficients. The number of computed Fourier coefficients is twice the number of

values in the original sequence, because of the real and imaginary parts of the

complex Fourier coefficients. The complex vector must be packed before it can be

stored in the original real array. This packing is done by not storing the imaginary

parts of the one or two Fourier coefficients that are always 0, and by not storing the

complex conjugates of the Fourier coefficients.

VFFT Routines

N Length of the sequence to be transformed, where N ≥ 0.

M Number of sequences to be transformed, where M≥ 0.

X A two-dimensional array X(M,N) whose rows contain the

sequences to be transformed.

XT A two-dimensional work array with dimensions of (MDIMX * N) .

MDIMX Leading dimension of the arrays X and XT as specified in a

dimension or type statement, where MDIMX ≥ M.

WSAVE On entry, a work array with a minimum dimension that depends

upon the type of routine used and the data type of the operands.

See TABLE 5-10 for a complete list of minimum work array

dimensions.

TABLE 5-11 Arguments for FFT and VFFT Routines (Continued)

Arguments Description
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Given a real sequence xn, n = 0 : N - 1, of N data points, the transformed output Xk,

k = 0 : N - 1, is packed and stored in the original array that holds the input data, as

follows.

■ If N is even:

■ The real part of X0 is stored.

■ The imaginary part of X0 is equal to 0; this part is not stored.

■ The real and imaginary parts of X1, up to and including the real part of X(N/2),

are stored sequentially.

■ The imaginary part of X(N/2) is equal to 0; this part is not stored.

■ X(N-k) is the complex conjugate of Xk, for k = 1 : N/2 - 1 and is not stored.

■ If N is odd:

■ The real part of X0 is stored.

■ The imaginary part of X0 is equal to 0 and is not stored.

■ The real and imaginary parts of X1, up to and including the imaginary part of

X((N-1)/2), are stored sequentially.

■ X(N-k) is the complex conjugate of Xk, for k = 1 : ((N-1)/2) - 1 and is not stored.

For example, if N = 6, the input array X contains the following six real data points:

X(1) = x0

X(2) = x1

X(3) = x2

X(4) = x3

X(5) = x4

X(6) = x5

Performing the Fourier transform computes the complex Fourier coefficients X0, X1,

X2, X3, X4, and X5, each of which has a real (Re) part and an imaginary (Im) part.

Following the transform, the complex Fourier coefficients are stored in the original

real array X, as follows:

X(1) = Re(X0)

X(2) = Re(X1)

X(3) = Im(X1)

X(4) = Re(X2)

X(5) = Im(X2)

X(6) = Re(X3)
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For even-length vectors, the resulting vector is conjugate-symmetric excluding the

first element. The Fourier transform of the vector [1 2 3 4] is:

10+0i -2+2i -2+0i -2-2i

This is stored in a real vector as:

10 -2 2 -2

For odd-length vectors, the resulting vector is also conjugate-symmetric excluding

the first element. For example, the Fourier transform of the vector [1 2 3 4 5] is:

15.0+0i -2.5+3.44i -2.5+.81i -2.5-.81i -2.5-3.44i

This is stored in a real vector as:

15 -2.5 3.44 -2.5 0.81

Note – When the transform of complex data is computed, the output is not packed.

The transformed sequence contains the same number of real and complex values as

the input sequence.

CODE EXAMPLE 5-2 computes the FFT and inverse of a real or complex sequence for

even and odd values of N. The transform of the complex sequence shows all the

Fourier coefficients in an unpacked, complex array. The transform of the real

sequence shows the Fourier coefficients stored in a packed, real array. Differences

between the real arrays for even and odd values of N can also be compared.

CODE EXAMPLE 5-2 Real and Complex FFT Example

my_system% cat fft_ex02.f

      INTEGER I, N_EVEN, N_ODD

      REAL XR(9), WORK(1000)

      COMPLEX XC(9)

      N_EVEN = 8

      N_ODD = 9

      XR(1:N_EVEN) = (/.60,.25,.74,.26,.14,.93,.28,.04/)

      XC(1:N_EVEN) = (/.60,.25,.74,.26,.14,.93,.28,.04/)

C

      CALL RFFTI(N_EVEN, WORK)

      CALL RFFTF(N_EVEN, XR, WORK)

      CALL CFFTI(N_EVEN, WORK)

      CALL CFFTF(N_EVEN, XC, WORK)
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      PRINT 1000

      PRINT ’(F8.3)’,XR(1:N_EVEN)

      PRINT 1010

      PRINT ’(2F8.3,’’I’’)’, (XC(1:N_EVEN))

      XR(1:N_ODD) = (/.60,.25,.74,.26,.14,.93,.28,.04,.02/)

      XC(1:N_ODD) = (/.60,.25,.74,.26,.14,.93,.28,.04,.02/)

C

      CALL RFFTI(N_ODD, WORK)

      CALL RFFTF(N_ODD, XR, WORK)

      CALL CFFTI(N_ODD, WORK)

      CALL CFFTF(N_ODD, XC, WORK)

      PRINT 1020

      PRINT ’(F8.3)’,XR(1:N_ODD)

      PRINT 1030

      PRINT ’(2F8.3,’’I’’)’, (XC(1:N_ODD))

C

 1000 FORMAT (1X, "Transform of Real Sequence With Even N")

 1010 FORMAT (1X, "Transform of Complex Sequence With Even N")

 1020 FORMAT (1X, "Transform of Real Sequence With Odd N")

 1030 FORMAT (1X, "Transform of Complex Sequence With Odd N")

      END

my_system% f95 -dalign fft_ex02.f -xlic_lib=sunperf

my_system% a.out

 Transform of real sequence with even N

   3.240

  -0.176

  -0.135

  -0.280

  -0.880

   1.096

   0.785

   0.280

 Transform of complex sequence with even N

    3.240   0.000i

   -0.176  -0.135i

   -0.280  -0.880i

    1.096   0.785i

    0.280   0.000i

    1.096  -0.785i

   -0.280   0.880i

   -0.176   0.135i

CODE EXAMPLE 5-2 Real and Complex FFT Example (Continued)
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CODE EXAMPLE 5-3 on page 87 shows a C example that uses dfftf to compute the

Fourier coefficients of a real sequence.

 Transform of real sequence with odd N

   3.260

  -0.333

  -0.550

   0.464

  -0.991

   0.080

   1.091

   0.860

  -0.389

 Transform of complex sequence with odd N

    3.260   0.000i

   -0.333  -0.550i

    0.464  -0.991i

    0.080   1.091i

    0.860  -0.389i

    0.860   0.389i

    0.080  -1.091i

    0.464   0.991i

   -0.333   0.550i

CODE EXAMPLE 5-2 Real and Complex FFT Example (Continued)
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CODE EXAMPLE 5-3 C Example Showing How to Extract the Complex Result From the
Packed Output of dfftf

my_system% cat fft_ex03.c

#include <sunperf.h>

#include <math.h>

#define N 16

/*

 dfftf accepts as input a real vector of length N and

 computes its discrete Fourier transform. Since the input

is real, the result of the transform will be conjugate symmetric.

 The output of dfftf is a real vector of length N, which is a

 packed representation of the complex FFT result. Only the first

 half of the complex result is stored since the remaining values

 can be obtained via the conjugate symmetry property. In

particular, if A[N] is the complex result of the FFT, the output

 of dfftf is related to ‘a’ as follows:

 The real part of A[0] is stored in a[0].

A[1] is stored as two consecutive real numbers in a[1] and a[2].

 A[2] is stored in a[3] and a[4].

 If N is even, the real part of A[N/2-1] is stored in a[N-1]. If

 N is odd, the real and imaginary parts of A[(N-1)/2] are stored

 in a[N-2] and a[N-1] respectively.

 The following example shows how to extract the complex result

 from the packed output of dfftf for the case in which N even.

*/

void

main()

{

  int   i,j;

  double a[N];

  doublecomplex b[N];

  double wa[2*N+15];

  for (i=0;i<N;i++) {

    a[i]=sin((double)i);

  }

  dffti(N,wa);

  dfftf(N,a,wa);
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  /* extract the first N/2 complex values

     from the packed representation */

  b[0].r = a[0];

  b[0].i = 0.0;

  j=1;

  for (i=1;i<N/2;i++) {

    b[i].r = a[j];

    b[i].i = a[j+1];

    j += 2;

  }

  b[N/2].r = a[N-1];

  b[N/2].i = 0.0;

  /* extract the remaining N/2 values using the conjugate

     symmetry */

  for (i=N/2+1;i<N;i++) {

    b[i].r =  b[N-i].r;

    b[i].i = -b[N-i].i;

  }

}

CODE EXAMPLE 5-3 C Example Showing How to Extract the Complex Result From the
Packed Output of dfftf (Continued)
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FFT: Fast Fourier Transform Routines

The following routines use the fast Fourier transform to compute the discrete

Fourier transform or inverse transform of a periodic sequence.

The xFFT and VxFFT routines, where x denotes R, D, C, or Z, use the arguments

defined in “Arguments for One-Dimensional FFT and VFFT Routines” on page 81.

In addition to the VFFT arguments defined in “Arguments for One-Dimensional FFT

and VFFT Routines” on page 81, the VCFFTF, VZFFTF, VCFFTB, and VZFFTBroutines

use one additional argument called ROWCOL. ROWCOLspecifies whether to transform

the rows or columns of X(M,N) . Set ROWCOLequal to ‘R’ or ‘r’ perform the

transform or inverse transform on the rows of X(M,N) . Set ROWCOLequal to ‘C’ or

‘c’ perform the transform or inverse transform on the columns of X(M,N) .

Normalization

The xFFT operations are unnormalized, so a call of xFFTF followed by a call of

xFFTB will multiply the input sequence by N. The VxFFT operations are normalized,

so a call of VxFFTF followed by a call of VxFFTB will return the original sequence.

Routine Function

[R,D,C,Z]FFTI Initialize work array WSAVEfor [R,D,C,Z]FFTF or

[R,D,C,Z]FFTB

[R,D,C,Z]FFTF Compute Fourier coefficients of periodic sequence

[R,D,C,Z]FFTB Compute periodic sequence from Fourier coefficients

V[R,D,C,Z]FFTI Initialize work array for V[R,D,C,Z]FFTF or V[R,D,C,Z]FFTB

V[R,D,C,Z]FFTF Compute Fourier coefficients of multiple periodic sequences

V[R,D,C,Z]FFTB Compute multiple periodic sequences from Fourier coefficients
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Sample Programs: Fast Fourier Transform and Inverse
Transform

CODE EXAMPLE 5-4 uses RFFTF to compute the FFT of a real sequence and RFFTBto

compute the inverse transform. The computed Fourier coefficients are packed and

stored in the original real array. The inverse transform is unnormalized and can be

normalized by dividing each value by N.

CODE EXAMPLE 5-4 Fast Fourier Transform and Inverse Transform for Real Values

my_system% cat fft_ex04.f

      PROGRAM TEST

C

      INTEGER          N

      PARAMETER       (N = 9)

      INTEGER          I

      REAL             PI, R(N), WSAVE(2 * N + 15)

      EXTERNAL         RFFTB, RFFTF, RFFTI

      INTRINSIC        ACOS, SIN

C

C     Initialize array to a real sequence.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        R(I) = 3.0 + SIN ((I - 1.0) * 2.0 * PI / N)

  100 CONTINUE

C

      PRINT 1000

      PRINT 1010, (R(I), I = 1, N)

      CALL RFFTI (N, WSAVE)

      CALL RFFTF (N, R, WSAVE)

      PRINT 1020

      PRINT 1010, (R(I), I = 1, N)

      CALL RFFTB (N, R, WSAVE)

      PRINT 1030

      PRINT 1010, (R(I), I = 1, N)

C

 1000 FORMAT (1X, ’Original Sequence R(I): ’)

 1010 FORMAT (1X, 100(F4.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Unnormalized Recovered Sequence (R(I)*N): ’)

C

      END
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CODE EXAMPLE 5-5 uses CFFTFto compute the FFT of a complex sequence and CFFTB
to compute the inverse transform. Because the number of calculated Fourier

coefficients equals the number of input values, the real and imaginary values of the

Fourier coefficients can be stored in the original array without additional storage

manipulations. The inverse transform is unnormalized and can be normalized by

dividing each value by N.

my_system% f95 -dalign fft_ex04.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence R(I):

  3.0  3.6  4.0  3.9  3.3  2.7  2.1  2.0  2.4

 Transformed Sequence:

 27.0  0.0 -4.5  0.0  0.0  0.0  0.0  0.0  0.0

 Unnormalized Recovered Sequence (R(I)*N):

 27.0 32.8 35.9 34.8 30.1 23.9 19.2 18.1 21.2

CODE EXAMPLE 5-5 Fast Fourier Transform and Inverse Transform for Complex Values

my_system% cat fft_ex05.f

      PROGRAM TEST

C

      INTEGER           N

      PARAMETER        (N = 4)

C

      INTEGER           I

      REAL              PI, WSAVE(4 * N + 15), X, Y

      COMPLEX           C(N)

C

      EXTERNAL          CFFTB, CFFTF, CFFTI

      INTRINSIC         ACOS, CMPLX, COS, SIN

C     Initialize the array C to a complex sequence.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X = SIN ((I - 1.0) * 2.0 * PI / N)

        Y = COS ((I - 1.0) * 2.0 * PI / N)

        C(I) = CMPLX (X, Y)

  100 CONTINUE

      PRINT 1000

      PRINT 1010, (C(I), I = 1, N)

CODE EXAMPLE 5-4 Fast Fourier Transform and Inverse Transform for Real Values
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EZFFT: EZ Fourier Transform Routines

The following routines are used to perform a Fourier transform or inverse transform

of a real periodic sequence. The EZ Fourier or inverse transform routines are

simplified but slower versions of the Fast Fourier Transform routines.

      CALL CFFTI (N, WSAVE)

      CALL CFFTF (N, C, WSAVE)

      PRINT 1020

      PRINT 1010, (C(I), I = 1, N)

      CALL CFFTB (N, C, WSAVE)

      PRINT 1030

      PRINT 1010, (C(I), I = 1, N)

C

 1000 FORMAT (1X, ’Original Sequence C(I):’)

 1010 FORMAT (1X, 100(F5.1, ’ +’,F4.1,’i  ’))

 1020 FORMAT (1X, ’Transformed Sequence:’)

 1030 FORMAT (1X, ’Unnormalized Recovered Sequence (C(I)*N):’)

C

      END

my_system% f95 -dalign fft_ex05.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence C(I):

   0.0 + 1.0i    1.0 + 0.0i    0.0 +-1.0i   -1.0 + 0.0i

 Transformed Sequence:

   0.0 + 0.0i    0.0 + 0.0i    0.0 + 0.0i    0.0 + 4.0i

 Unnormalized Recovered Sequence (C(I)*N):

   0.0 + 4.0i    4.0 + 0.0i    0.0 +-4.0i   -4.0 + 0.0i

Routine Function

EZFFTI Initialize work array WSAVEfor EZFFTF or EZFFTB

EZFFTF Compute Fourier coefficients of periodic sequence

EZFFTB Compute periodic sequence from Fourier coefficients

CODE EXAMPLE 5-5 Fast Fourier Transform and Inverse Transform for Complex Values
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The EZFFT routines use the arguments shown in TABLE 5-12.

Sample Program: EZ Fourier Transform and Inverse
Transform

CODE EXAMPLE 5-6 uses EZFFTF to compute a Fourier transform of a real sequence

and EZFFTB to compute the inverse transform. When using EZFFTF, the computed

Fourier coefficients are stored in the arrays A and B. The input array R is not

overwritten. Unlike the output of RFFTF and DFFTF, no packing is performed, and

the complex conjugates are retained.

TABLE 5-12 Arguments for EZFFT Routines

Argument Definition

N Sequence length

R For EZFFTF, a real array containing the sequence to be transformed,

unchanged on exit. For EZFFTB, a real array containing the Fourier

coefficients of the inputs.

AZERO The Fourier constant A0

A Real array containing the real parts of the complex Fourier

coefficients. If N is even, then A is length N/2, otherwise A is length

(N–1)/2.

B Real array containing the imaginary parts of the complex Fourier

coefficients. If N is even, then B is length N/2, otherwise B is length

(N–1)/2.

WSAVE Work array initialized by EZFFTI

CODE EXAMPLE 5-6 EZ Fourier Transform and Inverse Transform

my_system% cat fft_ex06.f

      PROGRAM TEST

C

      INTEGER          N

      PARAMETER       (N = 9)

      INTEGER          I

      REAL             A(N), B(N), AZERO, PI, R(N)

      REAL             WSAVE(3 * N + 15)

      EXTERNAL         EZFFTB, EZFFTF, EZFFTI

      INTRINSIC        ACOS, COS, SIN

C
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C     Initialize array to a sequence of real numbers.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        R(I) = 3.0 + SIN ((I - 1.0) * 2.0 * PI / N)  +

     $         4.0 * COS ((I - 1.0) * 8.0 * PI / N)

  100 CONTINUE

C

      CALL EZFFTI (N, WSAVE)

      PRINT 1000

      PRINT 1010, (R(I), I = 1, N)

      CALL EZFFTF (N, R, AZERO, A, B, WSAVE)

      PRINT 1020, AZERO

      PRINT 1030

      PRINT 1010, (A(I), I = 1, N)

      PRINT 1040

      PRINT 1010, (B(I), I = 1, N)

      CALL EZFFTB (N, R, AZERO, A, B, WSAVE)

      PRINT 1050

      PRINT 1010, (R(I), I = 1, N)

C

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (100(F6.1, 1X))

 1020 FORMAT (1X, ’Azero = ’, F4.1)

 1030 FORMAT (1X, ’A =  ’)

 1040 FORMAT (1X, ’B = ’)

 1050 FORMAT (1X, ’Recovered Sequence: ’)

C

      END

my_system% f95 -dalign fft_ex06.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

   7.0   -0.1    7.0    1.9    4.0    3.4    0.1    5.1   -1.4

 Azero =  3.0

 A =

   0.0    0.0    0.0    4.0    0.0    0.0    0.0    0.0    0.0

 B =

   1.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0

 Recovered Sequence:

   7.0   -0.1    7.0    1.9    4.0    3.4    0.1    5.1   -1.4

CODE EXAMPLE 5-6 EZ Fourier Transform and Inverse Transform (Continued)
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COSQ: Cosine Quarter-Wave Routines

The following routines are used to perform a discrete Fourier cosine transform or

inverse transform of a cosine series with only odd wave numbers.

Because of the assumption of symmetry, the sequence used as input to the cosine

quarter-wave routine only needs to contain the part of the sequence that is sufficient

to determine the entire sequence.

Normalization

The xCOSQ operations are unnormalized inverses of themselves, so a call to

xCOSQF followed by a call to xCOSQB will multiply the input sequence by 4 × N.

The VxCOSQ operations are normalized, so a call of VxCOSQF followed by a call of

VxCOSQB will return the original sequence.

Sample Programs: Cosine Quarter-Wave Transform and
Inverse Transform

CODE EXAMPLE 5-7 on page 96 uses COSQFto compute the cosine quarter-wave

transform of a real sequence and COSQBto compute the inverse transform. The

computed Fourier coefficients are packed and stored in the original real array. The

inverse transform is unnormalized and can be normalized by dividing each value by

4*N .

Routine Function

[D]COSQI Initialize work array WSAVEfor [D]COSQF or [D]COSQB

[D]COSQF Compute Fourier coefficients of cosine series with odd wave numbers

[D]COSQB Compute periodic sequence from Fourier coefficients

V[D]COSQI Initialize work array for V[D]COSQF or V[D]COSQB

V[D]COSQF Compute Fourier coefficients of multiple cosine series with odd wave

numbers

V[D]COSQB Compute multiple periodic sequences from Fourier coefficients
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CODE EXAMPLE 5-7 Cosine Quarter-Wave Transform and Inverse Transform

my_system% cat fft_ex07.f

      PROGRAM TEST

C

      INTEGER       N

      PARAMETER    (N = 6)

      INTEGER       I

      REAL          PI, WSAVE(3 * N + 15), X(N)

      EXTERNAL      COSQB, COSQF, COSQI

      INTRINSIC     ACOS, COS

C

C     Initialize array X to a real even quarter-wave sequence,

C     that is, it can be expanded in terms of a cosine series

C     with only odd wave numbers.

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X(I) = COS((I - 1) * PI / (2.0 * N))

  100 CONTINUE

C

      CALL COSQI (N, WSAVE)

      PRINT 1000

      PRINT 1010, (X(I), I = 1, N)

      CALL COSQF (N, X, WSAVE)

      PRINT 1020

      PRINT 1010, (X(I), I = 1, N)

      CALL COSQB (N, X, WSAVE)

      PRINT 1030

      PRINT 1010, (X(I), I = 1, N)

C

 1000 FORMAT(1X, ’Original Sequence: ’)

 1010 FORMAT(1X, 100(F7.3, 1X))

 1020 FORMAT(1X, ’Transformed Sequence: ’)

 1030 FORMAT(1X, ’Recovered Sequence: ’)

      END

my_system% f95 -dalign fft_ex07.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

   1.000   0.966   0.866   0.707   0.500   0.259

 Transformed Sequence:

   6.000   0.000   0.000   0.000   0.000   0.000

 Recovered Sequence:

  24.000  23.182  20.785  16.971  12.000   6.212
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CODE EXAMPLE 5-8 uses VCOSQFto compute the cosine quarter-wave transform of a

single real sequence and VCOSQBto compute the inverse transform. The computed

Fourier coefficients are packed and stored in the original real array. The inverse

transform is normalized.

CODE EXAMPLE 5-8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex08.f

      PROGRAM TEST

C

      INTEGER          M, N

      PARAMETER       (M = 1)

      PARAMETER       (N = 6)

      INTEGER          I

REAL PI, WSAVE(3 * N + 15), X(M, N), XT(M, N)

      EXTERNAL         VCOSQB, VCOSQF, VCOSQI

      INTRINSIC        ACOS, COS

C

C     Initialize the first row of the array to a real even

C     quarter-wave sequence, that is, it can be expanded in

C     terms of a cosine series with only odd wave numbers.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X(M,I) = 40.0 * COS ((I - 1) * PI / (2.0 * N))

  100 CONTINUE

C

      PRINT 1000

      PRINT 1010, (X(M, I), I = 1, N)

      CALL VCOSQI (N, WSAVE)

      CALL VCOSQF (M, N, X, XT, M, WSAVE)

      PRINT 1020

      PRINT 1010, (X(M, I), I = 1, N)

      CALL VCOSQB (M, N, X, XT, M, WSAVE)

      PRINT 1030

      PRINT 1010, (X(M, I), I = 1, N)

C

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (1X, 100(F5.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

      END
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CODE EXAMPLE 5-9 uses VCOSQFto compute the cosine quarter-wave transform of

multiple real sequences and VCOSQBto compute the inverse transforms. The

computed Fourier coefficients of each sequence are packed and stored in the rows of

the original real array. The inverse transforms are normalized.

my_system% f95 -dalign fft_ex08.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

  40.0  38.6  34.6  28.3  20.0  10.4

 Transformed Sequence:

  49.0   0.0   0.0   0.0   0.0   0.0

 Recovered Sequence:

  40.0  38.6  34.6  28.3  20.0  10.4

CODE EXAMPLE 5-9 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex09.f

      PROGRAM TEST

      INTEGER           M, N

      PARAMETER        (M = 4)

      PARAMETER        (N = 6)

      INTEGER           I, J

      REAL              PI, WSAVE(N + 15), X(M, N), XT(M, N)

      EXTERNAL          VCOSQB, VCOSQF, VCOSQI

      INTRINSIC         ACOS, COS

C

C Initialize the array to m real even quarter-wave sequences,

C that is, they can be expanded in terms of a cosine series

C     with only odd wave numbers.

      PI = ACOS (-1.0)

      DO 110, J=1, M

        DO 100, I=1, N

          X(J,I) = 40.0 * J * COS ((I-1) * PI / 2.0 / N )

  100   CONTINUE

  110 CONTINUE

C

CODE EXAMPLE 5-8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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      CALL VCOSQI (N, WSAVE)

      PRINT 1000

      DO 120, J=1, M

        PRINT 1010, J, (X(J, I), I = 1, N)

  120 CONTINUE

      CALL VCOSQF (M, N, X, XT, M, WSAVE)

      PRINT 1020

      DO 130, J=1, M

        PRINT 1010, J, (X(J, I), I = 1, N)

 130  CONTINUE

      CALL VCOSQB (M, N, X, XT, M, WSAVE)

      PRINT 1030

      DO 140, J=1, M

        PRINT 1010, J, (X(J, I), I = 1, N)

 140  CONTINUE

C

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT(1X, ’  Sequence’, I2, ’:  ’, 100(F5.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

C

      END

my_system% f95 -dalign fft_ex09.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

   Sequence 1:   40.0  38.6  34.6  28.3  20.0  10.4

   Sequence 2:   80.0  77.3  69.3  56.6  40.0  20.7

   Sequence 3:  120.0 115.9 103.9  84.9  60.0  31.1

   Sequence 4:  160.0 154.5 138.6 113.1  80.0  41.4

 Transformed Sequence:

   Sequence 1:   49.0   0.0   0.0   0.0   0.0   0.0

   Sequence 2:   98.0   0.0   0.0   0.0   0.0   0.0

   Sequence 3:  147.0   0.0   0.0   0.0   0.0   0.0

   Sequence 4:  196.0   0.0   0.0   0.0   0.0   0.0

 Recovered Sequence:

   Sequence 1:   40.0  38.6  34.6  28.3  20.0  10.4

   Sequence 2:   80.0  77.3  69.3  56.6  40.0  20.7

   Sequence 3:  120.0 115.9 103.9  84.9  60.0  31.1

   Sequence 4:  160.0 154.5 138.6 113.1  80.0  41.4

CODE EXAMPLE 5-9 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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COST: Cosine Even-Wave Routines

The following routines are used to perform a discrete fourier cosine transform of an

even sequence.

The cosine even-wave routines are their own inverse. xCOST computes the Fourier

coefficients from a periodic sequence or the periodic sequence from the Fourier

coefficients. xCOSTF and xCOSTB routines do not exist for cosine even-wave

transforms.

Because of the assumption of symmetry, the sequence used as input to the cosine

even-wave routine only needs to contain the part of the sequence that is sufficient to

determine the entire sequence.

Normalization

The xCOST transforms are unnormalized inverses of themselves, so a call of xCOST

followed by another call of xCOST will multiply the input sequence by 2 × (N–1).

The VxCOST transforms are normalized, so a call of VxCOST followed by a call of

VxCOST will return the original sequence.

Sample Program: Cosine Even-Wave Transform and Inverse
Transform

CODE EXAMPLE 5-10 on page 101 uses COSTto compute the cosine even-wave

transform of a real sequence and the inverse transform. The computed Fourier

coefficients are packed and stored in the original real array. The inverse transform is

unnormalized and can be normalized by dividing each value by 2*(N-1) .

Routine Function

[D]COSTI Initialize work array WSAVEfor [D]COSTF or [D]COSTB

[D]COST Compute the Fourier coefficients or inverse transform of an even sequence

V[D]COSTI Initialize work array for V[D]COSTF or V[D]COSTB

V[D]COST Compute Fourier coefficients or inverse transform of multiple even

sequences
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CODE EXAMPLE 5-10 Cosine Even-Wave Transform and Inverse Transform

my_system% cat fft_ex10.f

      PROGRAM TEST

C

      INTEGER         N

      PARAMETER      (N = 9)

      INTEGER         I

      REAL            PI, X(N), WSAVE(3 * N + 15)

      EXTERNAL        COST, COSTI

      INTRINSIC       ACOS, COS

C

C     Initialize the array X to an even sequence, that is, it

C     can be expanded in terms of a trigonometric series that

C     contains only cosine terms.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X(I) = COS ((I - 1.0) * 2.0 * PI / (N - 1.0))

  100 CONTINUE

C

      CALL COSTI (N, WSAVE)

      PRINT 1000

      PRINT 1010, (X(I), I = 1, N)

      CALL COST (N, X, WSAVE)

      PRINT 1020

      PRINT 1010, (X(I), I = 1, N)

      CALL COST (N, X, WSAVE)

      PRINT 1030

      PRINT 1010, (X(I), I = 1, N)

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (1X, 100(F5.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

      END

my_system% f95 -dalign fft_ex10.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

   1.0   0.7   0.0  -0.7  -1.0  -0.7   0.0   0.7   1.0

 Transformed Sequence:

   0.0   0.0   8.0   0.0   0.0   0.0   0.0   0.0   0.0

 Recovered Sequence:

  16.0  11.3   0.0 -11.3 -16.0 -11.3   0.0  11.3  16.0
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SINQ: Sine Quarter-Wave Routines

The following routines are used to compute a a discrete Fourier sine transform or

inverse transform of a of a sine series that contains only odd wave numbers.

Because of the assumption of symmetry, the sequence used as input to the sine

quarter-wave routine only needs to contain the part of the sequence that is sufficient

to determine the entire sequence.

Normalization

The xSINQ operations are unnormalized inverses of themselves, so a call to xSINQF

followed by a call to xSINQB will multiply the input sequence by 4 × N. The VxSINQ

operations are normalized, so a call of VxSINQF followed by a call of VxSINQB will

return the original sequence.

Sample Programs: Sine Quarter-Wave Transform and Inverse
Transform

CODE EXAMPLE 5-11 on page 103 uses SINQF to compute sine quarter-wave transform

of a real sequence and SINQB to compute the inverse transform. The computed

Fourier coefficients are packed and stored in the original real array. The inverse

transform is unnormalized and can be normalized by dividing each value by 4*N .

Routine Function

[D]SINQI Initialize work array WSAVEfor [D]SINQF or [D]SINQB

[D]SINQF Compute Fourier coefficients of sine series with only odd wave numbers

[D]SINQB Compute periodic sequence from Fourier coefficients

V[D]SINQI Initialize work array for V[D]SINQF or V[D]SINQB

V[D]SINQF Compute Fourier coefficients of multiple sine series with only odd wave

numbers

V[D]SINQB Compute multiple periodic sequences from Fourier coefficients
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CODE EXAMPLE 5-11 Sine Quarter-Wave Transform and Inverse Transform

my_system% cat fft_ex11.f

      PROGRAM TEST

      INTEGER            N

      PARAMETER         (N = 6)

      INTEGER            I

      REAL               PI, WSAVE(3 * N + 15), X(N)

      EXTERNAL           SINQB, SINQF, SINQI

      INTRINSIC          ACOS, SIN

C

C     Initialize array X to a real odd quarter-wave sequence,

C that is, it can be expanded in terms of a sine series with

C     only odd wave number.

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X(I) = 40.0 * SIN (I * PI / (2.0 * N))

  100 CONTINUE

C

      PRINT 1000

      PRINT 1010, (X(I), I = 1, N)

      CALL SINQI (N, WSAVE)

      CALL SINQF (N, X, WSAVE)

      PRINT 1020

      PRINT 1010, (X(I), I = 1, N)

      CALL SINQB(N, X, WSAVE)

      PRINT 1030

      PRINT 1010, (X(I), I = 1, N)

C

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (1X, 100(F6.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

C

      END

my_system% f95 -dalign fft_ex11.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

   10.4   20.0   28.3   34.6   38.6   40.0

 Transformed Sequence:

  240.0    0.0    0.0    0.0    0.0    0.0

 Recovered Sequence:

  248.5  480.0  678.8  831.4  927.3  960.0
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CODE EXAMPLE 5-12 uses VSINQF to compute the sine quarter-wave transform of a

single real sequence and VSINQB to compute the inverse transform. The computed

Fourier coefficients are packed and stored in the original real array. The inverse

transform is normalized.

CODE EXAMPLE 5-12 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex12.f

      PROGRAM TEST

C

      INTEGER         M, N

      PARAMETER      (M = 1)

      PARAMETER      (N = 6)

      INTEGER         I

      REAL            PI, WSAVE(N + 15), X(M, N), XT(M, N)

      EXTERNAL        VSINQB, VSINQF, VSINQI

      INTRINSIC       ACOS, SIN

C

C     Initialize the first row of the array to a real odd

C     quarter-wave sequence, that is, it can be expanded in

C     terms of a cosine series with only odd wave numbers.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X(M,I) = 40.0 * SIN ((I * PI / (2.0 * N)))

  100 CONTINUE

C

      CALL VSINQI (N, WSAVE)

      PRINT 1000

      PRINT 1010, (X(M, I), I = 1, N)

      CALL VSINQF (M, N, X, XT, M, WSAVE)

      PRINT 1020

      PRINT 1010, (X(M, I), I = 1, N)

      CALL VSINQB (M, N, X, XT, M, WSAVE)

      PRINT 1030

      PRINT 1010, (X(M, I), I = 1, N)

C

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (1X, 100(F5.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

      END
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CODE EXAMPLE 5-13 uses VSINQF to compute the sine quarter-wave transform of

multiple real sequences and VSINQB to compute the inverse transforms. The

computed Fourier coefficients of each sequence are packed and stored in the rows of

the original real array. The inverse transforms are normalized.

my_system% f95 -dalign fft_ex12.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

  10.4  20.0  28.3  34.6  38.6  40.0

 Transformed Sequence:

  49.0   0.0   0.0   0.0   0.0   0.0

 Recovered Sequence:

  10.4  20.0  28.3  34.6  38.6  40.0

CODE EXAMPLE 5-13 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex13.f

      PROGRAM TEST

      INTEGER           M, N

      PARAMETER        (M = 4)

      PARAMETER        (N = 6)

      INTEGER           I, J

REAL PI, WSAVE(N + 15), X(M, N+1), XT(M, N + 1)

C

      EXTERNAL          VSINQB, VSINQF, VSINQI

      INTRINSIC         ACOS, SIN

C

C Initialize the array to m real odd quarter-wave sequence,

C     that is, they can be expanded in terms of a cosine series

C     with only odd wave numbers.

C

      PI = ACOS (-1.0)

      DO 110, J=1, M

        DO 100, I=1, N

          X(J,I) = 40.0 * J * SIN (I * PI / (2.0 * N))

  100   CONTINUE

  110 CONTINUE

C

CODE EXAMPLE 5-12 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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      CALL VSINQI (N, WSAVE)

      PRINT 1000

      DO 120, J=1, M

        PRINT 1010, J, (X(J, I), I = 1, N)

  120 CONTINUE

      CALL VSINQF (M, N, X, XT, M, WSAVE)

      PRINT 1020

      DO 130, J=1, M

        PRINT 1010, J, (X(J, I), I = 1, N)

  130 CONTINUE

      CALL VSINQB (M, N, X, XT, M, WSAVE)

      PRINT 1030

      DO 140, J=1, M

        PRINT 1010, J, (X(J, I), I = 1, N)

  140 CONTINUE

C

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (1X, ’  Sequence’, I2, ’:  ’, 100(F5.1, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

C

      END

my_system% f95 -dalign fft_ex13.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

   Sequence 1:   10.4  20.0  28.3  34.6  38.6  40.0

   Sequence 2:   20.7  40.0  56.6  69.3  77.3  80.0

   Sequence 3:   31.1  60.0  84.9 103.9 115.9 120.0

   Sequence 4:   41.4  80.0 113.1 138.6 154.5 160.0

 Transformed Sequence:

   Sequence 1:   49.0   0.0   0.0   0.0   0.0   0.0

   Sequence 2:   98.0   0.0   0.0   0.0   0.0   0.0

   Sequence 3:  147.0   0.0   0.0   0.0   0.0   0.0

   Sequence 4:  196.0   0.0   0.0   0.0   0.0   0.0

 Recovered Sequence:

   Sequence 1:   10.4  20.0  28.3  34.6  38.6  40.0

   Sequence 2:   20.7  40.0  56.6  69.3  77.3  80.0

   Sequence 3:   31.1  60.0  84.9 103.9 115.9 120.0

   Sequence 4:   41.4  80.0 113.1 138.6 154.5 160.0

CODE EXAMPLE 5-13 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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SINT: Sine Odd-Wave Transform Routines

The following routines are used to perform a discrete Fourier sine transform of an

odd sequence.

The sine odd-wave routines are their own inverse. xSINT computes the Fourier

coefficients from a periodic sequence or the periodic sequence from the Fourier

coefficients. xSINTF and xSINTB routines do not exist for sine odd-wave transforms.

Because of the assumption of symmetry, the sequence used as input to the sine odd-

wave routine only needs to contain the part of the sequence that is sufficient to

determine the whole sequence.

Normalization

The xSINT transforms are unnormalized inverses of themselves, so a call of xSINT

followed by another call of xSINT will multiply the input sequence by 2 × (N+1). The

VxSINT transforms are normalized, so a call of VxSINT followed by a call of VxSINT

will return the original sequence.

Sample Program: Sine Odd-Wave Transform

CODE EXAMPLE 5-14 on page 108 uses SINT to compute the sine odd-wave transform

of a real sequence and the inverse transform. The computed Fourier coefficients are

packed and stored in the original real array. The inverse transform is unnormalized

and can be normalized by dividing each value by 2*(N+1) .

Routine Function

[D]SINTI Initialize work array WSAVEfor [D]SINQF or [D]SINQB

[D]SINT Compute the Fourier coefficients or inverse transform of a sine

series with only odd wave numbers

V[D]SINTI Initialize work array for V[D]SINQF or V[D]SINQB

V[D]SINT Compute the Fourier coefficients or inverse transform of multiple

sine series with only odd wave numbers
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CODE EXAMPLE 5-14 Sine Odd-Wave Transform and Inverse Transform

my_system% cat fft_ex14.f

      PROGRAM TEST

      INTEGER             N

      PARAMETER          (N = 9)

      INTEGER             I

      REAL                PI, WSAVE(3 * N + 15), X(N)

      EXTERNAL            SINT, SINTI

      INTRINSIC           ACOS, SIN

C

C     Initialize the array X to an odd sequence, that is, it

C     can be expanded in terms of a trigonometric series that

C     contains only sine terms.

C

      PI = ACOS (-1.0)

      DO 100, I=1, N

        X(I) =  SIN ( I * 2.0 * PI / (N + 1.0))

  100 CONTINUE

C

      PRINT 1000

      PRINT 1010, (X(I), I = 1, N)

      CALL SINTI (N, WSAVE)

      CALL SINT (N, X, WSAVE)

      PRINT 1020

      PRINT 1010, (X(I), I = 1, N)

      CALL SINT (N, X, WSAVE)

      PRINT 1030

      PRINT 1010, (X(I), I = 1, N)

 1000 FORMAT (1X, ’Original Sequence: ’)

 1010 FORMAT (1X, 100(F7.3, 1X))

 1020 FORMAT (1X, ’Transformed Sequence: ’)

 1030 FORMAT (1X, ’Recovered Sequence: ’)

      END

my_system% f95 -dalign fft_ex14.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence:

0.588 0.951 0.951 0.588 0.000 -0.588 -0.951 -0.951 -0.588

 Transformed Sequence:

0.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Recovered Sequence:

11.756 19.021 19.021 11.756 0.000 -11.756 -19.021 -19.021 -11.756
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Two-Dimensional FFT and Inverse
Transform Routines

The following routines are used to compute a two-dimensional fast Fourier

transform or inverse transform of a two-dimensional periodic sequence.

The two-dimensional fast Fourier transform and inverse transform are computed

using the following formulas.

[R,D,C,Z]FFT2F

[R,D,C,Z]FFT2B

n1, k1 range from 0 to N1-1

n2, k2 range from 0 to N2-1

W1 =

W2 =

i =

isign = -1 in [R,D,C,Z]FFT2F

= 1 in [R,D,C,Z]FFT2B

Routine Function

[R,D,C,Z]FFT2I Initialize the work array WORKfor [R,D,C,Z]FFT2F or

[R,D,C,Z]FFT2B

[R,D,C,Z]FFT2F Compute Fourier coefficients of two-dimensional periodic sequence

[R,D,C,Z]FFT2B Compute periodic sequence from Fourier coefficients

H n1 n2,( ) h k1 k2,( ) W1 W2××
k2 0=

n1 1–

∑
k1 0=

n2 1–

∑=

F n1 n2,( ) n1 n2×( ) f k1 k2,( ) W1 W2××
k2 0=

n1 1–

∑
k1 0=

n2 1–

∑=

eisign2π ik1n1 N1⁄

eisign2π ik2n2 N2⁄

1–
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The xFFT2F routines compute the two-dimensional FFT by doing the following:

1. Perform a one-dimensional transform of the columns of the input vector.

2. Transpose the result matrix.

3. Perform a one-dimensional transform of the columns of the result matrix.

4. Transpose the result matrix to restore the original order of the data points.

Arguments for Two-Dimensional FFT Routines

Complex two-dimensional FFT routines use the arguments shown in TABLE 5-13.

Arguments for PLACE, FULL, B, and LDB are not used with the complex two-

dimensional FFT routines, because the transformed sequence is stored in the original

input array without any additional manipulations.

Real two-dimensional FFT routines use the arguments shown in TABLE 5-14.

TABLE 5-13 Arguments for Complex Two-Dimensional FFT Routines

Argument Definition

M Number of rows to be transformed

N Number of columns to be transformed

A Two-dimensional array A(LDA,N) containing the sequences to be

transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed

WORK Work array initialized by xFFT2I

LWORK Dimension of work array WORK

TABLE 5-14 Arguments for Real Two-Dimensional FFT Routines

Argument Definition

PLACE ‘I’ or ‘i’ specifies that an in-place transform is performed.

‘O’ or ‘o’ specifies that an out-of-place transform is performed.

FULL RFFT2F or DFFT2F only:

‘F’ or ‘f’ specifies that a full result matrix is generated.

Any other character specifies that a partial result matrix is

generated.

M Number of rows to be transformed
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Normalization

The xFFT2 operations are unnormalized, so a call of xFFT2F followed by a call of

xFFT2B will multiply the input sequence by M*N.

Data Storage for Two-Dimensional FFT Routines

The data storage format for the computed Fourier coefficients depends upon

whether the sequence is complex or real.

Storage of Complex Two-Dimensional Sequences

When CFFT2F or ZFFT2F computes the two-dimensional FFT of a complex

sequence, all Fourier coefficients are retained, and the results are stored in the

original array. Additional storage options for complex two-dimensional sequences

are not needed.

Storage of Real Two-Dimensional Sequences

The result of using RFFT2F or DFFT2F to compute the two-dimensional FFT of a real

sequence is a complex vector that contains twice the number of values as the input

sequence.

N Number of columns to be transformed

A Two-dimensional array A(LDA,N) containing the sequences to be

transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed

B Two-dimensional array B(2*LDB,N ) that stores the results of an

out-of-place transform

LDB One half of the actual leading dimension of array that stores results

of out-of-place transform

WORK Work array initialized by xFFT2I

LWORK Dimension of work array WORK

TABLE 5-14 Arguments for Real Two-Dimensional FFT Routines (Continued)

Argument Definition
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The data storage format of real two-dimensional FFT routines depends upon the

following storage options.

■ In-place or Out-of-place. When using In-Place, the results are stored in the

modified input array that contains one or two additional rows, depending upon

whether Mis odd or even. When using Out-of-Place, the results are stored in a

separate array.

■ Full or Partial. When using Full, the complex conjugates are retained. When

using Partial, the complex conjugates are discarded.

When computing a real one-dimensional FFT, the complex result can be packed and

stored in the original array, because the values identically equal to zero and the

complex conjugates are not stored. When computing the real two-dimensional FFT

using the in-place and partial storage options, the complex conjugates are not stored,

but the values identically equal to zero are stored. Saving the values identically

equal to zero simplifies the indexing that occurs when computing the two-

dimensional FFT. However, the size of the original array is modified to contain one

or two additional rows, which are needed to store the values identically equal to

zero.

The values of the arguments used with the real two-dimensional FFT routines

depend upon whether an in-place or out-of place transform is performed, and

whether the results are stored in a full or partial result matrix, as shown in

TABLE 5-15.

TABLE 5-15 Relationships Between Values of Arguments for Real Two-Dimensional FFT
Routines

Full Result Matrix Partial Result Matrix

In-Place Transform B unused B unused

LDB unused LDB unused

LDA must be even LDA must be even

LDA ≥ 2*M LDA ≥ M+2 if Mis even

LDA ≥ M+1 if Mis odd

A(1:2*M , 1:N) A(1:M+2, 1:N) if Mis even

A(1:M+1, 1:N) if Mis odd

Out-of-Place Transform A unchanged A unchanged

LDA ≥ M LDA≥ M

2*LDB ≥ M 2*LDB ≥ M+2 if Mis even

2*LDB ≥ M+1 if Mis odd

B(1:2*M , 1:N) B(1:M+2 , 1:N) if Mis even

B(1:M+1 , 1:N) if Mis odd
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When computing the real two-dimensional FFT of an input sequence of Mrows and

N columns, the computed Fourier coefficients will be stored in a two-dimensional

array with 2*M rows and N columns when using the Full storage option. When using

the Partial storage option, the Fourier coefficients will be stored in a two-

dimensional array with M+2 rows and N columns when Mis even, or in a two-

dimensional array with M+1 rows and N columns when Mis odd.

For example, if M=4 and N=2, the Fourier coefficients will be stored in the output

array as follows:

Using Two-Dimensional FFT Routines to Perform

Two-Dimensional Convolution

Sun Performance Library provides the [S,D,C,Z]CNVCOR routines for computing

the convolution or correlation of a filter with one or more input vectors and the

[S,D,C,Z]CNVCOR2 routines for computing the two-dimensional convolution or

correlation of two matrices. These routines are described in Section “Convolution

and Correlation Routines” on page 135.

Full Storage Option

X(1,1) = Re(X_0)  X(1,2) = Re(X_0)
X(2,1) = Im(X_0)  X(2,2) = Im(X_0)
X(3,1) = Re(X_1)  X(3,2) = Re(X_1)
X(4,1) = Im(X_1)  X(4,2) = Im(X_1)
X(5,1) = Re(X_2)  X(5,2) = Re(X_2)
X(6,1) = Im(X_2)  X(6,2) = Im(X_2)
X(7,1) = Re(X_3)  X(7,2) = Re(X_3)
X(8,1) = Im(X_3)  X(8,2) = Im(X_3)

Partial Storage Option
X(1,1) = Re(X_0)  X(1,2) = Re(X_0)
X(2,1) = Im(X_0)  X(2,2) = Im(X_0)
X(3,1) = Re(X_1)  X(3,2) = Re(X_1)
X(4,1) = Im(X_1)  X(4,2) = Im(X_1)
X(5,1) = Re(X_2)  X(5,2) = Re(X_2)
X(6,1) = Im(X_2)  X(6,2) = Im(X_2)
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The two-dimensional FFT routines can also be used to compute the two-dimensional

convolutions of the two two-dimensional arrays A and B, as described in the

following procedure.

1. Compute the two-dimensional FFT of A.

2. Compute the two-dimensional FFT of B.

3. Perform pointwise multiplication of A and B.

4. Compute the inverse two-dimensional FFT of the previous result.

The second transpose can be avoided for increased performance by using the VFFT
and [SDCZ]TRANS routines to explicitly compute the transposed two-dimensional

FFT, as described in the following procedure.

1. Use VFFT to compute one dimensional FFTs along the columns of A.

2. Use ZTRANSto transpose A.

3. Use VFFT to compute one-dimensional FFTs along the columns of the new A.

4. Use VFFT to compute one-dimensional FFTs along the columns of B.

5. Use ZTRANSto transpose B.

6. Use VFFT to compute one-dimensional FFTs along the columns of the new B.

7. Perform pointwise multiplication of A and B.

8. Use VFFT to compute inverse one-dimensional FFTs along the columns of the
result.

9. Use ZTRANSto transpose the result back into its original order.
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Sample Program: Two-Dimensional FFT and

Inverse Transform

CODE EXAMPLE 5-15 uses CFFT2F to compute the two-dimensional FFT of a two-

dimensional complex sequence and CFFT2B to compute the inverse transform. The

computed Fourier coefficients are stored in the original complex array. The inverse

transform is unnormalized and can be normalized by dividing each value by M*N.

CODE EXAMPLE 5-15 Two-Dimensional FFT and Inverse of Complex Sequence

my_system: cat fft_ex15.f

      PROGRAM TEST

C

      INTEGER           LWORK, M, N

      PARAMETER        (M = 2)

      PARAMETER        (N = 4)

      PARAMETER        (LWORK = 4 * (M + N + N) + 40)

      INTEGER           I, J

      REAL              PI, WORK(LWORK)

      REAL              X, Y

      COMPLEX           A(M,N)

C

      EXTERNAL          CFFT2B, CFFT2F, CFFT2I

      INTRINSIC         ACOS, CMPLX, COS, SIN

C

C     Initialize the array C to a complex sequence.

      PI = ACOS (-1.0)

      DO 110, J = 1, N

        DO 100, I = 1, M

          X = SIN ((I - 1.0) * 2.0 * PI / N)

          Y = COS ((J - 1.0) * 2.0 * PI / M)

          A(I,J) = CMPLX (X, Y)

  100   CONTINUE

  110 CONTINUE

C

      PRINT 1000

      DO 200, I = 1, M

        PRINT 1010, (A(I,J), J = 1, N)

  200 CONTINUE

      CALL CFFT2I (M, N, WORK)

      CALL CFFT2F (M, N, A, M, WORK, LWORK)

      PRINT 1020
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CODE EXAMPLE 5-16 on page 117 uses RFFT2F to compute the two-dimensional FFT

of a real two-dimensional sequence and RFT2B to compute the inverse transform.

This example uses the FULL storage option and PLACE set to 'O' for out-of-place

storage.

      DO 300, I = 1, M

        PRINT 1010, (A(I,J), J = 1, N)

  300 CONTINUE

      CALL CFFT2B (M, N, A, M, WORK, LWORK)

      PRINT 1030

      DO 400, I = 1, M

        PRINT 1010, (A(I,J), J = 1, N)

  400 CONTINUE

C

 1000 FORMAT (1X, ’Original Sequences:’)

 1010 FORMAT (1X, 100(F4.1,’ +’,F4.1,’i  ’))

 1020 FORMAT (1X, ’Transformed Sequences:’)

 1030 FORMAT (1X, ’Recovered Sequences:’)

C

      END

my_system: f95 -dalign fft_ex15.f -xlic_lib=sunperf

my_system: a.out

 Original Sequences:

  0.0 + 1.0i   0.0 +-1.0i   0.0 + 1.0i   0.0 +-1.0i

  1.0 + 1.0i   1.0 +-1.0i   1.0 + 1.0i   1.0 +-1.0i

 Transformed Sequences:

  4.0 + 0.0i   0.0 + 0.0i   0.0 + 8.0i   0.0 + 0.0i

 -4.0 + 0.0i   0.0 + 0.0i   0.0 + 0.0i   0.0 + 0.0i

 Recovered Sequences:

  0.0 + 8.0i   0.0 +-8.0i   0.0 + 8.0i   0.0 +-8.0i

  8.0 + 8.0i   8.0 +-8.0i   8.0 + 8.0i   8.0 +-8.0i

CODE EXAMPLE 5-15 Two-Dimensional FFT and Inverse of Complex Sequence (Continued)
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The computed Fourier coefficients are stored in a (2*M, N) array where one row

contains the real part of the complex coefficient and the next row contains the

imaginary part of the complex coefficient. In CODE EXAMPLE 5-15, to better display

the complex conjugate symmetry, the real and imaginary parts of each complex

coefficient are displayed on one line.

For example, the following output:

 Transformed Out-of-Place, Full

  (   6.241,   0.000)  (   1.173,   0.000)

  (  -0.018,   1.169)  (   0.304,   0.111)

represents the following values for the Fourier coefficients.

The inverse transform is unnormalized and can be normalized by dividing each

value by M*N.

Column 1 Column 2

Re(X0) Im(X0) Re(X0) Im(X0)

Re(X1) Im(X1) Re(X1) Im(X1)

CODE EXAMPLE 5-16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
Storage

my_system% cat fft_ex16.f

      PROGRAM TESTFFT

      INTEGER M, N

      PARAMETER(M = 6, N = 2)

      CALL FFT(M,N)

      END

      SUBROUTINE FFT(M, N)

      CHARACTER*1 IS_FULL

      INTEGER I, J, M, N, ISTAT, LWORK, LDA, LDB, LDB_ACTUAL

      REAL RNUM, RAND

      EXTERNAL RFFT2F, RFFT2B, RFFT2I, RAND

      REAL, DIMENSION(:,:), ALLOCATABLE :: AT, B, INPUT

      REAL, DIMENSION(:), ALLOCATABLE :: WT

      LDA = 2*M

      LDB = 2*M

      LWORK = M+2*N+MAX(M,2*N)+30

      ALLOCATE(AT(LDA,N), INPUT(LDA,N), WT(LWORK), B(LDB_ACTUAL,N))
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      CALL RFFT2I (M, N, WT)

      DO  I = 1, N

        DO  J = 1, M

          INPUT(J,I) = RAND(0)

        END DO

      END DO

      AT = INPUT

*

      PRINT *, ’Original Sequence’

      DO I = 1, M

        PRINT ’(100(F8.3))’, (AT(I,J), J = 1, N)

      END DO

      PRINT *

*

*     Example 1

*     Out-of-place, full

*     leading dimension of B (2*LDB) must be at least 2*M

*

      IS_FULL = ’F’

      LDB = M

      CALL RFFT2F (’O’, IS_FULL, M, N, AT, LDA, B, LDB, WT, LWORK)

      PRINT *, ’Transformed Out-of-Place, Full’

      DO I = 1, LDB_ACTUAL, N

        PRINT ’(100(’’  (’’, F8.3, ’’,’’, F8.3, ’’)’’ :))’,

     $     (B(I,J), B(I+1,J), J = 1, N)

      END DO

*      B(M+3:LDB,1:N) = 0

*      PRINT *, ’Transformed, last half clear:’

*      DO I = 1, LDB, N

*        PRINT ’(100(’’  (’’, F8.3, ’’,’’, F8.3, ’’)’’ :))’,

*     $     (B(I,J), B(I+1,J), J = 1, N)

*      END DO

      CALL RFFT2B (’O’, M, N, AT, LDA, B, LDB, WT, LWORK)

      PRINT *, ’Inverse: Scaled Output, Out-of-Place, Full’

      DO I = 1, M

        PRINT ’(100(F8.3))’, (AT(I,J) / (M * N), J = 1, N)

      END DO

      PRINT *

*

CODE EXAMPLE 5-16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
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*     Example 2

*     in-place, full

*     LDA must be at least 2*M

*

      AT = INPUT

      IS_FULL = ’F’

      CALL RFFT2F (’I’, IS_FULL, M, N, AT, LDA, 0, 0, WT, LWORK)

      PRINT *, ’Transformed In-Place, Full’

      DO I = 1, LDA, 2

        PRINT ’(100(’’  (’’, F8.3, ’’,’’, F8.3, ’’)’’ :))’,

     $     (AT(I,J), AT(I+1,J), J = 1, N)

      END DO

      CALL RFFT2B (’I’, M, N, AT, LDA, 0, 0, WT, LWORK)

      PRINT *, ’Inverse: Scaled Output, In-Place, Full’

      DO I = 1, M

        PRINT ’(100(F8.3))’, (AT(I,J) / (M * N), J = 1, N)

      END DO

      PRINT *

      DEALLOCATE(AT,WT,B)

      END SUBROUTINE

CODE EXAMPLE 5-16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
Storage (Continued)
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my_system% f95 -dalign fft_ex16.f -xlic_lib=sunperf

my_system% a.out

 Original Sequence

   0.968   0.654

   0.067   0.021

   0.478   0.512

   0.910   0.202

   0.352   0.940

   0.933   0.204

 Transformed Out-of-Place, Full

  (   6.241,   0.000)  (   1.173,   0.000)

  (  -0.018,   1.169)  (   0.304,   0.111)

  (   0.981,   0.647)  (   0.945,   1.071)

  (   1.569,   0.000)  (  -1.790,   0.000)

  (   0.981,  -0.647)  (   0.945,  -1.071)

  (  -0.018,  -1.169)  (   0.304,  -0.111)

 Inverse: Scaled Output, Out-of-Place, Full

   0.968   0.654

   0.067   0.021

   0.478   0.512

   0.910   0.202

   0.352   0.940

   0.933   0.204

 Transformed In-Place, Full

  (   6.241,   0.000)  (   1.173,   0.000)

  (  -0.018,   1.169)  (   0.304,   0.111)

  (   0.981,   0.647)  (   0.945,   1.071)

  (   1.569,   0.000)  (  -1.790,   0.000)

  (   0.981,  -0.647)  (   0.945,  -1.071)

  (  -0.018,  -1.169)  (   0.304,  -0.111)

 Inverse: Scaled Output, In-Place, Full

   0.968   0.654

   0.067   0.021

   0.478   0.512

   0.910   0.202

   0.352   0.940

   0.933   0.204

CODE EXAMPLE 5-16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
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CODE EXAMPLE 5-17 is a C example that uses zfft2f to compute the two-

dimensional FFT of a two-dimensional complex sequence and zfft2b to compute

the inverse transform. The computed Fourier coefficients are stored in the original

complex array. The inverse transform is unnormalized and can be normalized by

dividing each value by m*n.

CODE EXAMPLE 5-17 ZFFT2F and ZFFT2B Example Using C

my_system% cat fft_ex17.c

#include <sunperf.h>

#include <math.h>

#include <stdlib.h>

/*

 * This code demonstrates the use of zfft2i, zfft2f, zfft2b

 */

void

main()

{

  int                     i,j,ip;

  int                     m,n,max_mn;

  int                     lwork,lda;

  doublecomplex    *a;

  double                *work;

  double                scale;

  double                err,maxerr;

  m = 16; n = 8;

  a = (doublecomplex *)malloc(m*n*sizeof(doublecomplex));

  max_mn = m; if (n > m) max_mn = n;

  lwork = 2*(m+n+max_mn)+40;

  work = (double *)malloc(lwork*sizeof(double));

  /* initialize a as complex(sin(i),sin(j)) */

  ip = 0;

  for (j=0;j<n;j++) {

    for (i=0;i<m;i++) {

      a[ip].r=sin((double)i);

      a[ip].i=sin((double)j);

      ip++;

    }

  }
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CODE EXAMPLE 5-18 on page 123 is a C example that uses rfft2f to compute the

two-dimensional FFT of a two-dimensional real sequence and rfft2b to compute

the inverse transform. The computed Fourier coefficients are stored in the original

real array using the partial storage option. The inverse transform is unnormalized

and can be normalized by dividing each value by m*n.

  zfft2i(m,n,work);

  lda = m;

  /* compute the forward fft */

  zfft2f(m,n,a,lda,(doublecomplex *)&work,lwork);

  /* compute the inverse fft. Note that the same work array can

     be used for both the forward and the inverse fft */

  zfft2b(m,n,a,lda,(doublecomplex *)&work,lwork);

  /* the reconstruction result will be scaled by m*n */

  scale = (double)(m*n);

  maxerr = 0.0;

  ip = 0;

  for (j=0;j<n;j++) {

    for (i=0;i<m;i++) {

      err = fabs(a[ip].r/scale-sin((double)i))+
      fabs(a[ip].i/scale-sin((double)j));

      if (err > maxerr) maxerr = err;

      ip++;

    }

  }

  printf("reconstruction error %g \n",maxerr);

  /* clean up */

  free(a);

  free(work);

}

CODE EXAMPLE 5-17 ZFFT2F and ZFFT2B Example Using C (Continued)
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CODE EXAMPLE 5-18 Example of Using the Partial Storage Option

my_system% fft_ex18.c

#include <sunperf.h>

#include <math.h>

#include <stdlib.h>

/*

 This code demonstrates the use of dfft2i, dfft2f

 a is being initialized as a 2D real array of size

 m x n = 8 x 4:

 a =

   0.700000   1.375463  -0.296165   1.493668

   0.995520   1.127380  -0.225815   1.638000

   1.264642   0.841120  -0.072764   1.698543

   1.483327   0.542254   0.149314   1.669890

   1.632039   0.257480   0.420585   1.554599

   1.697495   0.012234   0.716814   1.362969

   1.673848  -0.171576   1.011541   1.112118

   1.563209  -0.277530   1.278440   0.824454

 The 2D FFT of a is:

 A =

 Columns 0 through 2:

   29.05310 +  0.00000i    8.02813 +  7.64742i   -1.06904 +  0.00000i

   -1.09423 -  0.24829i   -1.78923 -  3.37830i   -2.81937 +  7.27093i

   -0.21980 -  0.09124i   -0.16036 -  1.30903i   -2.62181 +  2.67179i

   -0.08924 -  0.03707i    0.20683 -  0.80372i   -2.59231 +  1.08567i

   -0.06281 +  0.00000i    0.38653 -  0.53453i   -2.58634 +  0.00000i

   -0.08924 +  0.03707i    0.50611 -  0.32973i   -2.59231 -  1.08567i

   -0.21980 +  0.09124i    0.57617 -  0.14256i   -2.62181 -  2.67179i

   -1.09423 +  0.24829i    0.21514 -  0.20391i   -2.81937 -  7.27093i

 Column 3:

    8.02813 -  7.64742i

    0.21514 +  0.20391i

    0.57617 +  0.14256i

    0.50611 +  0.32973i

    0.38653 +  0.53453i

    0.20683 +  0.80372i

   -0.16036 +  1.30903i

   -1.78923 +  3.37830i
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 To use dfft2f with the 'in-place' and 'partial storage'  options,

 a has to be embedded into an  (m+2) x n = 10 x 8 real array (case

 m even). After calling dfft2f, this array contains the (m/2+1) x n =

5 x 4 upper half of the complex result (the lower part can be determined

 via the conjugate symmetry property of the result along the first

 dimension.

 The result of dfft2f will be:

   A(0:4,:) =

 Columns 0 through 2:

   29.05310 +  0.00000i    8.02813 +  7.64742i   -1.06904 +  0.00000i

   -1.09423 -  0.24829i   -1.78923 -  3.37830i   -2.81937 +  7.27093i

   -0.21980 -  0.09124i   -0.16036 -  1.30903i   -2.62181 +  2.67179i

   -0.08924 -  0.03707i    0.20683 -  0.80372i   -2.59231 +  1.08567i

   -0.06281 +  0.00000i    0.38653 -  0.53453i   -2.58634 +  0.00000i

 Column 3:

    8.02813 -  7.64742i

    0.21514 +  0.20391i

    0.57617 +  0.14256i

    0.50611 +  0.32973i

    0.38653 +  0.53453i

  This result is stored in the original real array, i.e. a(0,0) contains

  29.05310, a(1,0) contains 0.00000, a(2,0) contains -1.09423 etc.

 */

void

main()

{

  int           i,j,ipa;

  int           ip;

  int           m,n,max_m2n,max_mn;

  int           lwork,lda;

  double        *a;

  double        *work_a;

  char          place,full;

CODE EXAMPLE 5-18 Example of Using the Partial Storage Option (Continued)
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  m = 8; n = 4;

  lda = m+2;

  a = (double *)malloc(lda*n*sizeof(double));

  max_m2n = m; if (2*n > m) max_m2n = 2*n;

  lwork = 2*(m+n+max_m2n)+30;

  work_a = (double *)malloc(lwork*sizeof(double));

  /* initialize a */

  ipa = 0;

  ip  = 0;

  for (j=0;j<n;j++) {

    for (i=0;i<m;i++) {

      a[ipa]=sin(.3*ip)+.7;

      ipa++;

      ip++;

    }

    ipa+=2;

  }

  dfft2i(m,n,work_a);

  full = 'N';

  place = 'I';

  dfft2f(place,full,m,n,a,lda,NULL,0,work_a,lwork);

  /* clean up */

  free );

  free(work_a);

}

CODE EXAMPLE 5-18 Example of Using the Partial Storage Option (Continued)
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Three-Dimensional FFT and Inverse
Transform Routines

The following routines are used to perform a three-dimensional fast Fourier

transform or inverse transform of a three-dimensional periodic sequence.

[R,D,C,Z]FFT3F

[R,D,C,Z]FFT3B

n1, k1 range from 0 to N1-1

n2, k2 range from 0 to N2-1

n3, k3 range from 0 to N3-1

W1 =

W2 =

W3 =

i =

isign = -1 in [R,D,C,Z]FFT3F

= 1 in [R,D,C,Z]FFT3B

Routine Function

[R,D,C,Z]FFT3I Initialize the work array WORKfor [R,D,C,Z]FFT3F or
[R,D,C,Z]FFT3B

[R,D,C,Z]FFT3F Compute Fourier coefficients of three-dimensional periodic sequence

[R,D,C,Z]FFT3B Compute periodic sequence from Fourier coefficients

H n1 n2 n3, ,( ) h k1 k2 k3, ,( ) W1 W2× W3××
k3 0=

n1 1–

∑
k2 0=

n2 1–

∑
k1 0=

n3 1–

∑=

F n1 n2 n3, ,( ) n1 n2 n3××( ) f k1 k2 k3, ,( ) W1 W2× W3××
k3 0=

n1 1–

∑
k2 0=

n2 1–

∑
k1 0=

n3 1–

∑=

eisign2π ik1n1 N1⁄

eisign2π ik2n2 N2⁄

eisign2π ik3n3 N3⁄

1–
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The xFFT3F routines compute the three-dimensional FFT by doing the following:

1. Perform a one-dimensional transform of the columns of the input vector.

2. Transpose the result matrix.

3. Perform a one-dimensional transform of the columns of the result matrix.

4. Reflect the result matrix so that the planes become columns.

5. Perform a one-dimensional transform of the columns of the result matrix.

6. Reflect and transpose the result matrix to restore the original order of the data

points.

Arguments for Three-Dimensional FFT Routines

Complex three-dimensional FFT routines use the arguments shown in TABLE 5-16.

Arguments for PLACE, FULL, B, and LDB are not used with the complex three-

dimensional FFT routines, because the transformed sequence is stored in the original

input array without any additional manipulations.

TABLE 5-16 Arguments for Complex Three-Dimensional FFT Routines

Argument Definition

M Number of rows to be transformed

N Number of columns to be transformed

K Number of planes to be transformed

A Three-dimensional array A(LDA,N,K) containing the sequences to

be transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed,

where LDA ≥ M

LD2A Second dimension of array to be transformed, where LD2A ≥ N

WORK Work array initialized by xFFT3I

LWORK Dimension of work array WORK
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Real three-dimensional FFT routines use the arguments shown in TABLE 5-17.

Normalization

The xFFT3 operations are unnormalized, so a call of xFFT3F followed by a call of

xFFT3B will multiply the input sequence by M*N*K.

Data Storage for Three-Dimensional FFT Routines

The data storage format for the computed Fourier coefficients depends upon

whether the sequence is complex or real.

TABLE 5-17 Arguments for Real Three-Dimensional FFT Routines

Argument Definition

PLACE ‘I’ or ‘i’ specifies that an in-place transform is performed.

‘O’ or ‘o’ specifies that an out-of-place transform is performed.

FULL RFFT3F or DFFT3F only:

‘F’ or ‘f’ specifies that a full result matrix is generated.

Any other character specifies that a partial result matrix is

generated.

M Number of rows to be transformed

N Number of columns to be transformed

K Number of planes to be transformed

A Three-dimensional array A(LDA,N,K) containing the sequences to

be transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed

B Three-dimensional array B(2*LDB,N,K) that stores the results of

an out-of-place transform

LDB Leading dimension of array that stores results of out-of-place

transform

WORK Work array initialized by xFFT3I

LWORK Dimension of work array WORK
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Storage of Complex Three-Dimensional Sequences

When CFFT3F or ZFFT3F computes the three-dimensional FFT of a complex

sequence, all Fourier coefficients are retained, and the results are stored in the

original three-dimensional array A(LDA, LD2A, K) . Additional storage options for

complex three-dimensional sequences are not required.

Storage of Real Three-Dimensional Sequences

The result of using RFFT3F or DFFT3F to compute the three-dimensional FFT of a

real sequence is a complex vector that contains twice the number of values as the

input sequence.

The data storage format of real three-dimensional FFT routines depends upon the

following storage options.

■ In-place or Out-of-place. When using In-Place, the results are stored in the

modified input array that contains one or two additional rows, depending upon

whether Mis odd or even. When using Out-of-Place, the results are stored in a

separate array.

■ Full or Partial. When using Full, complex conjugates are retained. When using

Partial, the complex conjugates are discarded.

When computing a real one-dimensional FFT, the complex result can be packed and

stored in the original array, because the values identically equal to zero and the

complex conjugates are not stored. When computing the real three-dimensional FFT

using the in-place and partial storage options, the complex conjugates are not stored,

but the values identically equal to zero are stored. Saving the values identically

equal to zero simplifies the indexing that occurs when computing the three-

dimensional FFT. However, the size of the original array is modified to contain one

or two additional rows, which are needed to store the values identically equal to

zero.
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The values of the arguments used with the real three-dimensional FFT routines

depend upon whether an in-place or out-of place transform is performed, and

whether the results are stored in a full or partial result matrix, as shown in

TABLE 5-18.

When computing the real 3D FFT of an input sequence of Mrows, N columns, and K
planes, the computed Fourier coefficients will be stored in a result matrix with 2*M
rows, N columns for each value of K when using the Full storage option. When using

the Partial storage option, the Fourier coefficients will be stored in a result matrix

with M+2 rows and N columns for each value of K when Mis even, or in M+1 rows

and N columns when Mis odd. For each value of K, the storage format of the Fourier

coefficients in the Mrows and N columns is the same as for the real two-dimensional

FFT routines. See “Storage of Real Two-Dimensional Sequences” on page 111.

TABLE 5-18 Relationship Between Values of Arguments for Real Three-Dimensional FFT
Routines

Full Result Array Partial Result Array

In-Place Transform B unused B unused

LDB unused LDB unused

LDA must be even LDA must be even

LDA ≥ 2*M LDA ≥ M+2 if Mis even

LDA ≥ M+1 if Mis odd

A(1:2*M, 1:N) A(1:M+2, 1:N) if Mis even

A(1:M+1, 1:N) if Mis odd

Out-of-Place Transform A unchanged A unchanged

LDA ≥ M LDA≥ M

LDB ≥ 2*M LDB ≥ M/2+1 if Mis even

LDB ≥ (M-1)/2+1 if Mis odd

B(1:2*M , 1:N , 1:K) B(1:M+2, 1:N , 1:K) if Mis even

B(1:M+1, 1:N, 1:K) if Mis odd
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Sample Program: Three-Dimensional FFT and

Inverse Transform

CODE EXAMPLE 5-19 uses CFFT3F to compute the three-dimensional FFT of a three-

dimensional complex sequence and CFFT3B to compute the inverse transform. The

computed Fourier coefficients are stored in the original complex array. The inverse

transform is unnormalized and can be normalized by dividing each value by M*N*K.

CODE EXAMPLE 5-19 Three-Dimensional Fast Fourier Transform and Inverse Transform

my_system% cat fft_ex19.f

      PROGRAM TEST

      INTEGER          LWORK, M, N, K

      PARAMETER        (K = 2)

      PARAMETER        (M = 2)

      PARAMETER        (N = 4)

      PARAMETER        (LWORK = 4 * (M + N + N) + 45)

      INTEGER           I, J, L

      REAL              PI, WORK(LWORK)

      REAL              X, Y

      COMPLEX           C(M,N,K)

C

      EXTERNAL          CFFT3B, CFFT3F, CFFT3I

      INTRINSIC         ACOS, CMPLX, COS, SIN

C     Initialize the array C to a complex sequence.

      PI = ACOS (-1.0)

      DO 120, L = 1, K

        DO 110, J = 1, N

          DO 100, I = 1, M

            X = SIN ((I - 1.0) * 2.0 * PI / N)

            Y = COS ((J - 1.0) * 2.0 * PI / M)

            C(I,J,L) = CMPLX (X, Y)

  100     CONTINUE

  110   CONTINUE

  120 CONTINUE

C
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      PRINT 1000

      DO 210, L = 1, K

        PRINT 1010, L

        DO 200, I = 1, M

          PRINT 1020, (C(I,J,L), J = 1, N)

  200   CONTINUE

  210 CONTINUE

      CALL CFFT3I (M, N, K, WORK)

      CALL CFFT3F (M, N, K, C, M, N, WORK, LWORK)

      PRINT 1030

      DO 310, L = 1, K

        PRINT 1010, L

        DO 300, I = 1, M

          PRINT 1020, (C(I,J,L), J = 1, N)

  300   CONTINUE

  310 CONTINUE

      CALL CFFT3B (M, N, K, C, M, N, WORK, LWORK)

      PRINT 1040

      DO 410, L = 1, K

        PRINT 1010, L

        DO 400, I = 1, M

          PRINT 1020, (C(I,J,L), J = 1, N)

  400   CONTINUE

  410 CONTINUE

C

 1000 FORMAT (1X, ’Original Sequences:’)

 1010 FORMAT (1X, ’  Plane’, I2)

 1020 FORMAT (5X, 100(F5.1,’ +’,F5.1,’i  ’))

 1030 FORMAT (/1X, ’Transformed Sequences:’)

 1040 FORMAT (/1X, ’Recovered Sequences:’)

      END

CODE EXAMPLE 5-19 Three-Dimensional Fast Fourier Transform and Inverse Transform
(Continued)
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my_system% f95 -dalign fft_ex19.f -xlic_lib=sunperf

my_system% a.out

 Original Sequences:

   Plane 1

0.0 + 1.0i 0.0 + -1.0i 0.0 + 1.0i 0.0 + -1.0i

1.0 + 1.0i 1.0 + -1.0i 1.0 + 1.0i 1.0 + -1.0i

   Plane 2

0.0 + 1.0i 0.0 + -1.0i 0.0 + 1.0i 0.0 + -1.0i

1.0 + 1.0i 1.0 + -1.0i 1.0 + 1.0i 1.0 + -1.0i

 Transformed Sequences:

   Plane 1

8.0 + 0.0i 0.0 + 0.0i 0.0 + 16.0i 0.0 + 0.0i

-8.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i

   Plane 2

0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i

0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i

 Recovered Sequences:

   Plane 1

0.0 + 16.0i 0.0 +-16.0i 0.0 + 16.0i 0.0 +-16.0i

16.0 + 16.0i 16.0 +-16.0i 16.0 + 16.0i 16.0 +-16.0i

   Plane 2

0.0 + 16.0i 0.0 +-16.0i 0.0 + 16.0i 0.0 +-16.0i

      16.0 + 16.0i   16.0 +-16.0i   16.0 + 16.0i   16.0 +-16.0i

CODE EXAMPLE 5-19 Three-Dimensional Fast Fourier Transform and Inverse Transform
(Continued)
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CHAPTER 6

Using Sun Performance Library
Convolution and Correlation
Routines

Sun Performance Library contains the convolution routines shown in TABLE 6-1.

Convolution and Correlation Routines

The [S,D,C,Z]CNVCOR routines are used to compute the convolution or

correlation of a filter with one or more input vectors. The [S,D,C,Z]CNVCOR2

routines are used to compute the two-dimensional convolution or correlation of two

matrices.

TABLE 6-1 Convolution and Correlation Routines

Routine Arguments Function

SCNVCOR,
DCNVCOR,
CCNVCOR,
ZCNVCOR

CNVCOR,FOUR,NX,X,IFX,
INCX,NY,NPRE,M,Y,IFY,
INC1Y,INC2Y,NZ,K,Z,
IFZ,INC1Z,INC2Z,WORK,
LWORK

Convolution or correlation of two

vectors

SCNVCOR2,
DCNVCOR2,
CCNVCOR2,
ZCNVCOR2

CNVCOR,METHOD,TRANSX,
SCRATCHX,TRANSY,
SCRATCHY,MX,NX,X,LDX,
MY,NY,MPRE,NPRE,Y,LDY,
MZ,NZ,Z,LDZ,WORKIN,
LWORK

Convolution or correlation of two

matrices
135



Arguments for Convolution and Correlation

Routines

The one-dimensional convolution and correlation routines use the arguments shown

in TABLE 6-2.

TABLE 6-2 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.

‘R’ or ‘r’ specifies that correlation is computed.

FOUR ‘T’ or ‘t’ specifies that the Fourier transform method is used.

‘D’ or ‘d’ specifies that the direct method is used, where the

convolution or correlation is computed from the definition of

convolution and correlation. (See Note 1)

NX Length of filter vector, where NX≥ 0.

X Filter vector

IFX Index of first element of X, where NX≥ IFX ≥ 1

INCX Stride between elements of the vector in X, where INCX > 0.

NY Length of input vectors, where NY≥ 0.

NPRE Number of implicit zeros prefixed to the Y vectors, where NPRE≥ 0.

M Number of input vectors, where M≥ 0.

Y Input vectors.

IFY Index of the first element of Y, where NY≥ IFY ≥ 1

INC1Y Stride between elements of the input vectors in Y, where INC1Y > 0.

INC2Y Stride between input vectors in Y, where INC2Y > 0.

NZ Length of the output vectors, where NZ ≥ 0.

K Number of Z vectors, where K ≥ 0. If K < M, only the first K vectors

will be processed. If K > M, all input vectors will be processed and

the last M-K output vectors will be set to zero on exit.

Z Result vectors

IFZ Index of the first element of Z, where NZ ≥ IFZ ≥ 1

INC1Z Stride between elements of the output vectors in Z, where

INCYZ > 0.
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Note 1. When the lengths of the two sequences to be convolved are similar, the FFT

method is faster than the direct method. However, when one sequence is much

larger than the other, such as when convolving a large time-series signal with a small

filter, the direct method performs faster than the FFT-based method.

The two-dimensional convolution and correlation routines use the arguments shown

in TABLE 6-3.

INC2Z Stride between output vectors in Z, where INC2Z > 0.

WORK Work array

LWORK Length of work array

TABLE 6-3 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.

‘R’ or ‘r’ specifies that correlation is computed.

METHOD ‘T’ or ‘t’ specifies that the Fourier transform method is used.

‘D’ or ‘d’ specifies that the direct method is used, where the

convolution or correlation is computed from the definition of

convolution and correlation. (See Note 1)

TRANSX ‘N’ or ‘n’ specifies that X is the filter matrix

‘T’ or ‘t’ specifies that the transpose of X is the filter matrix

SCRATCHX ‘N’ or ‘n’ specifies that X must be preserved

‘S’ or ‘s’ specifies that X can be used for scratch space. The

contents of X are undefined after returning from a call where X is

used for scratch space.

TRANSY ‘N’ or ‘n’ specifies that Y is the input matrix

‘T’ or ‘t’ specifies that the transpose of Y is the input matrix

SCRATCHY ‘N’ or ‘n’ specifies that Y must be preserved

‘S’ or ‘s’ specifies that Y can be used for scratch space. The

contents of X are undefined after returning from a call where Y is

used for scratch space.

MX Number of rows in the filter matrix X, where MX≥ 0

NX Number of columns in the filter matrix X, where NX≥ 0

X Filter matrix. X is unchanged on exit when SCRATCHXis ‘N’ or ‘n’
and undefined on exit when SCRATCHXis ‘S’ or ‘s’ .

TABLE 6-2 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR(Continued)

Argument Definition
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Note 1. When the sizes of the two matrices to be convolved are similar, the FFT

method is faster than the direct method. However, when one sequence is much

larger than the other, such as when convolving a large data set with a small filter, the

direct method performs faster than the FFT-based method.

Work Array WORKfor Convolution and

Correlation Routines

The minimum dimensions for the WORKwork arrays used with the one-dimensional

and two-dimensional convolution and correlation routines are shown in TABLE 6-6 on

page 140. The minimum dimensions for one-dimensional convolution and

correlation routines depend upon the values of the arguments NPRE, NX, NY, and NZ.

LDX Leading dimension of array containing the filter matrix X.

MY Number of rows in the input matrix Y, where MY≥ 0.

NY Number of columns in the input matrix Y, where NY≥ 0

MPRE Number of implicit zeros prefixed to each row of the input matrix Y
vectors, where MPRE≥ 0.

NPRE Number of implicit zeros prefixed to each column of the input

matrix Y, where NPRE≥ 0.

Y Input matrix. Y is unchanged on exit when SCRATCHYis ‘N’ or ‘n’
and undefined on exit when SCRATCHYis ‘S’ or ‘s’ .

LDY Leading dimension of array containing the input matrix Y.

MZ Number of output vectors, where MZ≥ 0.

NZ Length of output vectors, where NZ ≥ 0.

Z Result vectors

LDZ Leading dimension of the array containing the result matrix Z,

where LDZ ≥ MAX(1,MZ) .

WORKIN Work array

LWORK Length of work array

TABLE 6-3 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2(Continued)

Argument Definition
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The minimum dimensions for two-dimensional convolution and correlation routines

depend upon the values of the arguments shown TABLE 6-4.

MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix

and Y is the input matrix.

TABLE 6-4 Arguments Affecting Minimum Work Array Size for Two-Dimensional
Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

MX Number of rows in the filter matrix

MY Number of rows in the input matrix

MZ Number of output vectors

NX Number of columns in the filter matrix

NY Number of columns in the input matrix

NZ Length of output vectors

MPRE Number of implicit zeros prefixed to each row of the input

matrix

NPRE Number of implicit zeros prefixed to each column of the input

matrix

MPOST MAX(0,MZ-MYC)

NPOST MAX(0,NZ-NYC)

MYC MPRE+ MPOST+ MYC_INIT, where MYC_INIT depends upon

filter and input matrices, as shown in TABLE 6-5

NYC NPRE+ NPOST+ NYC_INIT , where NYC_INIT depends upon

filter and input matrices, as shown in TABLE 6-5

TABLE 6-5 MYC_INIT and NYC_INIT Dependencies

Y Transpose(Y)

X Transpose(X) X Transpose(X)

MYC_INIT MAX(MX,MY) MAX(NX,MY) MAX(MX,NY) MAX(NX,NY)

NYC_INIT MAX(NX,NY) MAX(MX,NY) MAX(NX,MY) MAX(MX,MY)
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The values assigned to the minimum work array size is shown in TABLE 6-6.

Sample Program: Convolution

CODE EXAMPLE 6-1 uses CCNVCORto perform FFT convolution of two complex

vectors.

TABLE 6-6 Minimum Dimensions and Data Types for WORKWork array Used With
Convolution and Correlation Routines

Routine Minimum Work Array Size ( WORK) Type

SCNVCOR, DCNVCOR 4*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY))

REAL, REAL*8

CCNVCOR, ZCNVCOR 2*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY)))

COMPLEX,
COMPLEX*16

SCNVCOR21, DCNVCOR21

1. Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

MY + NY + 30 COMPLEX,
COMPLEX*16

CCNVCOR21, ZCNVCOR21 If MY= NY: MYC + 8
If MY≠ NY: MYC + NYC + 16

COMPLEX,
COMPLEX*16

CODE EXAMPLE 6-1 One-Dimensional Convolution Using Fourier Transform Method and
COMPLEXData

my_system% cat con_ex20.f

      PROGRAM TEST

C

      INTEGER           LWORK

      INTEGER           N

      PARAMETER        (N = 3)

      PARAMETER        (LWORK = 4 * N + 15)

      COMPLEX           P1(N), P2(N), P3(2*N-1), WORK(LWORK)

      DATA P1 / 1, 2, 3 /,  P2 / 4, 5, 6 /

C

      EXTERNAL          CCNVCOR

C

      PRINT *, ’P1:’

      PRINT 1000, P1

      PRINT *, ’P2:’

      PRINT 1000, P2
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If any vector overlaps a writable vector, either because of argument aliasing or ill-

chosen values of the various INC arguments, the results are undefined and can vary

from one run to the next.

The most common form of the computation, and the case that executes fastest, is

applying a filter vector X to a series of vectors stored in the columns of Y with the

result placed into the columns of Z. In that case, INCX = 1, INC1Y = 1, INC2Y ≥ NY,
INC1Z = 1, INC2Z ≥ NZ. Another common form is applying a filter vector X to a

series of vectors stored in the rows of Y and store the result in the row of Z, in which

case INCX = 1, INC1Y ≥ NY, INC2Y = 1, INC1Z ≥ NZ, and INC2Z = 1.

CALL CCNVCOR (’V’, ’T’, N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,

     $              2 * N - 1, 1, P3, 1, 1, 1, WORK, LWORK)

C

      PRINT *, ’P3:’

      PRINT 1000, P3

C

 1000 FORMAT (1X, 100(F4.1,’ +’,F4.1,’i  ’))

C

      END

my_system% f95 -dalign con_ex20.f -xlic_lib=sunperf

my_system% a.out

 P1:

  1.0 + 0.0i   2.0 + 0.0i   3.0 + 0.0i

 P2:

  4.0 + 0.0i   5.0 + 0.0i   6.0 + 0.0i

 P3:

4.0 + 0.0i 13.0 + 0.0i 28.0 + 0.0i 27.0 + 0.0i 18.0 + 0.0i

CODE EXAMPLE 6-1 One-Dimensional Convolution Using Fourier Transform Method and
COMPLEXData (Continued)
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Convolution can be used to compute the products of polynomials. CODE EXAMPLE 6-2

uses SCNVCORto compute the product of 1 + 2x + 3x2 and 4 + 5x + 6x2.

Making the output vector longer than the input vectors, as in the example above,

implicitly adds zeros to the end of the input. No zeros are actually required in any of

the vectors, and none are used in the example, but the padding provided by the

implied zeros has the effect of an end-off shift rather than an end-around shift of the

input vectors.

CODE EXAMPLE 6-2 One-Dimensional Convolution Using Fourier Transform Method and
REALData

my_system% cat con_ex21.f

      PROGRAM TEST

      INTEGER     LWORK, NX, NY, NZ

      PARAMETER  (NX = 3)

      PARAMETER  (NY = NX)

      PARAMETER  (NZ = 2*NY-1)

      PARAMETER  (LWORK = 4*NZ+32)

      REAL        X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

      DATA X / 1, 2, 3 /,  Y / 4, 5, 6 /, WORK / LWORK*0 /

C

      PRINT 1000, ’X’

      PRINT 1010, X

      PRINT 1000, ’Y’

      PRINT 1010, Y

      CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,

     $NY, 0, 1, Y, 1, 1, 1,   NZ, 1, Z, 1, 1, 1, WORK, LWORK)

      PRINT 1020, ’Z’

      PRINT 1010, Z

 1000 FORMAT (1X, ’Input vector ’, A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, ’Output vector ’, A1)

      END

my_system% f95 -dalign con_ex21.f -xlic_lib=sunperf

my_system% a.out

 Input vector X

    1.   2.   3.

 Input vector Y

    4.   5.   6.

 Output vector Z

    4.  13.  28.  27.  18.
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CODE EXAMPLE 6-3 will compute the product between the vector [ 1, 2, 3 ] and the

circulant matrix defined by the initial column vector [ 4, 5, 6 ]:

CODE EXAMPLE 6-3 Convolution Used to Compute the Product of a Vector and Circulant
Matrix

my_system% cat con_ex22.f

      PROGRAM TEST

C

      INTEGER     LWORK, NX, NY, NZ

      PARAMETER  (NX = 3)

      PARAMETER  (NY = NX)

      PARAMETER  (NZ = NY)

      PARAMETER  (LWORK = 4*NZ+32)

      REAL        X(NX), Y(NY), Z(NZ), WORK(LWORK)

C

      DATA X / 1, 2, 3 /,  Y / 4, 5, 6 /, WORK / LWORK*0 /

C

      PRINT 1000, ’X’

      PRINT 1010, X

      PRINT 1000, ’Y’

      PRINT 1010, Y

      CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,

     $NY, 0, 1, Y, 1, 1, 1,   NZ, 1, Z, 1, 1, 1,

     $WORK, LWORK)

      PRINT 1020, ’Z’

      PRINT 1010, Z

C

 1000 FORMAT (1X, ’Input vector ’, A1)

 1010 FORMAT (1X, 300F5.0)

 1020 FORMAT (1X, ’Output vector ’, A1)

      END

my_system% f95 -dalign con_ex22.f -xlic_lib=sunperf

my_system% a.out

 Input vector X

    1.   2.   3.

 Input vector Y

    4.   5.   6.

 Output vector Z

   31.  31.  28.
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The difference between this example and the previous example is that the length of

the output vector is the same as the length of the input vectors, so there are no

implied zeros on the end of the input vectors. With no implied zeros to shift into, the

effect of an end-off shift from the previous example does not occur and the end-

around shift results in a circulant matrix product.

CODE EXAMPLE 6-4 Two-Dimensional Convolution Using Direct Method

my_system% cat con_ex23.f

      PROGRAM TEST

C

      INTEGER           M, N

      PARAMETER        (M = 2)

      PARAMETER        (N = 3)

C

      INTEGER           I, J

      COMPLEX           P1(M,N), P2(M,N), P3(M,N)

      DATA P1 / 1, -2, 3, -4, 5, -6 /,  P2 / -1, 2, -3, 4, -5, 6 /

      EXTERNAL          CCNVCOR2

C

      PRINT *, ’P1:’

      PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)

      PRINT *, ’P2:’

      PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)

C

      CALL CCNVCOR2 (’V’, ’Direct’, ’No Transpose X’, ’No Overwrite X’,

     $   ’No Transpose Y’, ’No Overwrite Y’, M, N, P1, M,

     $   M, N, 0, 0, P2, M, M, N, P3, M, 0, 0)

C

      PRINT *, ’P3:’

      PRINT 1000, ((P3(I,J), J = 1, N), I = 1, M)

C

 1000 FORMAT (3(F5.1,’ +’,F5.1,’i  ’))

C

      END
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my_system% f95 -dalign con_ex23.f -xlic_lib=sunperf

my_system% a.out

 P1:

  1.0 +  0.0i    3.0 +  0.0i    5.0 +  0.0i

 -2.0 +  0.0i   -4.0 +  0.0i   -6.0 +  0.0i

 P2:

 -1.0 +  0.0i   -3.0 +  0.0i   -5.0 +  0.0i

  2.0 +  0.0i    4.0 +  0.0i    6.0 +  0.0i

 P3:

-83.0 +  0.0i  -83.0 +  0.0i  -59.0 +  0.0i

 80.0 +  0.0i   80.0 +  0.0i   56.0 +  0.0i

CODE EXAMPLE 6-4 Two-Dimensional Convolution Using Direct Method (Continued)
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APPENDIX A

Sun Performance Library Routines

This appendix lists the Sun Performance Library routines by library, routine name,

and function.

For a description of the function and a listing of the Fortran and C interfaces, refer to

the section 3P man pages for the individual routines. For example, to display the

man page for the SBDSQRroutine, type man -s 3P sbdsqr . The man page routine

names use lowercase letters.

For many routines, separate routines exist that operate on different data types.

Rather than list each routine separately, a lowercase x is used in a routine name to

denote single, double, complex, and double complex data types. For example, the

routine xBDSQRis available as four routines that operate with the following data

types:

■ SBDSQR– Single data type

■ BBDSQR– Double data type

■ CBDSQR– Complex data type

■ ZBDSQR– Double complex data type

If a routine name is not available for S, B, C, and Z, the x prefix will not be used and

each routine name will be listed.
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LAPACK Routines

TABLE A-1 LAPACK (Linear Algebra Package) Routines

Routine Function

Bidiagonal Matrix

SBDSDCor

DBDSDC
Computes the singular value decomposition (SVD) of a bidirectional

matrix, using a divide and conquer method.

xBDSQR Computes SVD of real upper or lower bidiagonal matrix, using the

bidirectional QR algorithm.

Diagonal Matrix

SDISNA or

DDISNA
Computes the reciprocal condition numbers for eigenvectors of real

symmetric or complex Hermitian matrix.

General Band Matrix

xGBBRD Reduces real or complex general band matrix to upper bidiagonal form.

xGBCON Estimates the reciprocal of the condition number of general band matrix

using LU factorization.

xGBEQU Computes row and column scalings to equilibrate a general band matrix

and reduce its condition number.

xGBRFS Refines solution to general banded system of linear equations.

xGBSV Solves a general banded system of linear equations (simple driver).

xGBSVX Solves a general banded system of linear equations (expert driver).

xGBTRF LU factorization of a general band matrix using partial pivoting with row

interchanges.

xGBTRS Solves a general banded system of linear equations, using the factorization

computed by xGBTRF.

General Matrix (Unsymmetric or Rectangular)

xGEBAK Forms the right or left eigenvectors of a general matrix by backward

transformation on the computed eigenvectors of the balanced matrix

output by xGEBAL.

xGEBAL Balances a general matrix.

xGEBRD Reduces a general matrix to upper or lower bidiagonal form by an

orthogonal transformation.

xGECON Estimates the reciprocal of the condition number of a general matrix, using

the factorization computed by xGETRF.

xGEEQU Computes row and column scalings intended to equilibrate a general

rectangular matrix and reduce its condition number.
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xGEES Computes the eigenvalues and Schur factorization of a general matrix

(simple driver).

xGEESX Computes the eigenvalues and Schur factorization of a general matrix

(expert driver).

xGEEV Computes the eigenvalues and left and right eigenvectors of a general

matrix (simple driver).

xGEEVX Computes the eigenvalues and left and right eigenvectors of a general

matrix (expert driver).

xGEGS Depreciated routine replaced by xGGES.

xGEGV Depreciated routine replaced by xGGEV.

xGEHRD Reduces a general matrix to upper Hessenberg form by an orthogonal

similarity transformation.

xGELQF Computes LQ factorization of a general rectangular matrix.

xGELS Computes the least squares solution to an over-determined system of linear

equations using a QR or LQ factorization of A.

xGELSD Computes the least squares solution to an over-determined system of linear

equations using a divide and conquer method using a QR or LQ

factorization of A.

xGELSS Computes the minimum-norm solution to a linear least squares problem by

using the SVD of a general rectangular matrix (simple driver).

xGELSX Depreciated routine replaced by xSELSY.

xGELSY Computes the minimum-norm solution to a linear least squares problem

using a complete orthogonal factorization.

xGEQLF Computes QL factorization of a general rectangular matrix.

xGEQP3 Computes QR factorization of general rectangular matrix using Level 3

BLAS.

xGEQPF Depreciated routine replaced by xGEQP3.

xGEQRF Computes QR factorization of a general rectangular matrix.

xGERFS Refines solution to a system of linear equations.

xGERQF Computes RQ factorization of a general rectangular matrix.

xGESDD Computes SVD of general rectangular matrix using a divide and conquer

method.

xGESV Solves a general system of linear equations (simple driver).

xGESVX Solves a general system of linear equations (expert driver).

xGESVD Computes SVD of general rectangular matrix.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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xGETRF Computes an LU factorization of a general rectangular matrix using partial

pivoting with row interchanges.

xGETRI Computes inverse of a general matrix using the factorization computed by

xGETRF.

xGETRS Solves a general system of linear equations using the factorization

computed by xGETRF.

General Matrix-Generalized Problem (Pair of General Matrices)

xGGBAK Forms the right or left eigenvectors of a generalized eigenvalue problem

based on the output by xGGBAL.

xGGBAL Balances a pair of general matrices for the generalized eigenvalue problem.

xGGES Computes the generalized eigenvalues, Schur form, and left and/or right

Schur vectors for two nonsymmetric matrices.

xGGESX Computes the generalized eigenvalues, Schur form, and left and/or right

Schur vectors.

xGGEV Computes the generalized eigenvalues and the left and/or right

generalized eigenvalues for two nonsymmetric matrices.

xGGEVX Computes the generalized eigenvalues and the left and/or right

generalized eigenvectors.

xGGGLM Solves the GLM (Generalized Linear Regression Model) using the GQR

(Generalized QR) factorization.

xGGHRD Reduces two matrices to generalized upper Hessenberg form using

orthogonal transformations.

xGGLSE Solves the LSE (Constrained Linear Least Squares Problem) using the GRQ

(Generalized RQ) factorization.

xGGQRF Computes generalized QR factorization of two matrices.

xGGRQF Computes generalized RQ factorization of two matrices.

xGGSVD Computes the generalized singular value decomposition.

xGGSVP Computes an orthogonal or unitary matrix as a preprocessing step for

calculating the generalized singular value decomposition.

General Tridiagonal Matrix

xGTCON Estimates the reciprocal of the condition number of a tridiagonal matrix,

using the LU factorization as computed by xGTTRF.

xGTRFS Refines solution to a general tridiagonal system of linear equations.

xGTSV Solves a general tridiagonal system of linear equations (simple driver).

xGTSVX Solves a general tridiagonal system of linear equations (expert driver).

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
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xGTTRF Computes an LU factorization of a general tridiagonal matrix using partial

pivoting and row exchanges.

xGTTRS Solves general tridiagonal system of linear equations using the

factorization computed by x.

Hermitian Band Matrix

CHBEVor

ZHBEV
(Replacement with newer version CHBEVDor ZHBEVDsuggested)

Computes all eigenvalues and eigenvectors of a Hermitian band matrix.

CHBEVDor

ZHBEVD
Computes all eigenvalues and eigenvectors of a Hermitian band matrix

and uses a divide and conquer method to calculate eigenvectors.

CHBEVXor

ZHBEVX
Computes selected eigenvalues and eigenvectors of a Hermitian band

matrix.

CHBGSTor

ZHBGST
Reduces Hermitian-definite banded generalized eigenproblem to standard

form.

CHBGVor

ZHBGV
(Replacement with newer version CHBGVDor ZHBGVDsuggested)

Computes all eigenvalues and eigenvectors of a generalized Hermitian-

definite banded eigenproblem.

CHBGVDor

ZHBGVD
Computes all eigenvalues and eigenvectors of generalized Hermitian-

definite banded eigenproblem and uses a divide and conquer method to

calculate eigenvectors.

CHBGVXor

ZHBGVX
Computes selected eigenvalues and eigenvectors of a generalized

Hermitian-definite banded eigenproblem.

CHBTRDor

ZHBTRD
Reduces Hermitian band matrix to real symmetric tridiagonal form by

using a unitary similarity transform.

Hermitian Matrix

CHECONor

ZHECON
Estimates the reciprocal of the condition number of a Hermitian matrix

using the factorization computed by CHETRFor ZHETRF.

CHEEVor

ZHEEV
(Replacement with newer version CHEEVRor ZHEEVRsuggested)

Computes all eigenvalues and eigenvectors of a Hermitian matrix (simple

driver).

CHEEVDor

ZHEEVD
(Replacement with newer version CHEEVRor ZHEEVRsuggested)

Computes all eigenvalues and eigenvectors of a Hermitian matrix and uses

a divide and conquer method to calculate eigenvectors.

CHEEVRor

ZHEEVR
Computes selected eigenvalues and the eigenvectors of a complex

Hermitian matrix.

CHEEVXor

ZHEEVX
Computes selected eigenvalues and eigenvectors of a Hermitian matrix

(expert driver).

CHEGSTor

ZHEGST
Reduces a Hermitian-definite generalized eigenproblem to standard form

using the factorization computed by CPOTRFor ZPOTRF.

TABLE A-1 LAPACK (Linear Algebra Package) Routines (Continued)

Routine Function
Appendix A Sun Performance Library Routines 151



CHEGVor

ZHEGV
(Replacement with newer version CHEGVDor ZHEGVDsuggested)

Computes all the eigenvalues and eigenvectors of a complex generalized

Hermitian-definite eigenproblem.

CHEGVDor

ZHEGVD
Computes all the eigenvalues and eigenvectors of a complex generalized

Hermitian-definite eigenproblem and uses a divide and conquer method to

calculate eigenvectors.

CHEGVXor

ZHEGVX
Computes selected eigenvalues and eigenvectors of a complex generalized

Hermitian-definite eigenproblem.

CHERFSor

ZHERFS
Improves the computed solution to a system of linear equations when the

coefficient matrix is Hermitian indefinite.

CHESVor

ZHESV
Solves a complex Hermitian indefinite system of linear equations (simple

driver).

CHESVXor

ZHESVX
Solves a complex Hermitian indefinite system of linear equations (simple

driver).

CHETRDor

ZHETRD
Reduces a Hermitian matrix to real symmetric tridiagonal form by using a

unitary similarity transformation.

CHETRFor

ZHERTF
Computes the factorization of a complex Hermitian indefinite matrix, using

the diagonal pivoting method.

CHETRI or

ZHETRI
Computes the inverse of a complex Hermitian indefinite matrix, using the

factorization computed by CHETRFor ZHETRF.

CHETRSor

ZHETRS
Solves a complex Hermitian indefinite matrix, using the factorization

computed by CHETRFor ZHETRF.

Hermitian Matrix in Packed Storage

CHPCONor

ZHPCON
Estimates the reciprocal of the condition number of a Hermitian indefinite

matrix in packed storage using the factorization computed by CHPTRFor

ZHPTRF.

CHPEVor

ZHPEV
(Replacement with newer version CHPEVDor ZHPEVDsuggested)

Computes all the eigenvalues and eigenvectors of a Hermitian matrix in

packed storage (simple driver).

CHPEVXor

ZHPEVX
Computes selected eigenvalues and eigenvectors of a Hermitian matrix in

packed storage (expert driver).

CHPEVDor

ZHPEVD
Computes all the eigenvalues and eigenvectors of a Hermitian matrix in

packed storage and uses a divide and conquer method to calculate

eigenvectors.

CHPGSTor

ZHPGST
Reduces a Hermitian-definite generalized eigenproblem to standard form

where the coefficient matrices are in packed storage and uses the

factorization computed by CPPTRFor ZPPTRF.
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CHPGVor

ZHPGV
(Replacement with newer version CHPGVDor ZHPGVDsuggested)

Computes all the eigenvalues and eigenvectors of a generalized Hermitian-

definite eigenproblem where the coefficient matrices are in packed storage

(simple driver).

CHPGVXor

ZHPGVX
Computes selected eigenvalues and eigenvectors of a generalized

Hermitian-definite eigenproblem where the coefficient matrices are in

packed storage (expert driver).

CHPGVDor

ZHPGVD
Computes all the eigenvalues and eigenvectors of a generalized Hermitian-

definite eigenproblem where the coefficient matrices are in packed storage,

and uses a divide and conquer method to calculate eigenvectors.

CHPRFSor

ZHPRFS
Improves the computed solution to a system of linear equations when the

coefficient matrix is Hermitian indefinite in packed storage.

CHPSVor

ZHPSV
Computes the solution to a complex system of linear equations where the

coefficient matrix is Hermitian in packed storage (simple driver).

CHPSVXor

ZHPSVX
Uses the diagonal pivoting factorization to compute the solution to a

complex system of linear equations where the coefficient matrix is

Hermitian in packed storage (expert driver).

CHPTRDor

ZHPTRD
Reduces a complex Hermitian matrix stored in packed form to real

symmetric tridiagonal form.

CHPTRFor

ZHPTRF
Computes the factorization of a complex Hermitian indefinite matrix in

packed storage, using the diagonal pivoting method.

CHPTRI or

ZHPTRI
Computes the inverse of a complex Hermitian indefinite matrix in packed

storage using the factorization computed by CHPTRFor ZHPTRF.

CHPTRSor

ZHPTRS
Solves a complex Hermitian indefinite matrix in packed storage, using the

factorization computed by CHPTRFor ZHPTRF.

Upper Hessenberg Matrix

xHSEIN Computes right and/or left eigenvectors of upper Hessenberg matrix using

inverse iteration.

xHSEQR Computes eigenvectors and Shur factorization of upper Hessenberg matrix

using multishift QR algorithm.

Upper Hessenberg Matrix-Generalized Problem (Hessenberg and Triangular Matrix)

xHGEQZ Implements single-/double-shift version of QZ method for finding the

generalized eigenvalues of the equation det(A - w(i) * B) = 0.
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Real Orthogonal Matrix in Packed Storage

SOPGTRor

DOPGTR
Generates an orthogonal transformation matrix from a tridiagonal matrix

determined by SSPTRDor DSPTRD.

SOPMTRor

DOPMTR
Multiplies a general matrix by the orthogonal transformation matrix

reduced to tridiagonal form by SSPTRDor DSPTRD.

Real Orthogonal Matrix

SORGBRor

DORGBR
Generates the orthogonal transformation matrices from reduction to

bidiagonal form, as determined by SGEBRDor DGEBRD.

SORGHRor

DORGHR
Generates the orthogonal transformation matrix reduced to Hessenberg

form, as determined by SGEHRDor DGEHRD.

SORGLQor

DORGLQ
Generates an orthogonal matrix Q from an LQ factorization, as returned by

SGELQFor DGELQF.

SORGQLor

DORGQL
Generates an orthogonal matrix Q from a QL factorization, as returned by

SGEQLFor DGEQLF.

SORGQRor

DORGQR
Generates an orthogonal matrix Q from a QR factorization, as returned by

SGEQRFor DGEQRF.

SORGRQor

DORGRQ
Generates orthogonal matrix Q from an RQ factorization, as returned by

SGERQFor DGERQF.

SORGTRor

DORGTR
Generates an orthogonal matrix reduced to tridiagonal form by SSYTRDor

DSYTRD.

SORMBRor

DORMBR
Multiplies a general matrix with the orthogonal matrix reduced to

bidiagonal form, as determined by SGEBRDor DGEBRD.

SORMHRor

DORMHR
Multiplies a general matrix by the orthogonal matrix reduced to

Hessenberg form by SGEHRDor DGEHRD.

SORMLQor

DORMLQ
Multiplies a general matrix by the orthogonal matrix from an LQ

factorization, as returned by SGELQFor DGELQF.

SORMQLor

DORMQL
Multiplies a general matrix by the orthogonal matrix from a QL

factorization, as returned by SGEQLFor DGEQLF.

SORMQRor

DORMQR
Multiplies a general matrix by the orthogonal matrix from a QR

factorization, as returned by SGEQRFor DGEQRF.

SORMR3or

DORMR3
Multiplies a general matrix by the orthogonal matrix returned by STZRZF
or DTZRZF.

SORMRQor

DORMRQ
Multiplies a general matrix by the orthogonal matrix from an RQ

factorization returned by SGERQFor DGERQF.

SORMRZor

DORMRZ
Multiplies a general matrix by the orthogonal matrix from an RZ

factorization, as returned by STZRZFor DTZRZF.
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SORMTRor

DORMTR
Multiplies a general matrix by the orthogonal transformation matrix

reduced to tridiagonal form by SSYTRDor DSYTRD.

Symmetric or Hermitian Positive Definite Band Matrix

xPBCON Estimates the reciprocal of the condition number of a symmetric or

Hermitian positive definite band matrix, using the Cholesky factorization

returned by xPBTRF.

xPBEQU Computes equilibration scale factors for a symmetric or Hermitian positive

definite band matrix.

xPBRFS Refines solution to a symmetric or Hermitian positive definite banded

system of linear equations.

xPBSTF Computes a split Cholesky factorization of a real symmetric positive

definite band matrix.

xPBSV Solves a symmetric or Hermitian positive definite banded system of linear

equations (simple driver).

xPBSVX Solves a symmetric or Hermitian positive definite banded system of linear

equations (expert driver).

xPBTRF Computes Cholesky factorization of a symmetric or Hermitian positive

definite band matrix.

xPBTRS Solves symmetric positive definite banded matrix, using the Cholesky

factorization computed by xPBTRF.

Symmetric or Hermitian Positive Definite Matrix

xPOCON Estimates the reciprocal of the condition number of a symmetric or

Hermitian positive definite matrix, using the Cholesky factorization

returned by xPOTRF.

xPOEQU Computes equilibration scale factors for a symmetric or Hermitian positive

definite matrix.

xPORFS Refines solution to a linear system in a Cholesky-factored symmetric or

Hermitian positive definite matrix.

xPOSV Solves a symmetric or Hermitian positive definite system of linear

equations (simple driver).

xPOSVX Solves a symmetric or Hermitian positive definite system of linear

equations (expert driver).

xPOTRF Computes Cholesky factorization of a symmetric or Hermitian positive

definite matrix.

xPOTRI Computes the inverse of a symmetric or Hermitian positive definite matrix

using the Cholesky-factorization returned by xPOTRF.
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xPOTRS Solves a symmetric or Hermitian positive definite system of linear

equations, using the Cholesky factorization returned by xPOTRF.

Symmetric or Hermitian Positive Definite Matrix in Packed Storage

xPPCON Reciprocal condition number of a Cholesky-factored symmetric positive

definite matrix in packed storage.

xPPEQU Computes equilibration scale factors for a symmetric or Hermitian positive

definite matrix in packed storage.

xPPRFS Refines solution to a linear system in a Cholesky-factored symmetric or

Hermitian positive definite matrix in packed storage.

xPPSV Solves a linear system in a symmetric or Hermitian positive definite matrix

in packed storage (simple driver).

xPPSVX Solves a linear system in a symmetric or Hermitian positive definite matrix

in packed storage (expert driver).

xPPTRF Computes Cholesky factorization of a symmetric or Hermitian positive

definite matrix in packed storage.

xPPTRI Computes the inverse of a symmetric or Hermitian positive definite matrix

in packed storage using the Cholesky-factorization returned by xPPTRF.

xPPTRS Solves a symmetric or Hermitian positive definite system of linear

equations where the coefficient matrix is in packed storage, using the

Cholesky factorization returned by xPPTRF.

Symmetric or Hermitian Positive Definite Tridiagonal Matrix

xPTCON Estimates the reciprocal of the condition number of a symmetric or

Hermitian positive definite tridiagonal matrix using the Cholesky

factorization returned by xPTTRF.

xPTEQR Computes all eigenvectors and eigenvalues of a real symmetric or

Hermitian positive definite system of linear equations.

xPTRFS Refines solution to a symmetric or Hermitian positive definite tridiagonal

system of linear equations.

xPTSV Solves a symmetric or Hermitian positive definite tridiagonal system of

linear equations (simple driver).

xPTSVX Solves a symmetric or Hermitian positive definite tridiagonal system of

linear equations (expert driver).

xPTTRF Computes the LDLH factorization of a symmetric or Hermitian positive

definite tridiagonal matrix.

xPTTRS Solves a symmetric or Hermitian positive definite tridiagonal system of

linear equations using the LDLH factorization returned by xPTTRF.
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Real Symmetric Band Matrix

SSBEVor

DSBEV
(Replacement with newer version SSBEVDor DSBEVDsuggested)

Computes all eigenvalues and eigenvectors of a symmetric band matrix.

SSBEVDor

DSBEVD
Computes all eigenvalues and eigenvectors of a symmetric band matrix

and uses a divide and conquer method to calculate eigenvectors.

SSBEVXor

DSBEVX
Computes selected eigenvalues and eigenvectors of a symmetric band

matrix.

SSBGSTor

DSBGST
Reduces symmetric-definite banded generalized eigenproblem to standard

form.

SSBGVor

DSBGV
(Replacement with newer version SSBGVDor DSBGVDsuggested)

Computes all eigenvalues and eigenvectors of a generalized symmetric-

definite banded eigenproblem.

SSBGVDor

DSBGVD
Computes all eigenvalues and eigenvectors of generalized symmetric-

definite banded eigenproblem and uses a divide and conquer method to

calculate eigenvectors.

SSBGVXor

DSBGVX
Computes selected eigenvalues and eigenvectors of a generalized

symmetric-definite banded eigenproblem.

SSBTRDor

DSBTRD
Reduces symmetric band matrix to real symmetric tridiagonal form by

using an orthogonal similarity transform.

Symmetric Matrix in Packed Storage

xSPCON Estimates the reciprocal of the condition number of a symmetric packed

matrix using the factorization computed by xSPTRF.

SSPEVor

DSPEV
(Replacement with newer version SSPEVDor DSPEVDsuggested)

Computes all the eigenvalues and eigenvectors of a symmetric matrix in

packed storage (simple driver).

SSPEVXor

DSPEVX
Computes selected eigenvalues and eigenvectors of a symmetric matrix in

packed storage (expert driver).

SSPEVDor

DSPEVD
Computes all the eigenvalues and eigenvectors of a symmetric matrix in

packed storage and uses a divide and conquer method to calculate

eigenvectors.

SSPGSTor

DSPGST
Reduces a real symmetric-definite generalized eigenproblem to standard

form where the coefficient matrices are in packed storage and uses the

factorization computed by SPPTRFor DPPTRF.

SSPGVDor

DSPGVD
Computes all the eigenvalues and eigenvectors of a real generalized

symmetric-definite eigenproblem where the coefficient matrices are in

packed storage, and uses a divide and conquer method to calculate

eigenvectors.
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SSPGVor

DSPGV
(Replacement with newer version SSPGVDor DSPGVDsuggested)

Computes all the eigenvalues and eigenvectors of a real generalized

symmetric-definite eigenproblem where the coefficient matrices are in

packed storage (simple driver).

SSPGVXor

DSPGVX
Computes selected eigenvalues and eigenvectors of a real generalized

symmetric-definite eigenproblem where the coefficient matrices are in

packed storage (expert driver).

xSPRFS Improves the computed solution to a system of linear equations when the

coefficient matrix is symmetric indefinite in packed storage.

xSPSV Computes the solution to a system of linear equations where the coefficient

matrix is a symmetric matrix in packed storage (simple driver).

xSPSVX Uses the diagonal pivoting factorization to compute the solution to a

system of linear equations where the coefficient matrix is a symmetric

matrix in packed storage (expert driver).

SSPTRDor

DSPTRD
Reduces a real symmetric matrix stored in packed form to real symmetric

tridiagonal form using an orthogonal similarity transform.

xSPTRF Computes the factorization of a symmetric packed matrix using the Bunch-

Kaufman diagonal pivoting method.

xSPTRI Computes the inverse of a symmetric indefinite matrix in packed storage

using the factorization computed by xSPTRF.

xSPTRS Solves a system of linear equations by the symmetric matrix stored in

packed format using the factorization computed by xSPTRF.

Real Symmetric Tridiagonal Matrix

SSTEBZor

DSTEBZ
Computes the eigenvalues of a real symmetric tridiagonal matrix.

xSTEDC Computes all the eigenvalues and eigenvectors of a symmetric tridiagonal

matrix using a divide and conquer method.

xSTEGR Computes selected eigenvalues and eigenvectors of a real symmetric

tridiagonal matrix using Relatively Robust Representations.

xSTEIN Computes selected eigenvectors of a real symmetric tridiagonal matrix

using inverse iteration.

xSTEQR Computes all the eigenvalues and eigenvectors of a real symmetric

tridiagonal matrix using the implicit QL or QR algorithm.

SSTERFor

DSTERF
Computes all the eigenvalues and eigenvectors of a real symmetric

tridiagonal matrix using a root-free QL or QR algorithm variant.

SSTEVor

DSTEV
(Replacement with newer version SSTEVRor DSTEVRsuggested)

Computes all eigenvalues and eigenvectors of a real symmetric tridiagonal

matrix (simple driver).
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SSTEVXor

DSTEVX
Computes selected eigenvalues and eigenvectors of a real symmetric

tridiagonal matrix (expert driver).

SSTEVDor

DSTEVD
(Replacement with newer version SSTEVRor DSTEVRsuggested)

Computes all the eigenvalues and eigenvectors of a real symmetric

tridiagonal matrix using a divide and conquer method.

SSTEVRor

DSTEVR
Computes selected eigenvalues and eigenvectors of a real symmetric

tridiagonal matrix using Relatively Robust Representations.

xSTSV Computes the solution to a system of linear equations where the coefficient

matrix is a symmetric tridiagonal matrix.

xSTTRF Computes the factorization of a symmetric tridiagonal matrix.

xSTTRS Computes the solution to a system of linear equations where the coefficient

matrix is a symmetric tridiagonal matrix.

Symmetric Matrix

xSYCON Estimates the reciprocal of the condition number of a symmetric matrix

using the factorization computed by SSYTRFor DSYTRF.

SSYEVor

DSYEV
(Replacement with newer version SSYEVRor DSYEVRsuggested)

Computes all eigenvalues and eigenvectors of a symmetric matrix.

SSYEVXor

DSYEVX
Computes eigenvalues and eigenvectors of a symmetric matrix (expert

driver).

SSYEVDor

DSYEVD
(Replacement with newer version SSYEVRor DSYEVRsuggested)

Computes all eigenvalues and eigenvectors of a symmetric matrix and uses

a divide and conquer method to calculate eigenvectors.

SSYEVRor

DSYEVR
Computes selected eigenvalues and eigenvectors of a symmetric

tridiagonal matrix.

SSYGSTor

DSYGST
Reduces a symmetric-definite generalized eigenproblem to standard form

using the factorization computed by SPOTRFor DPOTRF.

SSYGVor

DSYGV
(Replacement with newer version SSYGVDor DSYGVDsuggested)

Computes all the eigenvalues and eigenvectors of a generalized symmetric-

definite eigenproblem.

SSYGVXor

DSYGVX
Computes selected eigenvalues and eigenvectors of a generalized

symmetric-definite eigenproblem.

SSYGVDor

DSYGVD
Computes all the eigenvalues and eigenvectors of a generalized symmetric-

definite eigenproblem and uses a divide and conquer method to calculate

eigenvectors.

xSYRFS Improves the computed solution to a system of linear equations when the

coefficient matrix is symmetric indefinite.

xSYSV Solves a real symmetric indefinite system of linear equations (simple

driver).
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xSYSVX Solves a real symmetric indefinite system of linear equations (expert

driver).

SSYTRDor

DSYTRD
Reduces a symmetric matrix to real symmetric tridiagonal form by using a

orthogonal similarity transformation.

xSYTRF Computes the factorization of a real symmetric indefinite matrix using the

diagonal pivoting method.

xSYTRI Computes the inverse of a symmetric indefinite matrix using the

factorization computed by xSYTRF.

xSYTRS Solves a system of linear equations by the symmetric matrix using the

factorization computed by xSYTRF.

Triangular Band Matrix

xTBCON Estimates the reciprocal condition number of a triangular band matrix.

xTBRFS Determines error bounds and estimates for solving a triangular banded

system of linear equations.

xTBTRS Solves a triangular banded system of linear equations.

Triangular Matrix-Generalized Problem (Pair of Triangular Matrices)

xTGEVC Computes right and/or left generalized eigenvectors of two upper

triangular matrices.

xTGEXC Reorders the generalized Schur decomposition of a real or complex matrix

pair using an orthogonal or unitary equivalence transformation.

xTGSEN Reorders the generalized real-Schur or Schur decomposition of two

matrixes and computes the generalized eigenvalues.

xTGSJA Computes the generalized SVD from two upper triangular matrices

obtained from xGGSVP.

xTGSNA Estimates reciprocal condition numbers for specified eigenvalues and

eigenvectors of two matrices in real-Schur or Schur canonical form.

xTGSYL Solves the generalized Sylvester equation.

Triangular Matrix in Packed Storage

xTPCON Estimates the reciprocal or the condition number of a triangular matrix in

packed storage.

xTPRFS Determines error bounds and estimates for solving a triangular system of

linear equations where the coefficient matrix is in packed storage.

xTPTRI Computes the inverse of a triangular matrix in packed storage.

xTPTRS Solves a triangular system of linear equations where the coefficient matrix

is in packed storage.
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Triangular Matrix

xTRCON Estimates the reciprocal or the condition number of a triangular matrix.

xTREVC Computes right and/or left eigenvectors of an upper triangular matrix.

xTREXC Reorders Schur factorization of matrix using an orthogonal or unitary

similarity transformation.

xTRRFS Determines error bounds and estimates for triangular system of a linear

equations.

xTRSEN Reorders Schur factorization of matrix to group selected cluster of

eigenvalues in the leading positions on the diagonal of the upper triangular

matrix T and the leading columns of Q form an orthonormal basis of the

corresponding right invariant subspace.

xTRSNA Estimates the reciprocal condition numbers of selected eigenvalues and

eigenvectors of an upper quasi-triangular matrix.

xTRSYL Solves Sylvester matrix equation.

xTRTRI Computes the inverse of a triangular matrix.

xTRTRS Solves a triangular system of linear equations.

Trapezoidal Matrix

xTZRQF Depreciated routine replaced by routine xTZRZF.

xTZRZF Reduces a rectangular upper trapezoidal matrix to upper triangular form

by means of orthogonal transformations.

Unitary Matrix

CUNGBRor

ZUNGBR
Generates the unitary transformation matrices from reduction to bidiagonal

form, as determined by CGEBRDor ZGEBRD.

CUNGHRor

ZUNGHR
Generates the orthogonal transformation matrix reduced to Hessenberg

form, as determined by CGEHRDor ZGEHRD.

CUNGLQor

ZUNGLQ
Generates a unitary matrix Q from an LQ factorization, as returned by

CGELQFor ZGELQF.

CUNGQLor

ZUNGQL
Generates a unitary matrix Q from a QL factorization, as returned by

CGEQLFor ZGEQLF.

CUNGQRor

ZUNGQR
Generates a unitary matrix Q from a QR factorization, as returned by

CGEQRFor ZGEQRF.

CUNGRQor

ZUNGRQ
Generates a unitary matrix Q from an RQ factorization, as returned by

CGERQFor ZGERQF.

CUNGTRor

ZUNGTR
Generates a unitary matrix reduced to tridiagonal form, by CHETRDor

ZHETRD.
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BLAS1 Routines

CUNMBRor

ZUNMBR
Multiplies a general matrix with the unitary transformation matrix reduced

to bidiagonal form, as determined by CGEBRDor ZGEBRD.

CUNMHRor

ZUNMHR
Multiplies a general matrix by the unitary matrix reduced to Hessenberg

form by CGEHRDor ZGEHRD.

CUNMLQor

ZUNMLQ
Multiplies a general matrix by the unitary matrix from an LQ factorization,

as returned by CGELQFor ZGELQF.

CUNMQLor

ZUNMQL
Multiplies a general matrix by the unitary matrix from a QL factorization,

as returned by CGEQLFor ZGEQLF.

CUNMQRor

ZUNMQR
Multiplies a general matrix by the unitary matrix from a QR factorization,

as returned by CGEQRFor ZGEQRF.

CUNMRQor

ZUNMRQ
Multiplies a general matrix by the unitary matrix from an RQ factorization,

as returned by CGERQFor ZGERQF.

CUNMRZor

ZUNMRZ
Multiplies a general matrix by the unitary matrix from an RZ factorization,

as returned by CTZRZFor ZTZRZF.

CUNMTRor

ZUNMTR
Multiplies a general matrix by the unitary transformation matrix reduced

to tridiagonal form by CHETRDor ZHETRD.

Unitary Matrix in Packed Storage

CUPGTRor

ZUPGTR
Generates the unitary transformation matrix from a tridiagonal matrix

determined by CHPTRDor ZHPTRD.

CUPMTRor

ZUPMTR
Multiplies a general matrix by the unitary transformation matrix reduced

to tridiagonal form by CHPTRDor ZHPTRD.

TABLE A-2 BLAS1 (Basic Linear Algebra Subprograms, Level 1) Routines

Routine Function

SASUM, DASUM,
SCASUM, DZASUM

Sum of the absolute values of a vector

xAXPY Product of a scalar and vector plus a vector

xCOPY Copy a vector

SDOT, DDOT,
DSDOT, SDSDOT,
CDOTU, ZDOTU,
DQDOTA, DQDOTI

Dot product (inner product)
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BLAS2 Routines

CDOTC, ZDOTC Dot product conjugating first vector

SNRM2, DNRM2,
SCNRM2, DCNRM2,
DZNRM2

Euclidean norm of a vector

xROTG Set up Givens plane rotation

xROT, CSROT,
ZDROT

Apply Given’s plane rotation

SROTMG, DROTMG Set up modified Given’s plane rotation

SROTM, DROTM Apply modified Given’s rotation

ISAMAX, DAMAX,
ICAMAX, IZAMAX

Index of element with maximum absolute value

xSCAL, CSSCAL,
ZDSCAL

Scale a vector

xSWAP Swap two vectors

CVMUL, ZVMUL Compute scaled product of complex vectors

TABLE A-3 BLAS2 (Basic Linear Algebra Subprograms, Level 2) Routines

Routine Function

xGBMV Product of a matrix in banded storage and a vector

xGEMV Product of a general matrix and a vector

SGER, DGER,
CGERC, ZGERC,
CGERU, ZGERU

Rank-1 update to a general matrix

CHBMV, ZHBMV Product of a Hermitian matrix in banded storage and a vector

CHEMV, ZHEMV Product of a Hermitian matrix and a vector

CHER, ZHER Rank-1 update to a Hermitian matrix

CHER2, ZHER2 Rank-2 update to a Hermitian matrix

CHPMV, ZHPMV Product of a Hermitian matrix in packed storage and a vector
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BLAS3 Routines

CHPR, ZHPR Rank-1 update to a Hermitian matrix in packed storage

CHPR2, ZHPR2 Rank-2 update to a Hermitian matrix in packed storage

SSBMV, DSBMV Product of a symmetric matrix in banded storage and a vector

xSPMV Product of a Symmetric matrix in packed storage and a vector

SSPR, DSPR Rank-1 update to a real symmetric matrix in packed storage

SSPR2, DSPR2 Rank-2 update to a real symmetric matrix in packed storage

SSYMV, DSYMV Product of a symmetric matrix and a vector

SSYR, DSYR Rank-1 update to a real symmetric matrix

SSYR2, DSYR2 Rank-2 update to a real symmetric matrix

xTBMV Product of a triangular matrix in banded storage and a vector

xTBSV Solution to a triangular system in banded storage of linear equations

xTPMV Product of a triangular matrix in packed storage and a vector

xTPSV Solution to a triangular system of linear equations in packed storage

xTRMV Product of a triangular matrix and a vector

xTRSV Solution to a triangular system of linear equations

TABLE A-4 BLAS3 (Basic Linear Algebra Subprograms, Level 3) Routines

Routine Function

xGEMM Product of two general matrices

CHEMMor

ZHEMM
Product of a Hermitian matrix and a general matrix

CHERKor

ZHERK
Rank-k update of a Hermitian matrix

CHER2Kor

ZHER2K
Rank-2k update of a Hermitian matrix

xSYMM Product of a symmetric matrix and a general matrix
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Sparse BLAS Routines

xSYRK Rank-k update of a symmetric matrix

xSYR2K Rank-2k update of a symmetric matrix

xTRMM Product of a triangular matrix and a general matrix

xTRSM Solution for a triangular system of equations

TABLE A-5 Sparse BLAS Routines

Routines Function

xAXPYI Adds a scalar multiple of a sparse vector X to a full vector Y.

SBCOMMor

DBCOMM
Block coordinate matrix-matrix multiply.

SBDIMMor

DBDIMM
Block diagonal format matrix-matrix multiply.

SBDISMor

DBDISM
Block Diagonal format triangular solve.

SBELMMor

DBELMM
Block Ellpack format matrix-matrix multiply.

SBELSMor

DBELSM
Block Ellpack format triangular solve.

SBSCMMor

DBSCMM
Block compressed sparse column format matrix-matrix multiply.

SBSCSMor

DBSCSM
Block compressed sparse column format triangular solve.

SBSRMMor

DBSRMM
Block compressed sparse row format matrix-matrix multiply.

SBSRSMor

DBSRSM
Block compressed sparse row format triangular solve.

SCOOMMor

DCOOMM
Coordinate format matrix-matrix multiply.

SCSCMMor

DCSCMM
Compressed sparse column format matrix-matrix multiply

SCSCSMor

DCSCSM
Compressed sparse column format triangular solve
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SCSRMMor

DCSRMM
Compressed sparse row format matrix-matrix multiply.

SCSRSMor

DCSRSM
Compressed sparse row format triangular solve.

SDIAMMor

DDIAMM
Diagonal format matrix-matrix multiply.

SDIASMor

DDIASM
Diagonal format triangular solve.

SDOTI,
DDOTI,
CDOTUI, or

ZDOTUI

Computes the dot product of a sparse vector and a full vector.

CDOTCI, or

ZDOTCI,
Computes the conjugate dot product of a sparse vector and a full vector.

SELLMMor

DELLMM
Ellpack format matrix-matrix multiply.

SELLSMor

DELLSM
Ellpack format triangular solve.

xCGTHR Given a full vector, creates a sparse vector and corresponding index vector.

xCGTHRZ Given a full vector, creates a sparse vector and corresponding index vector

and zeros the full vector.

SJADMMor

DJADMM
Jagged diagonal matrix-matrix multiply.

SJADRPor

DJADRP
Right permutation of a jagged diagonal matrix.

SJADSMor

DJADSM
Jagged diagonal triangular solve.

SROTI or

DROTI
Applies a Givens rotation to a sparse vector and a full vector.

xCSCTR Given a sparse vector and corresponding index vector, puts those elements

into a full vector.

SSKYMMor

DSKYMM
Skyline format matrix-matrix multiply.

TABLE A-5 Sparse BLAS Routines (Continued)

Routines Function
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Sparse Solver Routines

SSKYSMor

DSKYSM
Skyline format triangular solve.

SVBRMMor

DVBRMM
Variable block sparse row format matrix-matrix multiply.

SVBRSMor

DVBRSM
Variable block sparse row format triangular solve.

TABLE A-6 Sparse Solver Routines

Routines Function

DGSSFS One call interface to sparse solver.

DGSSIN Sparse solver initialization.

DGSSOR Fill reducing ordering and symbolic factorization.

DGSSFA Matrix value input and numeric factorization.

DGSSSL Triangular solve.

DGSSUO Sets user-specified ordering permutation.

DGSSRP Returns permutation used by solver.

DGSSCO Returns condition number estimate of coefficient matrix.

DGSSDA De-allocates sparse solver.

DGSSPS Prints solver statistics.

TABLE A-5 Sparse BLAS Routines (Continued)

Routines Function
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FFTPACK and VFFTPACK Routines

Routines with a V prefix are vectorized routines that belong to VFFTPACK.

TABLE A-7 FFTPACK and VFFTPACK (Fast Fourier Transform and Vectorized Fast
Fourier Transform) Routines

Routine Function

COSQB, DCOSQB,
VCOSQB, VDCOSQB

Cosine quarter-wave synthesis

COSQF, DCOSQF,
VCOSQF, VDCOSQF

Cosine quarter-wave transform

COSQI, DCOSQI,
VCOSQI, VDCOSQI

Initialize cosine quarter-wave transform and synthesis

COST, DCOST,
VCOST, VDCOST

Cosine even-wave transform

COSTI, DCOSTI,
VCOSTI, VDCOSTI

Initialize cosine even-wave transform

EZFFTB EZ Fourier synthesis

EZFFTF EZ Fourier transform

EZFFTI Initialize EZ Fourier transform and synthesis

RFFTB, DFFTB,
CFFTB, ZFFTB,
VRFFTB, VDFFTB,
VCFFTB, VZFFTB

Fourier synthesis

RFFTF, DFFTF,
CFFTF, ZFFTF,
VRFFTF, VDFFTF,
VCFFTF, VZFFTF

Fourier transform

RFFTI, DFFTI,
CFFTI, ZFFTI,
VRFFTI, VDFFTI,
VCFFTI, VZFFTI

Initialize Fourier transform and synthesis

SINQB, DSINQB,
VSINQB, VDSINQB

Sine quarter-wave synthesis

SINQF, DSINQF,
VSINQF, VDSINQF

Sine quarter-wave transform

SINQI, DSINQI,
VSINQI, VDSINQI

Initialize sine quarter-wave transform and synthesis
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Other Routines

SINT, DSINT,
VSINT, VDSINT

Sine odd-wave transform

SINTI, DSINT,
VSINTI, VDSINTI

Initialize sine odd-wave transform

RFFT2B, DFFT2B,
CFFT2B, ZFFT2B

Two-dimensional Fourier synthesis

RFFT2F, DFFT2F,
CFFT2F, ZFFT2F

Two-dimensional Fourier transform

RFFT2I, DFFT2I,
CFFT2I, ZFFT2I

Initialize two-dimensional Fourier transform or synthesis

RFFT3B, DFFT3B,
CFFT3B, ZFFT3B

Three-dimensional Fourier synthesis

RFFT3F, DFFT3F,
CFFT3F, DFFT3F

Three-dimensional Fourier transform

RFFT3I, DFFT3I,
CFFT3I, ZFFT3I

Initialize three-dimensional Fourier transform or synthesis

RFFTOPT,DFFTOPT,
CFFTOPT,ZFFTOPT

Compute the length of the closest FFT

TABLE A-8 Other Routines

Routines Function

xCNVCOR Computes convolution or correlation

xCNVCOR2 Computes two-dimensional convolution or correlation

xTRANS Transposes array

SWIENERor

DWEINER
Performs Wiener deconvolution of two signals

TABLE A-7 FFTPACK and VFFTPACK (Fast Fourier Transform and Vectorized Fast
Fourier Transform) Routines (Continued)

Routine Function
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LINPACK Routines

TABLE A-9 LINPACK Routines

Routine Function

xCHDC Cholesky decomposition of a symmetric positive definite matrix

xCHDD Downdate an augmented Cholesky decomposition

xCHEX Update an augmented Cholesky decomposition with permutations

xCHUD Update an augmented Cholesky decomposition

xGBCO LU Factorization and condition number of a general matrix in banded

storage

xGBDI Determinant of an LU-factored general matrix in banded storage

xGBFA LU factorization of a general matrix in banded storage

xGBSL Solution to a linear system in an LU-factored matrix in banded storage

xGECO LU factorization and condition number of a general matrix

xGEDI Determinant and inverse of an LU-factored general matrix

xGEFA LU factorization of a general matrix

xGESL Solution to a linear system in an LU-factored general matrix

xGTSL Solution to a linear system in a tridiagonal matrix

CHICOor

ZHICO
UDU factorization and condition number of a Hermitian matrix

CHIDI or

ZHIDI
Determinant, inertia, and inverse of a UDU-factored Hermitian matrix

CHIFA or

ZHIFA
UDU factorization of a Hermitian matrix

CHISL or

ZHISL
Solution to a linear system in a UDU-factored Hermitian matrix

CHPCOor

ZHPCO
UDU factorization and condition number of a Hermitian matrix in packed

storage

CHPDI or

ZHPDI
Determinant, inertia, and inverse of a UDU-factored Hermitian matrix in

packed storage

CHPFAor

ZHPFA
UDU factorization of a Hermitian matrix in packed storage

CHPSLor

ZHPSL
Solution to a linear system in a UDU-factored Hermitian matrix in packed

storage

xPBCO Cholesky factorization and condition number of a symmetric positive

definite matrix in banded storage
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xPBDI Determinant of a Cholesky-factored symmetric positive definite matrix in

banded storage

xPBFA Cholesky factorization of a symmetric positive definite matrix in banded

storage

xPBSL Solution to a linear system in a Cholesky-factored symmetric positive

definite matrix in banded storage

xPOCO Cholesky factorization and condition number of a symmetric positive

definite matrix

xPODI Determinant and inverse of a Cholesky-factored symmetric positive

definite matrix

xPOFA Cholesky factorization of a symmetric positive definite matrix

xPOSL Solution to a linear system in a Cholesky-factored symmetric positive

definite matrix

xPPCO Cholesky factorization and condition number of a symmetric positive

definite matrix in packed storage

xPPDI Determinant and inverse of a Cholesky-factored symmetric positive

definite matrix in packed storage

xPPFA Cholesky factorization of a symmetric positive definite matrix in packed

storage

xPPSL Solution to a linear system in a Cholesky-factored symmetric positive

definite matrix in packed storage

xPTSL Solution to a linear system in a symmetric positive definite tridiagonal

matrix

xQRDC QR factorization of a general matrix

xQRSL Solution to a linear system in a QR-factored general matrix

xSICO UDU factorization and condition number of a symmetric matrix

xSIDI Determinant, inertia, and inverse of a UDU-factored symmetric matrix

xSIFA UDU factorization of a symmetric matrix

xSISL Solution to a linear system in a UDU-factored symmetric matrix

xSPCO UDU factorization and condition number of a symmetric matrix in packed

storage

xSPDI Determinant, inertia, and inverse of a UDU-factored symmetric matrix in

packed storage

xSPFA UDU factorization of a symmetric matrix in packed storage

TABLE A-9 LINPACK Routines (Continued)

Routine Function
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xSPSL Solution to a linear system in a UDU-factored symmetric matrix in packed

storage

xSVDC Singular value decomposition of a general matrix

xTRCO Condition number of a triangular matrix

xTRDI Determinant and inverse of a triangular matrix

xTRSL Solution to a linear system in a triangular matrix

TABLE A-9 LINPACK Routines (Continued)

Routine Function
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Index
SYMBOLS
%g2, %g3, %g4, and %g5global integer registers, 24

_64 , appending to routine name, 18, 29

NUMERICS
2D FFT routines

arguments, 76, 110

data storage format, 111

FULL argument, 110

normalization, 111

PLACE argument, 110

routines, 109

32-bit addressing, 29

3D FFT routines

arguments, 76, 127

data storage format, 129

FULL argument, 128

normalization, 128

PLACE argument, 128

routines, 126

64-bit addressing, 29

64-bit code

C, 32

Fortran 95, 31

See also 64-bit enabled Solaris operating

environment

64-bit enabled Solaris operating environment

appending _64  to routine names, 29

compiling code, 29

integer promotion, 30

64-bit integer arguments, 18

promoting integers to 64-bits, 29, 30

64-bit integer interfaces, calling, 30

A
argument data types

summary, 74, 135

WSAVE work array, 79

arguments

2D FFT routines, 110

3D FFT routines, 127

convolution and correlation, 136

EZFFT routines, 93

FFT routines, 81

VFFT routines, 81

automatic code restructuring tools, 16

B
banded matrix, 40

bidiagonal matrix, 148

BLAS1, 9, 162

BLAS2, 9, 163

BLAS3, 9, 164
Index 173



C
C

64-bit code, 32

array storage, 24

routine calling conventions, 24

C interfaces

advantages, 23

compared to Fortran interfaces, 23

routine calling conventions, 24

calling 64-bit integer interfaces, 30

calling conventions

C, 24

f77/f95 , 16

CLAPACK, 11

compatibility, LAPACK, 10, 12

compiler parallelization, 36

compilers, accessing, 5

compile-time checking, 17

complex conjugate symmetry, 69

complex conjugation, 69

complex sequence

DFT definition, 68

FFT, 69

compressed sparse column (CSC) format, 45

convolution and correlation

arguments, 136

routines, 135

cosine even-wave definition, 70

cosine even-wave routines

see COST routines

cosine quarter-wave definition, 70

cosine quarter-wave routines

see COSQ routines

COSQ routines

normalization, 95

routines, 95

COST routines

normalization, 100

routines, 100

D
-dalign , 13, 28

data storage format (FFT routines)

complex one-dimensional FFT routines, 82

complex three-dimensional FFT routines, 129

complex two-dimensional FFT routines, 111

real one-dimensional FFT routines, 82

real three-dimensional FFT routines, 129

real two-dimensional FFT routines, 111

data types

arguments, 74, 135

WSAVE work array, 79

degree of parallelism, 34

DFT

complex sequence, 68

definition, 68

DFT definition, 68

efficiency of FFT versus DFT, 65

inverse transform definition, 68

real sequence, 69

diagonal matrix, 148

discrete Fourier transform

See DFT

documentation index, 6

documentation, accessing, 6

DOSERIAL* directive, 35

E
enable trap 6, 14

environment variable

MANPATH, 6

OMP_NUM_THREADS, 35

PARALLEL, 34, 37

PATH, 5

STACKSIZE, 33

SUNW_MP_THR_IDLE, 36

EZ Fourier transform routines, 92

EZFFT routines, arguments, 92
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F
f77/f95  interfaces

calling conventions, 16

FFT

complex sequence, 69

data storage format, 82

efficiency of FFT versus DFT, 65

real sequence, 69

FFT routines, 74, 89

arguments, 81

base names, 72

data storage format, 82

naming conventions, 72

normalization, 89

FFTPACK, 9, 168

compared to VFFTPACK, 66

Netlib, 65

routines, 74

Sun Performance Library extensions, 68

Fortran 95

64-bit code, 31

compile-time checking, 17

optional arguments, 17, 19

type independence, 17

USE SUNPERF, 17

FULL argument

2D FFT routines, 110

3D FFT routines, 128

G
general band matrix, 148

general matrix, 42, 148

general tridiagonal matrix, 150

global integer registers, 24

H
Hermitian band matrix, 151

Hermitian matrix, 151

Hermitian matrix in packed storage, 152

I
including routines in development

environment, 15

inverse DFT

definition, 68

real sequence, 70

isalist , 29

L
LAPACK, 9, 148

LAPACK 90, 11

LAPACK compatibility, 10, 12

LINPACK, 9, 170

M
malloc , 24

man pages

accessing, 4

section 3P, 65, 147

MANPATH environment variable, setting, 6

matrix

banded, 40

bidiagonal, 148

diagonal, 148

general, 42, 148

general band, 148

general tridiagonal, 150

Hermitian, 151

Hermitian band, 151

Hermitian in packed storage, 152

real orthogonal, 154

real orthogonal in packed storage, 154

real symmetric band, 157

real symmetric tridiagonal, 158

structurally symmetric sparse, 46

symmetric, 43, 159

symmetric banded, 44

symmetric in packed storage, 157

symmetric or Hermitian-positive definite, 155

symmetric or Hermitian-positive definite

band, 155
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symmetric or Hermitian-positive definite in

packed storage, 156

symmetric or Hermitian-positive definite

tridiagonal, 156

symmetric sparse, 45

trapezoidal, 161

triangular, 42, 160, 161

triangular band, 160

triangular in packed storage, 160

tridiagonal, 44

unitary, 161

unitary in packed storage, 162

unsymmetric sparse, 47

upper Hessenberg, 153

-misalign , 38

MT-safe routines, 22

multithreading

compiler parallelization, 36

-mt , 33

parallelization options, 33

POSIX/Solaris threads, 36

N
naming conventions (FFT/VFFT routines)

base names, 72

prefixes, 72

Netlib, 10, 65

Netlib Sparse BLAS, 48

naming conventions, 48

NIST Fortran Sparse BLAS, 48

naming conventions, 49

normalization

2D FFT routines, 111

3D FFT routines, 128

COSQ routines, 95

COST routines, 100

FFT routines, 89

SINQ routines, 102

SINT routines, 107

O
OMP_NUM_THREADS, 35

one-call interface, 51

optimizing

64-bit code, 28

SPARC instruction set, 28

optional f95  arguments, 17, 19

P
packed storage, 40

PARALLEL environment variable, 34, 37

parallel processing

degree of parallelism, 34

examples, 37

parallelization, 38

PATH environment variable, setting, 5

PLACE argument

2D FFT routines, 110

3D FFT routines, 128

POSIX/Solaris threads, 36

-mt , 33

promoting integer arguments to 64-bits, 29, 30

R
real orthogonal matrix, 154

real orthogonal matrix in packed storage, 154

real sequence

DFT, 69

DFT definition, 69

inverse DFT definition, 70

real symmetric band matrix, 157

real symmetric tridiagonal matrix, 158

regular interface, 50

replacing routines, 16

routines

2D FFT, 76, 109

3D FFT, 76, 126

BLAS1, 162

BLAS2, 163

BLAS3, 164

C calling conventions, 24

convolution and correlation, 135

cosine even-wave, 100

cosine quarter-wave, 95
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EZ Fourier transform, 92

f77/f95  calling conventions, 16

FFT, 74, 89

FFTPACK, 74, 168

LAPACK, 148

LINPACK, 170

sine odd-wave, 107

sine quarter-wave, 102

sparse BLAS, 165

sparse solvers, 167

VFFT, 74, 89

VFFTPACK, 74, 168

ROWCOL (VFFT routines), 89

S
section 3P man pages, 65, 147

sequence length N
definition, 65

effect of size of N on performance, 78

effect of values of N on performance, 76

most efficient values of N, 76

shell prompts, 4

sine odd-wave definition, 70

sine odd-wave routines

see SINT routines

sine quarter-wave definition, 70

sine quarter-wave routines

see SINQ routines

single processor, 37

SINQ routines

normalization, 102

routines, 102

SINT routines

normalization, 107

routines, 107

Solaris versions supported, 4

sparse BLAS, 165

sparse matrices

CSC storage format, 45

structurally symmetric, 46

symmetric, 45

unsymmetric, 47

sparse solver, 167

sparse solver package, 44

one-call interface, 51

regular interface, 50

routine calling order, 51

routines, 50

using with C, 44

STACKSIZE environment variable, 33

structurally symmetric sparse matrix, 46

SUNW_MP_THR_IDLE, 36

symmetric banded matrix, 44

symmetric matrix, 43, 159

symmetric matrix in packed storage, 157

symmetric or Hermitian positive definite band

matrix, 155

symmetric or Hermitian positive definite

matrix, 155

symmetric or Hermitian positive definite matrix in

packed storage, 156

symmetric or Hermitian positive definite

tridiagonal matrix, 156

symmetric sparse matrix, 45

T
three-dimensional FFT routines

see 3D FFT routines

trap 6, enabling, 14

trapezoidal matrix, 161

triangular band matrix, 160

triangular matrix, 42, 160, 161

triangular matrix in packed storage, 160

tridiagonal matrix, 44

two-dimensional FFT routines

see 2D FFT routines

type Independence, 17

typographic conventions, 3
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U
unitary matrix, 161

unitary matrix in packed storage, 162

unsymmetric sparse matrix, 47

upper Hessenberg matrix, 153

USE SUNPERF
enabling Fortran 95 features, 17

USE_THREADS routine, 34

V
VFFT routines, 74, 89

arguments, 81

naming conventions, 72

ROWCOL argument, 89

VFFTPACK, 9, 168

compared to FFTPACK, 66

Netlib, 65

routines, 74

Sun Performance Library extensions, 68

W
work array (FFT routines)

data types, 79

initializing, 78

minimum dimension, 79

procedure for initializing, 78

WSAVE
see work array (FFT routines)

X
-xarch , 28

xFFTOPT, 77

-xlic_lib=sunperf , 13, 28

-xtypemap , 30
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