»
2 Sun

microsystems

Introduction to Sun WorkShop

Forte Developer 6 update 2
(Sun WorkShop 6 update 2)

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7980-10
July 2001, Revision A

Send comments about this document to: docfeedback@sun.com

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road ® Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or
document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIXis a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape
Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop
Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,
or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun £90/{95 is derived from Cray CF90™, a product of Cray Inc.
Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road e Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la décompilation. Aucune
partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans I’autorisation préalable et
écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable a
Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications
Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop
Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d"utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Cray Inc.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

@3’9 Dlease 4

Adobe PostScript

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our
development tools from Sun WorkShop™ to Forte™ Developer products. The
products, as you can see, are the same high-quality products you have come to
expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s
core programming tools with the multi-platform, business application deployment
focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new Forte
organization delivers a complete array of tools for end-to-end application
development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old
product names in WorkShop 5.0 to the new names in Forte Developer 6.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™" C++ Personal Forte™ C++ Personal Edition 6

Edition

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6
Sun Performance WorkShop™ Fortran Forte™ Fortran Desktop Edition 6

Personal Edition

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

In addition to the name changes, there have been major changes to two of the
products.

= Forte for High Performance Computing contains all the tools formerly found in
Sun Performance WorkShop Fortran and now includes the C++ compiler, so High
Performance Computing users need to purchase only one product for all their
development needs.

= Forte Fortran Desktop Edition is identical to the former Sun Performance
WorkShop Personal Edition, except that the Fortran compilers in that product no
longer support the creation of automatically parallelized or explicit, directive-
based parallel code. This capability is still supported in the Fortran compilers in
Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we
can continue to fulfill your needs into the future.

Contents

Before You Begin 1

Typographic Conventions 1

Shell Prompts 2

Supported Platforms 2

Accessing Sun WorkShop Development Tools and Man Pages 2
Accessing Sun WorkShop Documentation 4

Accessing Related Documentation 5

Ordering Sun Documentation 5

Sending Your Comments 6

About the Sun WorkShop Integrated Programming Environment 7
Integrated Text Editors 7
Compilers 8
Integrated Debugging 9
Source Code Browsing 10
Performance, Source Code Management, and GUI-Building Tools 10
Multithreaded Development Tools 10
Sun WorkShop TeamWare 11
Sun WorkShop Visual 11

2. Getting Started 13

Working With Projects 13
Creating a Project 14
Building Project Targets 15
Editing a Project 16

Using the Main Window 16
Choosing a Text Editor and Text Editor Options 17
Setting Startup and Project Options 17

Accessing Sun WorkShop Tools 18

3. Building Programs 19

Working With Targets 19
Sun WorkShop Target 19
User Makefile Target 20

Using the Building Window 21

Building a Program 22
Building With Default Values 23
Specifying Your Own Build Values 23
Specifying Build Options 23
Using Makefile Macros 24
Using Environment Variables 24

Identifying Build Errors 25

Exiting Building 26

4. Debugging a Program 27
Preparing for Debugging 28
Starting Debugging 28
Customizing the Debugging Window 31
Stepping Through Your Code 31

vi Introduction to Sun WorkShop « July 2001

Setting Breakpoints 32
Examining Values and Data 32
Monitoring Data Values 33
Collecting Performance Data 34
Detecting Runtime Errors 34
Tracing Code 35
Examining the Call Stack 35
Debugging Multithreaded Programs 36
Debugging Processes Simultaneously 36
Managing Sessions 37
Debugging a Child Process 37
Exiting Debugging 38

Browsing Source Code 39
Using Pattern Search Mode 39
Pattern Search Special Characters 41
Multiple Directory Searches 41
Using Source Browsing Mode 42
Source Browsing Databases 43
Source Browsing Special Characters 43
Multiple Directory Browsing 44
Relating Browsing and Graphing 44
Graphing Functions 45
Graphing Classes 46
Browsing Classes 47

Exiting Browsing 49

Analyzing Program Performance 51

Collecting Performance Data 52

Contents

Vii

Analyzing Performance Data 53
Examining Function and Load-Object Metrics 54
Examining Caller and Callee Metrics 54

Displaying Annotated Source and Disassembly Code 54

7. Merging Source Files 55

Loading Files into Merging 55

Working With Differences 57
Reading Merging Icons 57
Moving Between Differences 58
Resolving Differences 58
Setting Difference Options 59

Merging Automatically 59

Saving the Output File 60

Setting Merging Options 60

A. Sun WorkShop and Text Editor Resources 61

Changes to Resource Settings 61

Editable Sun WorkShop Resources 62
Highlight Colors in Editor Windows 63
Data Graph Window Colors 64
Call Graph and Class Graph Window Colors 64
Audible Warnings 65
Debugging Buttons 65
Dbx Commands and Program I/O Window Output Lines 65
Project make Command 66
Browser Used to Display Web Updates 66
Character Fonts in Hyperlink Windows 66
Hyperlink Resources 67

viii Introduction to Sun WorkShop « July 2001

Automatic Text Wrapping 68

Vertical Scrollbars 68

Motif-Specific Resources 69

Window Foreground and Background Colors 70

Scrollbar Background and Toggle Button Colors 71
Editable Text Editor Resources 71

Text Editor Default Path Names 72

Blinking Pointer 72

Fonts for Text Editor Motif Environments 73

Text Editor Window Colors 73

Scrolling List Background Color 73

Writable Text Area Background Color 74

Balloon Expression Evaluator Popup Dimensions 74

Text Editor Audible Warnings 74

The make Utility and Makefiles 75
The Makefile 75

Fortran 77 Example 76
C++ Example 77

The make Utility 77

Macros 78

The dmake Utility 81
Basic Concepts 81

The dmake Host 82
The Build Server 84

Impact of the dmake Utility on Makefiles 86
Concurrent Building of Targets 86

Limitations on Makefiles 87

Contents ix

X

Parallelism 90

Source Browsing With shquery , sb_init , and sbtags
The sbquery Utility 93
Options 94
Environment Variables 97
The sb_init File and Commands 97
The sbtags Utility 101

Glossary 103

Index 105

Introduction to Sun WorkShop < July 2001

93

Figures

FIGURE 2-1

FIGURE 3-1

FIGURE 3-2

FIGURE 3-3

FIGURE 3-4

FIGURE 4-1

FIGURE 5-1

FIGURE 5-2

FIGURE 5-3

FIGURE 5-4

FIGURE 5-5

FIGURE 5-6

FIGURE 7-1

Main Window 16

Building Window 21

Define New Target Dialog Box 22

Build Errors in the Build Output Display Pane of the Building Window 25
Build Error and Dialog Box With Associated Error Message Defined 26
Debugging Window 30

Browsing Window in Pattern Search Mode 40

Browsing Window in Source Browsing Mode 42

How Browsing, the Graphers, and the Class Browser Interrelate 45
Call Graph Window 46

Class Graph Window 47

Class Browser Window 48

Merging Window 56

Figures

Xi

xii Introduction to Sun WorkShop « July 2001

Tables

TABLE 5-1

TABLE 5-2

TABLE 6-1

TABLE 6-2

TABLE A-1

TABLE A-2

TABLE A-3

TABLE A-4

TABLE A-5

TABLE A-6

TABLE A-7

TABLE A-8

TABLE A-9

TABLE A-10

TABLE A-11

TABLE A-12

TABLE A-13

TABLE A-14

TABLE A-15

TABLE A-16

Pattern Search Special Characters 41

Source Browsing Special Characters 44

Types of Data to Collect 52

Types of Data to View and Analyze 53

Editor Highlight Color Resources 63

Data Graph Window Color Resources 64

Class Graph and Call Graph Window Resources 64
Audible Warning Resources 65

Debugger Button Disable Delay Resource 65

Dbx Commands and Program 1/0O Windows Output Line Resource 65
Project make Command Resource 66

Web Updates Browser Resource 66

English (C) Locale Hyperlink Font Resources 67
Japanese (ja) Locale Hyperlink Font Resources 68
Automatic Text Wrapping Resource 68

Vertical Scrollbar Resource 68

Motif (non-CDE) Windowing Systems Font Resources 69
Window Font Resources 69

Tabular Windows Font Resource 69

Windows, Dialog Boxes, Menus, and Buttons Color Resources 70

Tables

Xiii

TABLEA-17 Trough and Toggle Buttons Color Resources 71

TABLE A-18 Text Editor Default Path Resources 72

TABLE A-19 Blinking Pointer Resource 72

TABLE A-20 Motif (non-CDE) Windowing Systems Editor Window Font Resources 73
TABLE A-21 Editor Windows, Dialog Boxes, Menus, and Buttons Color Resources 73
TABLE A-22 Scrolling List Background Color Resource 73

TABLEA-23 Writable Text Area Background Color Resources 74

TABLE A-24 Balloon Expression Evaluator Popup Dimensions Resources 74
TABLEA-25 Text Editor Audible Warning Resource 74

TABLE D-1 sbquery Options 94

TABLE D-2 Filter Language Options 96
TABLE D-3 Focus Options 96
TABLE D-4 Environment Variables 97

TABLE D-5 sb_init Commands 98

xiv. Introduction to Sun WorkShop ¢ July 2001

Code Examples

CODE EXAMPLE B-1

CODE EXAMPLE B-2

CODE EXAMPLE B-3

CODE EXAMPLE C-1

CODE EXAMPLE C-2

CODE EXAMPLE C-3

CODE EXAMPLE C-4

CODE EXAMPLE C-5

Fortran 77 Makefile 76

C++ Makefile 77

make Default Suffix Rule 78

.dmakerc
.dmakerc
.dmakerc

.dmakerc

File 82

File With Groups of Build Servers 83

File With Alternate Paths for Build Servers 84
File With Special Characters 84

dmake.conf File 85

Code Examples

XV

xvi Introduction to Sun WorkShop « July 2001

Before You Begin

Introduction to Sun WorkShop acquaints you with the basic program development
features of the Sun WorkShop™ integrated programming environment. This book is
intended for application developers who have a working knowledge of Fortran, C,
or C++, the Solaris™ operating environment, and UNIX® operating system

commands.

To get updates about Sun WorkShop tools through the Web, use the Web Updates
Dialog Box. To open the Web Updates dialog box, choose Help O Web Updates in
any Sun WorkShop window.

Typographic Conventions

Typeface Meaning Examples
AaBbCc123 The names of commands, files, Edit your .login file.
and directories; on-screen Usels -a to list all files.
computer output % You have mail .
AaBbCc123 What you type, when contrasted % su
with on-screen computer output Password:
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.
You must be superuser to do this.
AaBbCc123 Command-line placeholder text; To delete a file, type rm filename.

replace with a real name or value

Shell Prompts

Shell Prompt
C shell %
Bourne shell and Korn shell $
C shell, Bourne shell, and Korn shell superuser #

Supported Platforms

This Sun WorkShop™ release supports versions 2.6, 7, and 8 of the Solaris™ SPARC™
Platform Edition and Solaris™ Intel Platform Edition operating environments.

2

Accessing Sun WorkShop Development
Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the
standard /usr/bin/ and /usr/share/man directories. To access the Sun
WorkShop compilers and tools, you must have the Sun WorkShop component
directory in your PATHenvironment variable. To access the Sun WorkShop man
pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh(1), and ksh (1)
man pages. For more information about the MANPATHariable, see the man(1) man
page. For more information about setting your PATHand MANPATHariables to
access this release, see the Sun WorkShop 6 update 2 Installation Guide or your system
administrator.

Introduction to Sun WorkShop « July 2001

Note — The information in this section assumes that your Sun WorkShop 6 update 2
products are installed in the /opt directory. If your product software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to
access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

. Display the current value of the PATHvariable by typing:

% echo $PATH

. Review the output for a string of paths containing /opt/SUNWSspro/bin/

If you find the path, your PATHvariable is already set to access Sun WorkShop
development tools. If you do not find the path, set your PATHenvironment variable
by following the instructions in the next section.

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

. Add the following to your PATHenvironment variable.
/opt/SUNWSspro/bin

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

Before You Begin 3

To Determine If You Need to Set Your MANPATHEnvironment
Variable

. Request the workshop man page by typing:

% man workshop

. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not
for the current version of the software installed, follow the instructions in the next
section for setting your MANPATHnvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

. If you are using the C shell, edit your home .cshrc file. If you are using the

Bourne shell or Korn shell, edit your home .profile file.

. Add the following to your MANPATHRnvironment variable.

/opt/'SUNWSspro/man

4

Accessing Sun WorkShop
Documentation

You can access Sun WorkShop product documentation at the following locations:

= The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser
to the following file:

/opt/SUNWSspro/docs/index.html

If your product software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

» Manuals are available from the docs.sun.com®™ Web site.

Introduction to Sun WorkShop « July 2001

The docs.sun.com Web site (http://docs.sun.com

) enables you to read,

print, and buy Sun Microsystems manuals through the Internet. If you cannot
find a manual, see the documentation index installed with the product on your

local system or network.

Accessing Related Documentation

The following table describes related documentation that is available through the

docs.sun.com Web site.

Document Collection

Document Title

Description

Numerical Computation
Guide Collection

Solaris 8 Reference Manual
Collection

Solaris 8 Software
Developer Collection

Solaris 8 Software
Developer Collection

Numerical Computation
Guide

See the titles of man page
sections.

Linker and Libraries Guide

Multithreaded Programming
Guide

Describes issues regarding the
numerical accuracy of floating-
point computations.

Provides information about the
Solaris operating environment.

Describes the operations of the
Solaris link-editor and runtime
linker.

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Ordering Sun Documentation

You can order product documentation directly from Sun through the

docs.sun.com Web site or from Fatbrain.com, an Internet bookstore. You can find

the Sun Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Before You Begin

5

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

6 Introduction to Sun WorkShop « July 2001

CHAPTER 1

About the Sun WorkShop Integrated
Programming Environment

The Sun WorkShop integrated programming environment simplifies complex
development tasks by providing integrated tools for building, editing, debugging,
source browsing, and tuning your C++, C, and Fortran 77/95 software development
projects.

The Sun WorkShop integrated programming environment includes:

Integrated text editors

Compilers

Integrated debugging

Source code browsing

Performance, source code management, and GUI-building tools

Note — To access the documentation described in this chapter, see “Accessing Sun
WorkShop Documentation” on page 4.

Integrated Text Editors

Text editors are the center of the Sun WorkShop integrated programming
environment. The Sun WorkShop integrated programming environment makes it
possible to evaluate expressions, set breakpoints, and step through functions from
your text editor.

This release provides the following integrated editors:

« NEdit. A graphical user interface-style plain-text editor for X/Motif systems.
NEdit is the default Sun WorkShop editor (to change your text editor, see
“Choosing a Text Editor and Text Editor Options” on page 17). For more
information about NEdit, see “NEdit Editor Window” in the Text Editing section
of the online help and the NEdit web page at http://www.nedit.org

= XEmacs. A customizable text editor and application development system. For
more information, see “XEmacs Editor Window” in the Text Editing section of the
online help and the XEmacs web page at http://www.xemacs.org

= GNU Emacs. An extensible, customizable, self-documenting real-time display
editor. For more information, see “GNU Emacs Editor Window” in the Text
Editing section of the online help and the GNU web page at
http://www.gnu.org

= Vi. A screen-based editor on UNIX systems. For more information, see “Vi Editor
Window” in the Text Editing section of the online help.

= Vim. An improved version of the vi standard text editor (with graphical user
interface option) for UNIX systems. For more information, see “Vim Editor
Window” in the Text Editor section of the online help or the Vim web page at
http://www.vim.org

Note — Not all text editors are available in all locales.

For more information about the Sun WorkShop editors, see:

= “Choosing a Text Editor and Text Editor Options” on page 17
= The Text Editing section in the online help

8

Compilers

This release supports the following compilers:
s C++ compiler

The C++ compiler (CQ supports the ISO standard for C++, ISO IS 14882:1998,
Programming Language C++. The following requirements in the standard are not
supported in this release: Templates as template parameters and universal
character names. For more information about the C++ compiler, see the

C++ User’s Guide.

= C compiler

The C compiler (cc) is fully compliant with the 1990 ISO (ANSI) C language and
environment standard and all Amendments there of, and it also supports
traditional K&R C. The C compiler also supports the OpenMP C/C++
Application Program Interface Version 1.0 specificaiton. The C optimizer provides
significant performance increases over nonoptimized code. The code optimizer
removes redundancies, efficiently allocates registers, and schedules instructions.
Also featured is an incremental linker to reduce linktime during the debugging
phase. For more information about the C compiler, see the C User’s Guide.

Introduction to Sun WorkShop « July 2001

= Fortran compilers
« Fortran 95

This release is a complete implementation of the Fortran 95 ISO/IEC 1539:1997
standard. This standard has added many features. The Fortran 95 compiler also
implements the OpenMP 2.0 multiprogramming interface. In addition, the
Fortran 95 compiler works with the rest of the Sun WorkShop tools to
automatically parallelize your code. For more information about the Fortran 95
compiler, see the Fortran User’s Guide or Fortran Programming Guide.

« Fortran 77

This compiler is a complete implementation of the Fortran 77 ANSI X3.9-1978,
ISO 1539-1980 standards. It has extensions that provide compatibility with
VAX VMS Fortran and Cray Fortran. The Fortran 77 compiler works with the
rest of the Sun WorkShop tools to automatically parallelize your code. For
more information about the Fortran 77 compiler, see the Fortran User’s Guide or
Fortran Programming Guide.

Integrated Debugging

The Sun WorkShop integrated programming environment uses a source code
Debugging window that provides the ability to run a program in a controlled
fashion and to inspect the state of a stopped program. You can perform most
debugging operations from the Debugging window and the windows accessed from
it. You can also perform basic debugging operations from a text editor window
containing the source code, which opens automatically when you load a program for
debugging. You have complete control of the dynamic execution of a program,
including the collection of performance data. A line-oriented, source-level debugger
called dbx is also included.

For more information, see:

= Chapter 4
» The Using the Debugging Window section of the online help
= The Using dbx Commands section of the online help

Chapter 1 About the Sun WorkShop Integrated Programming Environment 9

Source Code Browsing

You can browse source code written in C, C++, and Fortran 77/95 by issuing a query
in the Browsing window in either pattern search mode or source browsing mode.
Pattern search mode allows you to search your source code for any text string,
including text embedded within comments. Source browsing mode allows you to
find all occurrences of any program-defined symbol in your code by searching in a
database that is generated when your source files are compiled with a source
browsing option. When you are creating or editing a project in the project wizard,
you can select to generate the database when your code is compiled. You then view
the occurrences or matches to your query with their surrounding source code in the
Browsing window match pane.

You can also graph the function and subroutine relationships in your program, and
if your source code is written in C++, you can browse and graph the classes defined
in your program.

For more information, see:

= Chapter 5
= The Browsing Source Code section of the online help

10

Performance, Source Code Management,
and GUI-Building Tools

By default, the Sun WorkShop main window provides access through the Tools
menu to the Performance Analyzer, which helps you analyze your program
performance, and Merging, which is part of Sun WorkShop TeamWare source code
management tools. If you have the C++ compiler, you also have access to Sun
WorkShop Visual, which is a GUI-building tool.

Multithreaded Development Tools

The Sun WorkShop integrated programming environment includes tools for
developing multithreaded applications. The Debugging window supports dynamic
analysis and control of multithreaded programs. LockLint analyzes source code for
potential synchronization errors, such as deadlock and data race conditions. With

Introduction to Sun WorkShop « July 2001

the Sampling Collector and Performance Analyzer, you can examine a wide range of
metrics, broken down by functions, load objects, sampling intervals, or threads and
lightweight processes (LWPs) in multithreaded programs.

For more information, see:

= Chapter 6

= Analyzing Program Performance With Sun WorkShop

= The Analyzing Program Performance section of the online help

= “Multithreaded Program Debugging” in the Using the Debugging Window
section of the online help

Sun WorkShop TeamWare

Sun WorkShop TeamWare source code management tools allow you to manage
source code files through a set of GUIs or from the command line. Sun WorkShop
TeamWare allows a team to work in parallel at different sites to coordinate, integrate,
and build a product.

For more information:

= See Chapter 7 in this book.
= See the Sun WorkShop TeamWare User’s Guide.
= Choose Help from the TeamWare Configuring window menu bar.

Sun WorkShop Visual

Sun WorkShop Visual helps you design graphical user interfaces (GUIs), generate
portable object-oriented code, and develop Motif, Java, or Microsoft Foundation
Class GUISs. Visual automatically generates the code when the design is complete.

For more information, see the Sun WorkShop Visual User’s Guide.

Chapter 1 About the Sun WorkShop Integrated Programming Environment 11

12 Introduction to Sun WorkShop « July 2001

CHAPTER 2

Getting Started

After you install and enable access to the Sun WorkShop tools (see “Accessing Sun
WorkShop Development Tools and Man Pages” on page 2), you can start the Sun
WorkShop integrated programming environment by typing the following at a
command line:

% workshop&

For more information about the workshop command, see the workshop (1) man
page.

This chapter describes how to begin working in the Sun WorkShop integrated
programming environment and contains basic information about:

= Working with projects
» Using the main window

For step-by-step instructions and more information, see the Sun WorkShop online
help (you can access the online help through the Help menu in any Sun WorkShop
window).

Working With Projects

This release uses projects to keep track of the files, programs, and targets associated
with your development projects and to build your programs without your needing
to write a makefile. A project is a list of files and compiler, debugger, and build-
related options used to build an executable, a static library/archive, a shared library,
a Fortran application, a complex application, or a user makefile application.

13

14

When you start the Sun WorkShop integrated programming environment, the
Welcome to Sun WorkShop dialog box opens and gives you immediate access to Sun
WorkShop projects and the project wizard. Click on the “projects” link in the
description pane to access information about projects in the online help. You can also
click Help in the Welcome to Sun WorkShop dialog box for more information about
that dialog box.

Through the Welcome to Sun WorkShop dialog box or the commands available from
the Project menu in the main window, you can:

= Create a new project or build a simple program using the project wizard and your
own makefile or a makefile Sun WorkShop creates for you (see “Creating a New
Project” in the Working With Projects section of the online help)

= Change existing project settings, including how you want your project compiled
and whether you want source browsing information generated (see “Editing a
Project” and “Edit Current Project Window” in the Working With Projects section
of the online help)

If you have Sun WorkShop worksets, you can automatically convert your worksets
to projects when you load them (for step-by-step instructions, see “Converting a
Workset to a Project” in the Working With Projects section of the online help).

You can also choose to use the Sun WorkShop integrated programming environment
without loading a project. Picklists keep track of the files, programs, directories, and
targets associated with your development projects (see “Sun WorkShop Targets” in
the Building Programs section of the online help for more information). You can
access each file, build target, and debug executable from the menus in the Sun
WorkShop main window.

Creating a Project

Through the Welcome to Sun WorkShop dialog box or through the Project menu in
the main window, you can ask the project wizard to help you create a project.

From the Welcome to Sun WorkShop dialog box, you can:

Create a New Project The Create a New Project wizard guides you through
creating a new project from existing source files. You
choose the type of project, and the wizard prompts you
for information to create that type of new project.

Build a Simple Program The Create New Project wizard helps you build a single
executable from a set of source files. There are limited
compilation options and only standard libraries to which
to link.

Introduction to Sun WorkShop « July 2001

Create an Empty Project The Create Empty Project dialog box opens, and you
request that a new project be created that has no existing
source files. A text editor window opens so you can
begin creating your program.

The Create New Project wizard prompts you to define your project settings. Then
the Sun WorkShop integrated programming environment creates the type of project
you defined (a file with a .prd file extension) with the source files you requested.

You can share that project file information with multiple members of your
development team by creating a project that has an absolute/full path to the project
file and a relative (file/base name only) project directory. For example, your team
has a workspace for your project, and you create a project named ws.prd in the top
level directory of the workspace:

Project file name: /home/workspaces/ws/ws.prd
Project directory: .

A team member can have a copy of the workspace in /export/myws and by
opening the project file /export/myws/ws.prd , the project applies to that team
member’s local files and to no other team member’s files.

Building Project Targets

Once you have created your project, you can build project targets by doing one of
the following:

= Click Build in the main window tool bar.
= Choose Build O Build Project from the main window.
= Use the makeprd command at the command line (for example, to build your

project from the command line as part of a script or cron file).

After you select one of these methods, the Sun WorkShop integrated programming
environment:

1. Creates a makefile from the project settings you defined in the Create New Project
wizard or the Edit Current Project window.

2. Opens the Building window.
3. Starts the make utility.

4. Shows the results of the build in the Building window.

When you click on a build error hypertext link in the Building window, your text
editor opens with the build error highlighted so you can examine and fix it.

Chapter 2 Getting Started 15

For more information, see:

= Chapter 3
» The Building Programs section of the online help
= The makeprd (1) man page

Editing a Project

You can edit your project through the Edit Current Project window. To open the Edit
Current Project window, choose Project O Edit Project in the Sun WorkShop main
window. For more information, see “Editing a Project” and “Edit Current Project
Window” in the Working With Projects section of the online help.

16

Using the Main Window

The main window helps you access the tools you need to create, develop, debug,
and fine tune your applications and lets you choose your text editor and set different
types of options.

= WorkShop — HelloWorld.prd —_— Title bar
Project File Build Debug Browse Options Tools Windows Help — Menu bar

S EIRIBE ke o[K Tool bar

Current project is /home/ggeller/projects/HelloWorld/HelloWorld.p ~_Status area

FIGURE 2-1 Main Window

For more information about the main window, see “Sun WorkShop Main Window”
in the online help. (To open the online help, choose Help O Contents in the Sun
WorkShop main window.) To set colors, fonts and other types of resources used in
WorkShop windows, see Appendix A.

Introduction to Sun WorkShop « July 2001

Choosing a Text Editor and Text Editor Options

This release provides the following integrated editors:

NEdit (the Sun WorkShop default editor)
XEmacs

GNU Emacs

Vim (with graphical user interface option)
Vi

To change your default editor and set text editor options, choose Options O Text

Editor Options in the Sun WorkShop main window. The Text Editor Options dialog

box opens. The options displayed in the dialog box change depending upon the

editor you choose in the Editor to Use pull-down menu. The editor you choose will

remain your default editor until you select another editor in the Text Editor Options

dialog box.

For more information about each editor’s options, see:

» The online documentation available from the Help menu in the editor’s menu bar

» “Text Editor Options Dialog Box” in the Text Editing section of the Sun WorkShop
online help

You can set colors, fonts and other types of resources used in Sun WorkShop
integrated text editors. For information on changing the default resources of Sun
WorkShop in the Common Desktop Environment (CDE) and non-CDE
environments, see Appendix A.

Setting Startup and Project Options

The Sun WorkShop integrated programming environment offers you startup and
project options through the Options menu in the main window.

Startup Options

By default at startup, the Sun WorkShop integrated programming environment:

= Remembers the size and position of its windows from your previous Sun
WorkShop session and redisplays them

= Shows the splash screen

= Shows the Welcome to Sun WorkShop dialog box

Chapter 2 Getting Started 17

To change these startup options, choose Options O Startup Options from the main
window menu bar to open the Startup Options dialog box. For more information
about these options, see “Startup Options Dialog Box” in the Sun WorkShop Main
Window section of the online help.

Project Options

By default, the Sun WorkShop integrated programming environment treats projects
in the following way:

= At startup, Sun WorkShop opens the last project you had open and populates
your menu picklists with the items contained in that project.

= When you exit Sun WorkShop or open another project, Sun WorkShop prompts
you to save or discard project changes instead of saving automatically.

= When you exit Sun WorkShop or open another project, Sun WorkShop
automatically saves your menu picklist entries on all your menus.

= Sun WorkShop sets the maximum number of menu picklist entries at 20.

= Sun WorkShop uses the directory from which it was started as the default
directory for its tools.

To change these project options, choose Options O Project Options from the main
window menu bar to open the Project Options dialog box. For more information
about these options, see “Project Options Dialog Box” in the Sun WorkShop Main
Window section of the online help.

Accessing Sun WorkShop Tools

The main window helps you access the tools you need to create, develop, debug,
and fine tune your applications. The following chapters introduce you
Sun WorkShop tools and how Sun WorkShop tools can help you:

= Build your development projects
Debug your programs

Browse your code

Analyze your program’s performance
Merge your source files

18 Introduction to Sun WorkShop « July 2001

CHAPTER 3

Building Programs

Sun WorkShop projects allow you to customize your builds, build your programs
without having to write a makefile, or build a program using your own makefile.
You can also build an application without a current project, run one build job or
several build jobs concurrently, and fix build errors using the Building window and
the Sun WorkShop editor of your choice.

For step-by-step instructions and more information, see the Building Programs
section of the online help (you can access the online help through the Help menu in
any Sun WorkShop window).

Working With Targets

When building in Sun WorkShop, two types of targets are involved:

= Sun WorkShop targets
= User makefile targets

Sun WorkShop Target

A Sun WorkShop target is an object derived from the build directory, the build
command, the makefile, and the make target:

» Build directory. The directory from which the build process is started and also
the default directory for the makefile.

= Build command. The command that starts the make utility, which reads the
makefile and builds the make targets.

19

20

= Makefile. A file that contains entries that describe how to bring a make target up
to date with respect to those files on which it depends (called dependencies). Since
each dependency is a make target, it may have dependencies of its own. Targets
and file dependencies and subdependencies form a tree structure that make traces
when deciding whether or not to rebuild a make target.

= Make target. An object that make knows how to build from the directions (rules)
contained in a particular makefile. For example, a make target could be all or
clean. Makefiles are generally designed so that the default target (the one you get
when you do not specify a target) is the most commonly built target.

When a Sun WorkShop target is built, it is added to the picklist of Sun WorkShop
targets in the Build menu and in the Build O Edit Target command. When you
request a build to begin, you are asking the Sun WorkShop integrated programming
environment to look for the first target in the Sun WorkShop target list and build it.

A project can contain multiple targets. For an executable, static library/archive,
shared library, or Fortran application, your executable/library is one target, and a
special Clean target is another (found in the Build menu picklist). The Clean target
deletes all of your project’s generated files (for example, the .0 files), the source
browsing database, the C++ templates database, the executable itself, and other
build-related files.

For a complex project, you can have more targets, which are listed in the Build menu
picklist. For example, your project can generate five libraries and an executable to
link them together. Each library or executable is then a Sun WorkShop target, and
you can build each individual one by selecting it from the Build menu picklist.

User Makefile Target

A user makefile target is an object that make knows how to build from the directions
(rules) contained in a particular makefile. Makefiles are generally designed so that
the default target (the one you get when you do not specify a target) is the most
commonly built target.

A makefile contains entries that describe how to bring a make target up to date with
respect to those files on which it depends (called dependencies). Since each
dependency is a make target, each dependency might have dependencies of its own.
Targets and file dependencies and subdependencies form a tree structure that make
traces when deciding whether or not to rebuild a make target.

For a user makefile project, each target listed in the Build menu picklist is a makefile
or a makefile target to be built.

Introduction to Sun WorkShop « July 2001

Using the Building Window

The Building window displays information on program compilation. You can open
the window by choosing Build O Show Building Window in the Sun WorkShop
main window. FIGURE 3-1 shows the Building window.

From the Building window, you can:

Start a build

Stop a build in progress

Edit build parameters

Save the build output to another file
View build errors

Build Previous Job Graphs
button Error button button

Stop Next Erro Directory Target Build
build button status status Output Status
button field field display area

FIGURE 3-1 Building Window

Chapter 3 Building Programs 21

Building a Program

You can build your entire project or only one of your project targets. When you ask
for your project targets to be built, the Sun WorkShop integrated programming
environment:

1. Creates a makefile from the project definitions you provided in the Create New
Project wizard or the Edit Current Project Window.

2. Launches the make utility.
3. Opens the Building Window to show the results of the build.

For more information, see the following topics in the Building Programs section of
the online help:

= “Building a Project”

= “Sun WorkShop Targets”

You can also specify build parameters using the Define New Target and Edit Target
dialog boxes. You use the Define New Target dialog box to specify a new WorkShop
target and the Edit Target dialog box to modify an existing Sun WorkShop target (the
Define New Target and Edit Target dialog boxes are identical). FIGURE 3-2 shows the
Define New Target dialog box.

WorkShop: Define New Target
=N

Directory:| Jhome/ggeller/hellowor cI

Makefile: i<Default> ™ Browse
buttons
Target: i<Default> J/

Command: idmake

Name: i<Default>

Options..| Macros..| Environment Variables...|

OK Build Cancel Help

FIGURE 3-2 Define New Target Dialog Box

22 Introduction to Sun WorkShop + July 2001

Building With Default Values

The Sun WorkShop integrated programming environment provides a default make
target and a default make command (dmake), so you can begin a build without
specifying a build command or a make target. You must still supply a makefile when
you are building a user makefile project or when a project is not loaded (the Sun
WorkShop integrated programming environment searches for a file named

makefile or Makefile and allows make to figure out which one to use).

By using the project feature, you can ask the project wizard to create a makefile for
you through the Create New Project wizard or the Edit Current Project window.

For more information, see “Building With Default Values” in the Building Programs
section of the online help.

Specifying Your Own Build Values

If you have a makefile with a unique name, a certain make target, or a specific build
command, you can define those build values in the Define New Target dialog box or
Edit Target dialog box (this applies to a user makefile project or when a project is not
loaded). For example, by specifying your own build command, you can filter out
unnecessary warnings by passing make output through a filter. At a minimum, you
must include a build directory. The Sun WorkShop integrated programming
environment uses the make command to find the makefile using make’s search
order. See the make(1S) man page.

For more information, see “Specifying Your Own Build Values” in the Building
Programs section of the online help.

Specifying Build Options

You can specify build options in the Build Options dialog box. To open the Build
Options dialog box, click Options in the Edit Target dialog box. For information
about the options available, click Help in the Build Options dialog box. When you
are finished selecting the options you want, click OK in the Build Options dialog
box. Then click Build in the Edit Target dialog box.

Before running a distributed build for the first time, you must create a .dmakerc
runtime configuration file that specifies which machines are to participate as dmake
build servers. The file contains groups (lists) of build servers and the number of jobs
distributed to each build server. The dmake utility searches for this file on the dmake
host to know where to distribute jobs. Generally, this file is in your home directory.
If dmake does not find a runtime configuration file, it distributes two jobs to the
local host. For information on setting up a runtime configuration file, see “The

Chapter 3 Building Programs 23

24

.dmakerc File” in the Building Programs section of the online help and the
dmake(1) man page. For more information about the dmake utility, see Appendix C
and the dmake(1) man page.

To set up a machine to be used as a build server, you must create a configuration file
called /etc/opt/SPROdmake/dmake.conf on the server’s file system. Without
this file, dmake refuses to distribute jobs to that machine. In the dmake.conf file,
you specify the maximum number of jobs (from all users) that can run concurrently
on that build server. See “The dmake.conf File” in the Building Programs section of
the online help, Appendix C in this book, and the dmake(1) man page for more
information.

Using Makefile Macros

You can specify makefile macros in the Make Macros dialog box (to open, click
Macros in the Edit Target or Define New Target dialog box). Makefile macros let you
refer conveniently to files or command options that appear in the description file.
Through the Make Macros dialog box, you can add makefile macros to or delete
them from the Persistent Build Macros list in your Sun WorkShop target and then
reassign values for makefile macros in the list. You can also add macros currently
defined in the makefile to the list and override their values. For more information,
click Help in the Make Macros dialog box, and see Appendix B for information
about defining macros.

Using Environment Variables

You can specify environment variables for your build in the Environment Variables
dialog box (to open, click Environment Variables in the Edit Target or Define New
Target dialog box). Using the Environment Variables dialog box, you can add
environment variables to or delete them from the Persistent Environment Variables
list in your Sun WorkShop target and reassign values for environment variables in
the list. When you start the build, setenv commands for these environment
variables are prepended to the build command. For more information, click Help in
the Environment Variables dialog box.

Introduction to Sun WorkShop « July 2001

Identifying Build Errors

When a build fails, the build errors display in the Build Output display pane of the
Building window (see FIGURE 3-3). The location of the error is underlined and
highlighted to denote a hypertext link to the location of the error in a source file.
Each error gives the name of the file containing the error, the line number on which
the error occurs, and the error message. Clicking on the underscored error in the
Building window starts a text editor that displays the source file containing the
error. For more information, see “Fixing Build Errors” in the Building Programs
section of the online help.

Note — Only Sun compilers produce output that can be converted to hypertext links.
If you use a build command that does not call Sun compilers, you will not have links
to the source files from the build errors listed in the Building window.

FIGURE 3-3 Build Errors in the Build Output Display Pane of the Building Window

Chapter 3 Building Programs 25

Error messages issued by the Fortran, C, and C++ compilers include an information
icon (H)) in the build error message. Click on the icon to open a pop-up window
displaying a definition of the associated error message (see FIGURE 3-4).

const char *t;
void *s = t;

if featcloselpsWidgetslat),

XtWarning (catgeis{psW

FIGURE 3-4 Build Error and Dialog Box With Associated Error Message Defined

Exiting Building

To kill the current build process and close all build windows, choose Build O Exit
Building in the Building window.

If you want to close the building windows without killing the current build process,
choose Build O Close.

26 Introduction to Sun WorkShop « July 2001

CHAPTER 4

Debugging a Program

The Sun WorkShop integrated programming environment provides the Debugging
window that can run a program in a controlled fashion and inspect the state of a
stopped program. Sun WorkShop tools give you complete control of the dynamic
execution of a program, including the collection of performance data.

Through the Debugging window (to open, choose Debug O Show Debugging
Window) and the windows accessed from it, you can:

Start a debugging session or multiple debugging sessions
Determine where your program stops executing
Control program execution

Use breakpoints

Attach to processes

= Trace code

= Evaluate expressions and variables

= Use the call stack

= Fix your program

= Debug multithreaded programs

Collect performance data

Use runtime checking

Graph arrays

Set up your debugging environment

Create custom buttons

In addition, machine-level and other commands are available to help you debug
code. You can use standard dbx commands in the Dbx Commands window.

For information about debugging how-tos, concepts, windows, and dbx commands,
see the Using the Debugging Window and Using dbx Commands sections of the
online help (you can access the online help through the Help menu in any Sun
WorkShop window).

27

Preparing for Debugging

To prepare for debugging, you must generate debugging information when you
compile your source files by doing one of the following;:

28

Choose Project O Edit Project in the main window, and click Select Project

Preferences. When you are finished with your selections, click OK, and then build
your project. For more information, click Help in the Edit Current Project window
or see “Editing a Project” in the Working With Projects section of the online help.

Compile the application using the -g or -g0 (zero) option, which instructs the
compiler to generate debugging information during compilation (for information
on how to specify these options in your makefile, see Appendix B). For more
detailed information on preparing your program for debugging, see Debugging a
Program with dbx.

Starting Debugging

To start debugging a program:

1. Choose a debugging state.

Choose Debug O Quick Mode to run a program normally, but with debugging
ready in the background to save the program in case your program terminates
abnormally. Use Quick Mode when you think you are finished debugging, want
to avoid waiting for symbols to load, and want to test a fix you made.

Choose Debug O Debug Mode or click Debug in the main window tool bar to
debug the program using the full functionality of the debugging service.

2. Select the program to debug.

To debug the current program, click Debug in the main window tool bar. To debug
another program, do the following:

To debug a program previously run or debugged in the Sun WorkShop integrated
programming environment, select the program from the Debug menu picklist.

To debug a program that is new to the Sun WorkShop integrated programming
environment, load the new program by choosing Debug 0 New Program.

To attach to another running process, choose Debug O Attach Process.

Introduction to Sun WorkShop « July 2001

= To debug a core dump file from an unsuccessful program execution, choose
Debug O Load Core File.

Your program loads, and the Debugging window (see FIGURE 4-1) and a text editor
window open. You can view and edit a program's source code and perform basic
debugging operations from a text editor window. The editor window tool bar
provides access to common debugging operations, especially those that use a source
component as an argument, plus buttons from other Sun WorkShop tools.

To change your default text editor and set text editor options, see “Choosing a Text
Editor and Text Editor Options” on page 17.

. Run your program by doing one of the following;:

= DPress F6.

» Click Start in the Debugging window tool bar.

= Choose Execute O Start in the Debugging window.

= Click Continue in the Debugging window tool bar.

= Choose Execute O Continue in the Debugging window.

For more information about the Debugging window, see “Debugging Window” in
the Using the Debugging Window section of the online help.

You can change run parameters, such as program arguments, the run directory, and
environment variables, during a debugging session. For more information, see the
following topics in the Using the Debugging Window section of the online help:

= “Specifying Program Arguments”
= “Specifying a Run Directory”
= “Setting Environment Variables”

Chapter 4 Debugging a Program 29

Data Stack Dbx

Start ~ Down Interrupt Step Fix History/ pane Commands
Over Data . window
Display/ Sessions/
Step Step Program Threads/ Message

Up Continue Into Out /O tabs Breakpoints area

Program::TineToshaow = -1
Program::next = {nill

this 0%205h4582
file "StmpsSCCSsSs. DebugProcess. cc”

Cdhz 83 down

Current function is Program::compress
(dbz 93 next

fdbx 102 N

FIGURE 4-1 Debugging Window

30 Introduction to Sun WorkShop « July 2001

Customizing the Debugging Window

You can customize the Debugging window to change the defaults for:

= Debugging output

» Debugging behavior

= Window layout

= Window behavior

= Data Display windows
» Language and scoping
= Runtime checking

= Data grapher

= Debugging performance
= Forks and threads

= Command-line only

= Advanced options

To view the available debugging options, choose Debug 0 Debugging Options in the
Debugging window. Using the Debugging Options dialog box, you can change
Debugging window defaults. You can also set many of the defaults by setting dbx
environment variables with the dbxenv command (for more information, see
“dbxenv Command” in the Using dbx Commands section of the online help).

For detailed information, see:

= “Debugging Options Dialog Box” in the Using the Debugging Window section of
the online help

= Debugging a Program With dbx

Stepping Through Your Code

You can view your code by stepping, which is moving through your code one line at
a time. As you step, a green highlighted line known as the program counter (PC)
marks your place in the program. With each step, the PC moves to the next source
line to be executed (showing you the next line to be executed).

There are three ways to step:

Step Into Proceed forward one source line. If the source line is a function call, the
debugging service stops before the first statement of the function.

Step Over Proceed forward one source line. If the source line is a function call, the
debugging service executes the entire function without stepping through the
individual function instructions.

Chapter 4 Debugging a Program 31

Step Out Finish execution of the present function and stop on the source line
immediately following the call to that function. If the PC stops on the same
source line as the call, there are a few more machine instructions remaining
that are associated with the call. Stepping once more completes the call and
you are on the next source line.

For detailed information about stepping through your code, see “Program Stepping”
in the Using the Debugging Window section of the online help.

Setting Breakpoints

You can set breakpoints to stop execution in the Debugging window. You can set
simple breakpoints to stop at a line of code or in a procedure or function. Set
advanced breakpoints to break in C++ classes, track changes in data, break on a
condition, break on special events, or create your own custom breakpoints.

You can set and clear breakpoints in the editor window or the Breakpoints window.
In the editor window, you can set or clear a breakpoint at a line of code or in a
function. In the Breakpoints window, you can set more complex breakpoints, such as
a breakpoint when a signal occurs. (The Breakpoints tab in the Debugging window
displays breakpoints you have already set.)

For more information on setting and using breakpoints, see “Breakpoints” and the
Using Breakpoints How-Tos in the Using the Debugging Window section of the
online help.

32

Examining Values and Data

An evaluation is a one-time spot-check of the value of an expression. You can
evaluate expressions at any time from the editor window or the Debugging window.
You can track the changes in a value each time the program stops using the Data
Display tab in the Debugging window or a separate Data Display window.

The results of an evaluation are listed in the Data History tab of the Debugging
window. A dashed line indicates that the evaluation context has changed since the
last evaluation. The Data History tab maintains a list of expressions you previously
evaluated in a history list. You can clear the Data History tab at any time by
choosing Data O Clear History.

To evaluate an expression using the editor window, do one of the following:

Introduction to Sun WorkShop « July 2001

= Use the balloon expression evaluator, which instantly shows you the current
value of the expression at which your cursor is pointing in your editor. For more
information, see “Using the Balloon Expression Evaluator” in the Text Editing
section of the online help.

= Select the target variable or expression in the source display. Then do one of the
following;:

= Click Evaluate or choose WorkShop O Evaluate O Selected to find the value of
the selected expression.

= Click Evaluate * or choose WorkShop O Evaluate O As Pointer to evaluate
where a pointer-type expression points.

The value is shown in the Data History tab, or when the result is short, the
result is printed in the footer message area of the editor window. A separator
line is inserted into the Data History tab list whenever the evaluation context
changes. For more information, see “Expression Evaluation” in the Using the
Debugging Window section of the online help.

Monitoring Data Values

By default, Data Display is a tab in the Debugging window. You can choose to have
it shown as a separate window. For more information, see “Choosing How to Show
the Data Display” in the Using the Debugging Window section of the online help.

The Data Display tab in the Debugging window allows you to watch the changes in
the value of an expression during program execution. A set of expressions you
choose is automatically evaluated every time a program stops executing—at a
breakpoint, at a step, and when the program is interrupted. When the value of an
expression changes, the value is highlighted in boldface.

The Data Display tab shows you how a value changes each time you stop execution.
If you need to monitor changes in a value as the program is running, use the On
Access breakpoint (see “Breaking On Access” in the Using the Debugging Window
section of the online help). With this breakpoint, you can ask the program to stop
whenever a specific memory location is either read or written.

From the Data Display tab or separate window, you can display pop-up windows to
view additional information about an expression, giving you control over the
information you are viewing.

For more information, see “Data Display Window” and “Data Display Tab” in the
Using the Debugging Window section of the online help.

Chapter 4 Debugging a Program 33

Collecting Performance Data

When you run your program in the Debugging window, you can use the Sampling
Collector to collect performance data and write it to experiment files to be used by
the Performance Analyzer. The Sampling Collector can gather clock-based profiling
data, synchronization wait tracing data, hardware counter overflow profiling data,
and address-space data. The Collector automatically records global execution
statistics, including page-fault and I/0 data, context switches, and working-set and
paging statistics.

For more information on collecting performance data, see:
= Chapter 6 in this book
= Analyzing Program Performance With Sun WorkShop 6

= The Collecting Performance Data How-Tos and Concepts in the Using the
Debugging Window section of the online help

34

Detecting Runtime Errors

Runtime checking (RTC) allows you to automatically detect runtime errors in an
application during the development phase. Using RTC, you can:

= Detect memory access errors

= Detect memory leaks

= Collect data on memory use

= Work with all languages

= Work on code for which you do not have the source, such as libraries

To use runtime checking, you must turn on the type of checking you want to use
before you execute the program. Then, when you run the program, RTC compiles
reports on your memory usage.

For more information, see “Runtime Checking” in the Using the Debugging Window
section of the online help.

Introduction to Sun WorkShop « July 2001

Tracing Code

Tracing collects information about what is happening in your program and displays
it in the Dbx Commands window. Program execution does not stop.

An unfiltered trace displays each line of source code as it is about to be executed,
producing volumes of output. Filtering a trace to display information about events
in your program creates more selective output. For example, you can trace each call
to a function, every member function of a given name, every function in a class, or
each exit from a function. You can also trace changes to a variable.

An event is the association of a program event with a debugging action. A typical
event is a change in the value of a specified variable. A handler manages debugging
events. The trace listing in the Breakpoints window is called a trace handler because
it manages the trace, a type of event.

For more information, see “Code Tracing” in the Using the Debugging Window
section of the online help.

Examining the Call Stack

The call stack represents all currently active routines, routines that have been called
but have not yet returned to their respective caller. In the stack, the functions and
their arguments are listed in the order that they were called. The initial function
(main() for C and C++ programs) is at the top of the Stack pane; the function
executing when the program stopped is at the bottom of the Stack pane. This
function is known as the stopped in function.

The source code of the stopped in function is displayed in the editor window with
the next line to be executed highlighted in green.

You can examine the call stack by doing any of the following:

= Move up one level in the stack by clicking Up or choosing Stack O Up.

= Move down one level in the stack by clicking Down or choosing Stack O Down.

= Remove multiple frames by placing your cursor next to the frame you want to
return to and choosing Stack O Pop to Current Frame.

= Remove the function you are stopped in from the stack by choosing Stack O Pop.

= Remove multiple frames by placing your pointer next to the frame you want to
return to and choosing Stack O Pop to Current Frame.

Chapter 4 Debugging a Program 35

Using Pop gives you a limited form of undo. If you want to start executing from the
beginning of the current function again, Pop to the parent stack frame and then step
into the function. You are now back at the start of the function.

For more information on using the call stack, see “The Call Stack” in the Using the
Debugging Window section of the online help.

Debugging Multithreaded Programs

When a multithreaded program is detected, the Threads tab in the Debugging
window opens. You can display sessions by clicking the Sessions tab. For a
multithreaded program, the tab lists information about the threads in the currently
selected process. The current thread is marked with a green arrow.

For more information, see “Multithreaded Program Debugging” in the Using the
Debugging Window section of the online help.

36

Debugging Processes Simultaneously

You can debug more than one program at a time, with each program connected to a
separate debugging session. Following are three examples of programs you might
want to debug simultaneously:

= A process and the child process it forks
= A client and server program
= Two related programs

If you are debugging a program and you ask to debug another program, a message
tells you that you are currently debugging a program. You will be prompted to
terminate or detach the current session and load a new debugging session, reuse the
current session, or debug both sessions. Choose to debug both only if you want to
debug both programs simultaneously.

Introduction to Sun WorkShop « July 2001

Managing Sessions

The Sessions tab in the Debugging window and the Active Sessions dialog box
maintain a list of all the debugging sessions. To open the Active Sessions dialog box,
choose Debug O Manage Sessions in the Debugging Window. The current program
is marked with an arrow.

Debugging multiple sessions consumes resources and might slow down your
system. The Debugging window states how many active sessions you have. To
remove sessions you no longer need, click Detach or Quit Session in the Active
Sessions dialog box.

Although you are debugging multiple sessions, you can see the context of only one
session at a time. When you switch to a different session, the Debugging window,
the editor window, the Dbx Commands window, and the other displays change to
reflect the context of the new session.

If you want to see the programs side by side (with an editor and a Debugging
window for each program), you need to start two WorkShop applications. To
prevent the WorkShop applications from sharing the same editor, start both
WorkShop applications with the following command:

% workshop -s editsessionname

For example, start your first Sun WorkShop application with workshop -s 1 and
start your second Sun WorkShop application with workshop -s 2 . See the
workshop (1) man page for more information.

For more information on managing sessions, see “Managing Sessions” in the Using
the Debugging Window section of the online help.

Debugging a Child Process

When a process forks a child process, you can choose to debug the parent process,
the child process, or both. You can also override the normal deletion of all
breakpoints from the forked process.

For more information, see “Child Process Debugging” in the Using the Debugging
Window section of the online help.

Chapter 4 Debugging a Program 37

Exiting Debugging

If you want to close the Debugging window without quitting the processes under
the control of Sun WorkShop, choose Debug O Close. The processes under the
control of Sun WorkShop continue running, using memory and CPU time. Sun
WorkShop continues to store data on these processes.

To quit all processes currently under the control of Sun WorkShop and close all
debugging windows, choose Debug O Exit Debugging in the Debugging window.

38 Introduction to Sun WorkShop « July 2001

CHAPTER 5

Browsing Source Code

The Sun WorkShop integrated programming environment uses pattern search and
source browsing modes in the Browsing window to browse your C, C++, Fortran 77,
and Fortran 95 source code. Pattern search mode allows you to search your source
code for any text string, including text embedded within comments. Source
browsing mode allows you to find all occurrences of any program-defined symbol in
your code by searching in a database that is created when you ask the project wizard
to generate source browsing information at the time you create or edit your project,
compile your code with a source browsing option, or create a tags database. You
then view the occurrences or matches to your query with their surrounding source
code in the Browsing window match pane.

You can also graph the function and subroutine relationships in your program, and
if your source code is written in C++, you can browse and graph the classes defined
in your program.

For step-by-step instructions and more information about browsing, see the
Browsing Source Code section of the online help (you can access the online help
through the Help menu or Help button in any Sun WorkShop window).

Using Pattern Search Mode

Pattern search searches for any text string (including text embedded in your
comments) in the current directory or in the directories imported in the sb_init ~ file
(for more information about sb_init and searching multiple directories, see
“Searching Multiple Directories” in the Browsing Source Code section of the online
help).

39

40

Use pattern search when you:

= Want to do a quick search for a text string

= Do not have a source browsing database in the directory you want to search

= Do not want to graphically view function call relationships or class hierarchies
= Do not want to examine the data or member functions of a class

Pattern search uses grep syntax and searches all source code lines for a match to the
string you type in the Pattern text box of the Browsing window (see FIGURE 5-1). For
more information, see “Searching for a Pattern” in the Browsing Source Code section
of the online help.

Pattern text box Files text box

traffic.h extern void traffic_file_close();
callbacks. void file_save_popup() £
callbacks. file_save_popup(l;

callbacks. file_save_popupil;

callbacks. traffic_file_close();

traffic.cc traffic_file_closel];

traffic.cc traffic_file_closeld
window_ui.cc file_winp = new FileWindow();

FIGURE 5-1 Browsing Window in Pattern Search Mode

Introduction to Sun WorkShop « July 2001

Pattern Search Special Characters

Although you can type in the Pattern text box a pattern exactly as it appears in the
code, you can also use special characters (wildcard characters) to specify a pattern.
You can use the special characters in TABLE 5-1 in the Pattern text box in the

Browsing window.

TABLE5-1 Pattern Search Special Characters
Character Meaning Example
Period (.) Matches any character. l.nes matches all occurrences of

Asterisk (*)

Caret ()

Dollar sign ($)

Backslash left angle
bracket (\<)

Backslash right angle
bracket (\>)

Matches zero or more
occurrences of the
preceding character.

Constrains the search to
match the beginning of a
line.

Constrains the search to
match the end of a line.

Matches the start of a
word.

Matches the end of a
word.

lanes or lines

file*() matches any string that
contains file followed by zero or
more characters and () , such as
traffic_file_close() . *file
matches only strings that begin with
file

Mr* finds all lines that begin with
traffic , truck , or any other string
beginning with tr .

lanes$ finds all the lines that end
with the string lanes .

\<get finds get foobar , but not
widget .
\<String\> finds String *foo

but not XmStringCreate()

Surrounding an expression with a caret and a dollar sign constrains the search to

match the entire line.

For more information, see “Special Characters in Pattern Search and Source
Browsing Modes” in the Browsing Source Code section of the online help.

Multiple Directory Searches

Pattern searching uses the directories listed in the sb_init
files in multiple directories. For step-by-step instructions, see “Searching Multiple

Directories” in the Browsing Source Code section of the online help.

Chapter 5 Browsing Source Code

text file to search source

41

42

Using Source Browsing Mode

In source browsing mode, the Sun WorkShop integrated programming environment
responds to queries by searching in a database that contains information about the
source files you are browsing. Use source browsing mode when you:

= Have a source browsing database

= Want to search for language elements such as functions, classes, structs, unions,
or records or their usage, definitions, or assignments

= Want to graphically view function call relationships or class hierarchies

» Want to examine the data or member functions of a class

FIGURE 5-2 shows the Browsing window in Source Browsing mode.

Match, Type, and Scope pull-down menus

Match text box

—| workShop BErowsing — /homesarice/freeway e
Erowse Query Help
L 9 ﬂ _JPattern Search (8 Sgurce Browsing
Match: All Occurrences of: — | Taneq
Type: A&ll 4|

Scope: All —'|

l
28 matches -
traffic.cc 269 for {list *1 = lanes[j]-»
traffic.cc 352 for {1ist *1 = lanes[jl-»first(
traffic.cc 370 Tlist *neighbors = Tanes[GetMeig
traffic.cc 371 Tist *upperlane = IslLowerlane(]
traffic.cc 397 Tlanes[j] -:remove {current);
traffic.cc 398 lanes[upl-rprependCcurrent);
traffic.cc 407 Tlanes[jl-:removelcurrent);
traffic.cc 420 Tlanes[j]-rremovelcurrent);
traffic.cc 421 Tlanes[n]-*inserticurrent);

[

FIGURE 5-2 Browsing Window in Source Browsing Mode

Introduction to Sun WorkShop « July 2001

Source Browsing Databases

The Sun WorkShop integrated programming environment obtains its browsing
information from a database that describes the static structure of your program.
How the browser functions depends upon the database it accesses. The following are
the browser database choices available:

= No database. You must use pattern search mode instead of source browsing
mode. For more information, see “Searching for a Pattern” in the Browsing Source
Code section of the online help.

= Compiler-generated browser database. This database provides full browser
functionality. Source browsing mode responds to queries by searching through
this database.

One of the selections you can make when you are creating or editing a project is
for the project wizard to generate the database when it compiles your code or you
can generate the database by adding the appropriate source browser option to
your makefile and building your source files. For step-by-step instructions, see
“Generating a Browser Database” in the Browsing Source Code section of the
online help.

= Tags-generated database. This database provides a way to browse source files
without compilation, allows queries on functions and global variables, and
displays function calls (graphing features not available). A tags database
recognizes only global definitions for variables, types, and functions and collects
information on function calls. Function calls for C++ members are recognized
only when members are called explicitly.

For step-by-step instructions, see “Creating a Tags Database” in the Browsing
Source Code section of the online help.

Source Browsing Special Characters

Although you can type a name or function in the Match text box exactly as it
appears in your source code, you can also use special characters (wildcard
characters) to specify a set of character strings.

Chapter 5 Browsing Source Code 43

You can use the special characters in TABLE 5-2 in the Match text box in the Browsing
window.

TABLE 5-2 Source Browsing Special Characters

Character Meaning Example

Period (.) Matches any character. .ehicle matches all occurrences of
vehicle or Vehicle

Asterisk (*) Matches zero or more occurrences vehi* matches any string that begins
of the preceding character. with veh, such as
vehicle_length() .vehi.* matches
veh. , but not vehicle_length()

For more information, see “Special Characters in Pattern Search and Source
Browsing Modes” in the Browsing Source Code section of the online help.

Multiple Directory Browsing

For all projects except a user makefile project: When you create or edit your project,
if you ask the project wizard to generate source browsing information during
compilation, you will get all the browsing directories merged for you. Then when
you search in pattern search mode or source browsing mode, all the source
directories in your project are automatically searched. For more information, see
“Creating a New Project” and “Editing a Project” in the Working With Projects
section of the online help.

For a user makefile project: If you keep your source files in several directories, you
will most likely run the compiler in each of these directories. By default, the
compiler generates a separate source browsing database in each directory. Since the
source browser browses only one database at a time, it searches only that part of
your application located in the current directory. You can override this default
behavior by importing databases. For step-by-step instructions for how to import
databases, see “Browsing Multiple Directories” in the Browsing Source Code section
of the online help.

44

Relating Browsing and Graphing

FIGURE 5-3 shows how the Browsing window, the Call Graph window, the Class
Graph window, and the Class Browser window interrelate.

Introduction to Sun WorkShop « July 2001

Graph function Show function source
Call Graph
Query symbol Show symbol source
Browsing Graph class Class Graph Show class source» Text Editor

Browse class Show class source
Class Browser

FIGURE 5-3 How Browsing, the Graphers, and the Class Browser Interrelate

Graphing Functions

Using the Call Graph window, you can graphically inspect the relationships of the
functions in programs using ANSI C, C++, and Fortran. You can display the
functions that either call or are called by one or more selected functions. The Call
Graph window provides a graphic representation of the call relationship of functions
and subroutines. For step-by-step instructions and more information, see “Graphing
a Function Call” in the Browsing Source Code section of the online help.

You must have a source browsing database to view function relationships (see
“Source Browsing Databases” on page 43).

Note — You can graph virtual functions, but the Sun WorkShop integrated
programming environment cannot determine the actual function that would be
called. For example, if main calls b::d() , a virtual function that could actually call
bl:d() or b2:d() ,the Sun WorkShop integrated programming environment
cannot tell which function is called. The graph shows main calling b::d() , but no
connection between main and bl::d() or main and b2::d()

To change the colors used for node background, graph pane background, node
border, node text, and arrows between nodes in the Call Graph window, edit the
WORKSHOfesource file (see “Call Graph and Class Graph Window Colors” on
page 64). Any color changes you make apply to both the Call Graph and Class
Graph windows.

FIGURE 5-4 shows the Call Graph window.

Chapter 5 Browsing Source Code 45

Function text box Call Graph pane Status area

il

Graph HMode Help
Function: nain ."‘ &dd| Find

: =
-|traff1c_do_lnad|—= I
traffic_init

main -| traffic_default settin

List::List

workshop Call Graph

FreewayWindow: :objects initialize I

Bl

[} I
Expand Left || Expand Right | Expand|Eoth | Show Source |

Collapse Left | Collapse Right | Collapsg Both |
5 nodes added; & of 490 nodes displaved

FIGURE 5-4 Call Graph Window

46

Graphing Classes

Using the Class Graph window, you can graphically inspect the inheritance structure
of classes in C++ programs. The Class Graph window provides a graphic
representation of class hierarchies. For step-by-step instructions and more
information, see “Graphing a Class Hierarchy” in the Browsing Source Code section
of the online help.

To change the colors used for node background, graph pane background, node
border, node text, and arrows between nodes in the Class Graph window, edit the
WORKSHOfsource file (see “Call Graph and Class Graph Window Colors” on
page 64). Any color changes you make apply to both the Class Graph and Call
Graph windows.

FIGURE 5-5 shows the Class Graph window.

Introduction to Sun WorkShop « July 2001

Class text box Message footer
Class graph pane

Sports_car |—>-| Maniac |—>-| Police I

FIGURE 5-5 Class Graph Window

Browsing Classes

Using the Class Browser, you can:

= Browse a class. You can show the class list and data function members and view
class interfaces and relationships.

= Examine class relationships. You can select a class and examine its base, derived,
and friend classes, and you can browse classes, structs, and unions referenced in
the current class.

= Graph a class. You can graph the class hierarchy of a class selected in the Class
Browser window.

= Show the source of a class. You can show the source of a particular class in an
editor window.

Chapter 5 Browsing Source Code 47

48

You can view information about classes and their member and friend functions in
the Class Browser window. By navigating through the classes in the source code and
libraries, you can understand how the classes were defined and used.

When you open the Class Browser window (see FIGURE 5-6), the Browser list contains
all classes of the type Class or Struct in the current source browser database.
Using the two check boxes to the right of the Browser list, you can show all types,
only classes and structs, or only the unions.

For step-by-step instructions and more information, see “Browsing a Class” in the
Browsing Source Code section of the online help.

Name text box) Description pane Classes/Structs and
Browser list Unions check boxes

' — Maniac

FwuZoneObjectsuZone
Helpiwindow
lostream_init

List

FIGURE 5-6 Class Browser Window

Introduction to Sun WorkShop « July 2001

Exiting Browsing

To quit the current browsing process and close all browsing windows, choose
Browse O Exit Browsing in the Browsing window. If you want to close the Browsing
windows without killing the current browse process, choose Browse 0 Close.

Chapter 5 Browsing Source Code 49

50 Introduction to Sun WorkShop « July 2001

CHAPTER 6

Analyzing Program Performance

This chapter describes the basic features of the Sampling Collector and Performance
Analyzer. The UNIX prof and gprof performance-profiling tools generate only
user CPU information. With the Sampling Collector and Performance Analyzer, you
can examine a wider range of metrics, broken down by functions, load objects,
sampling intervals, or threads and lightweight processes (LWPs) in multithreaded
programs:

» The Sampling Collector gathers performance data during the execution of an
application and saves it to anexperiment file. Start the Sampling Collector from
the Windows menu in the Debugging window.

= The Performance Analyzer displays the performance data in the experiment file,
so you can analyze your program’s performance and determine where it can be
improved. Start the Performance Analyzer from the Tools menu in the Sun
WorkShop main window or from the Sampling Collector window.

For detailed information about how to use these and other performance-profiling
tools included in Sun WorkShop, see:

= Analyzing Program Performance With Sun WorkShop

» The Analyzing Program Performance section of the Sun WorkShop online help

= The links under “Collecting Performance Data” in the Using the Debugging
Window section of the Sun WorkShop online help

Note — Before collecting performance data you must build your application. For
information on building, see Chapter 3 and the Building Programs section of the Sun
WorkShop online help (you can access the online help through the Help menu in any
Sun WorkShop window).

51

52

Collecting Performance Data

The Sampling Collector gathers performance data about a program as it runs in the
Debugging window. It stores the data in an experiment file, which you then load
into the Performance Analyzer.

TABLE 6-1 describes the types of data you can collect.

TABLE6-1 Types of Data to Collect

Type Description

Clock-based profiling data ~ Function or load-object timing information.

Hardware counter overflow Counts of instructions issued or executed, cache misses,
profiling data cycles, floating point operations and other hardware
operations.

Synchronization delay data ~ Wait time on calls to synchronization routines in
multithreaded and message-passing interface (MPI)
programs.

Address-space data Information about how your application uses the pages and
segments in its address space

The Sampling Collector automatically records global execution statistics, including
page-fault and I/O data, context switches, and working-set and paging statistics.

For detailed information about choosing the types of data to collect and running the
Sampling Collector, see:

= Analyzing Program Performance With Sun WorkShop
= “Choosing the Data to Collect” in the Sun WorkShop online help

Note — You can also run the Sampling Collector through dbx using the collector
subcommand or directly from the command line using the collect =~ command. For
more information, see the dbx (1), collect (1), and collector (1) man pages and
Analyzing Program Performance With Sun WorkShop.

Introduction to Sun WorkShop « July 2001

Analyzing Performance Data

After you collect performance data with the Sampling Collector, you can view it in
the Performance Analyzer, a separate tool that you start from the Tools menu in the
Sun WorkShop main window or the Sampling Collector window. The Performance
Analyzer’s various displays help you to pinpoint where your program is spending
excessive execution time or otherwise making inefficient use of system resources.

The Performance Analyzer window gives you a choice of displays that you can
choose from the Data list box (see TABLE 6-2).

TABLE6-2 Types of Data to View and Analyze

Type Description

Function List display Shows detailed information about your program’s
functions and load objects.

Overview display Shows microstate accounting information for program
sampling intervals.

Address Space display Shows use of pages or sectors in your program’s address
space.
Execution Statistics display Shows global statistics over the program execution time.

In the Performance Analyzer displays, you can examine data for your whole
program, or you can specify individual functions, load objects, sampling intervals,
threads, and LWPs for analysis. You can also use the Performance Analyzer to
generate a mapfile that the linker can use to make your program more efficient in its
use of the address space.

The Performance Analyzer allows you to look at Function List data for more than
one experiment at a time and view the combined data or view portions of the data
from selected experiments.

For detailed information about how to use the Performance Analyzer, see:

» Analyzing Program Performance With Sun WorkShop
= The Analyzing Program Performance section of the Sun WorkShop online help

Chapter 6 Analyzing Program Performance 53

54

Examining Function and Load-Object Metrics

The Function List display shows for each function or load object the exclusive and
inclusive values for the following metrics:

» Clock-based profiling, including user CPU time, total LWP time, wall-clock time,
and system and page-fault times

» Hardware-counter profiling (if this is available)

» Synchronization delay data for multithreaded and MPI programs

Each metric can be displayed as an absolute value (seconds, counts) and as a
percentage of the total program metric.

You can specify which of the available metrics you want to appear in the Function
List display and the metric upon which the data is sorted. You can also open a
window that lists all available metrics for a selected function or load object.

Examining Caller and Callee Metrics

From the Function List display, you can open the Callers-Callees window, where you
can examine exclusive, inclusive, and attributed data for a selected function, its
callers, and its callees. You can also step through the program structure by selecting
a caller or a callee of the selected function, which then becomes the selected
function. You can specify which metrics to display and the metric upon which the
data is sorted. For more information, use the online help through the Help menu or
the Help button in any window.

Displaying Annotated Source and Disassembly
Code

To examine program performance line by line or instruction by instruction, you can
display source code and disassembly code annotated with program metrics and
interleaved with compiler commentary. These metrics enable you to pinpoint within
a given function which line or lines are using up the most resources or causing the
largest delay. The compiler commentary tells you about how the compiler has
transformed your code. For more information, use the online help through the Help
menu in any window.

Introduction to Sun WorkShop « July 2001

CHAPTER 7

Merging Source Files

Merging lets you compare two text files, merge two files into a single new file, and
compare two edited versions of a file against the original to create a new file that
contains all new edits. Merging loads and displays two text files for side-by-side
comparison, each in a read-only text pane. Any difference between the two files is
marked. A merged version of the two files, which you can edit to produce a final
merged version, is displayed.

When you load the two files to be merged, you can also specify a third file from
which the two files were created. When you have specified this ancestor file,
Merging marks lines in the descendants that are different from the ancestor and
produces a merged file based on all three files.

For more information, see the online help (choose Help O Contents in the Merging
window to access online help).

2.

Loading Files into Merging

Load files into merging by following these instructions:

. Choose Tools O Merging from the Sun WorkShop main window.

The Merging window opens (see FIGURE 7-1). The Merging window is divided into
three panes: two side-by-side panes, which display different versions of the file, and
the merged result in the bottom pane. The top two panes are read-only, the bottom
pane contains selected lines from either or both versions of the file and can be edited
to produce a final merged version.

Choose File O Open.

55

56

In the Directory text box, select a working directory.

This is the default directory used to select and save files. The browse button to the
right of the text box displays a dialog box in which you can select a directory.

In the Left File and Right File text boxes, select the two files you want to compare.
If you are comparing the files against a common ancestor, type the earlier version
of the two files in the Ancestor File text box.

An ancestor file is required to use Auto Merge.

If you want to specify the name of the output file, type it in the Output File text
box.

The name filemerge.out is the default, and the file is stored in the working
directory.

Click Open to load the files.

The names of the left file, right file, and output file are displayed above each text
pane. In a three-way comparison, the name of the ancestor file is displayed in the
window header.

WorkShop Merging — /home/toriw/ws2/dir2/sigprog.c
File Edit Navigate Options TeamWare Help

Save Mark| Und0| Reload|

(men

Status: 3 of 8 Diffs Resolved, 5 remain.- ﬂ
Child: C.- Accept| Next|Accept& Next‘ W Accept & Next‘ Next| Accept| Parent:

Signal catching routine which cleans up # Signal catching routine which ¢leans up [
*f */

e

'k g H 1=
#ifdef SUME_x
segv_handler{int sig , ...} segy_handler{int sig , ...J
#else - Hetse
segv_handler(int sigl - segv_handterfintsta)
[] ?erwdif 1| |= —fgend—w—F
clean_up(sigl; clean_up(sig);
abort(; abort();
3 |
.]
& extern "C* {
o static woid
< segy_handler{int sig)
L]
&b clean_up(sial;
o ahort();
A op
4] e[-~
!
filemerge.out Line Added + _ Line Deleted —
*Isw‘gna'\ catching routine which cleans up and aborts. j
"
segy_handler(int sig , ...
Helse

seqy_handler(int sig)

FIGURE 7-1 Merging Window

Introduction to Sun WorkShop « July 2001

Working With Ditferences

Merging operates on differences between files. When merging discovers a line that
differs between the two files to be merged (or between either of the two files and an
ancestor), it marks the lines in the two files with icons corresponding to how the
lines differ. Together, these marked lines are called a difference. As you move
through the files from one difference to the next, the lines that differ and their icons
are highlighted.

The highlighted difference is called the current difference. The differences
immediately before and immediately after are called the previous difference and the
next difference. A difference is resolved if the changes to a line are accepted. A
remaining difference is one that has not yet been resolved.

Reading Merging Icons

To help you find differences more easily, Merging highlights lines that differ with
color and icons. Yellow shows an addition, red shows a change, green shows a
deletion.

The meaning of icons is different if you are comparing two versions with each other
(two input files), or if you identify an ancestor for the two versions of the file (three
input files).

Two Input Files

When only two files have been loaded into Merging, lines in each file are marked by
icons to indicate when they differ from corresponding lines in the other file:

= If two lines are identical, no icon is displayed.

= If two lines are different, a vertical bar (1) is displayed next to the line in each
input text pane, and the different characters are highlighted in red.

= If a line appears in one file but not in the other, a plus sign (+) is displayed next
to the line in the file where it appears, and the different characters are highlighted
in yellow.

= Resolved differences are marked by icons in outline font.

Chapter 7 Merging Source Files 57

58

Three Input Files

When you load two files to be merged, you can also specify a third file, called the
ancestor of the two files. An ancestor file is any earlier version of the two files. When
you identify an ancestor file, it is used as a basis to compare the two files and
automatic merging can be done. Merging marks all lines in the derived files or their
descendants that differ from the ancestor and produces a merged file based on all
three files.

The lines in the files that are different from the ancestor file are marked with change
bars and colors. Here’s what each means:

= If a line is identical in all three files, no icon is displayed.

» If a line is not in the ancestor but was added to one or both of the descendants, a
plus sign (+) is displayed next to the line in the file where the line was added, and
the different characters are highlighted in yellow.

= If a line is in the ancestor but has been changed in one or both of the descendants,
a vertical bar (1) is displayed next to the line in the file where the line was
changed, and the different characters are highlighted in red.

« If a line is present in the ancestor but was removed from one or both of the
descendants, a minus sign (-) is displayed next to the line in the file from which
the line was removed, and the different characters are highlighted in green and in
strikethrough.

= Resolved differences are marked by icons in outline font.

Moving Between Differences

You can move between differences using the buttons above the two panes or
through the Navigate menu. Use the Previous and Next buttons to scroll through the
differences without accepting them. Choose Navigate 0 Find to navigate to a
particular text string. Choose Navigate O Goto Line to navigate by line numbers.

You can also navigate between differences by using the popup menu that is available
in the Child and Parent panes. Click the right mouse button in either pane to open
the menu.

Resolving Ditferences

Accept the change in either the left or right pane to resolve a difference. To accept a
difference, do one of the following;:

= Click the Accept button to accept the difference.

Introduction to Sun WorkShop « July 2001

= Click the Accept & Next button to accept the difference and move to the next
difference.

For more information, see the online help (choose Help O Contents in the Merging
window to access online help).

Setting Difference Options

Choose Options O Diff Options to customize merging to ignore certain kinds of
differences between files. You can set merging to ignore trailing or embedded white
space and to ignore differences in case.

For more information, see the online help (choose Help O Contents in the Merging
window to access online help).

Merging Automatically

Merging can resolve differences automatically, based on the following rules:
» If a line has not changed in all three files, it is placed in the output file.

= If a line has changed in one of the descendants, the changed line is placed in the
output file. A change could be the addition or removal of an entire line or an
alteration to some part of a line.

= If identical changes have been made to a line in both descendants, the changed
line is placed in the output file.

= If a line has been edited in both descendant files so that it is different in all three
files, no line is placed in the output file. You must decide how to resolve the
difference, by either choosing a line from a descendant or by editing the merged
file by hand.

When merging automatically resolves a difference, it changes the icons to outline
font. Merging lets you examine automatically resolved differences to be sure that it
has made the correct choices.

You can disable Auto Merge by choosing Options O Auto Merge. When automatic
merging is disabled, the output file contains only the lines that are identical in all
three files. You must then resolve the differences.

If you do not specify an ancestor file, merging has no reference to which to compare
a difference between the two input files. Consequently, merging cannot determine
which line in a difference is likely to represent the desired change. The result of an

Chapter 7 Merging Source Files 59

auto merge with no ancestor is the same as disabling automatic merging: Merging
constructs a merged file using only lines that are identical in both input files. You
must resolve the differences.

Saving the Output File

Save the output file by clicking the Save button or choosing File O Save. The name of
the output file is the name you specify in the Output File text box.

To change the name of the output file while saving, choose Save As and fill in the
new file and directory names in the Save As dialog window.

Setting Merging Options

Use the Options menu in the Merging window to set various merging options. The
menu items enable you to:

Create a merged version of the files automatically

Control whether files scroll separately or by corresponding lines
Control if line numbers or line ends are displayed

Customize tab stops

Set how white space and case differences are handled

For more information, see the online help (choose Help O Contents in the Merging
window to access online help).

60 Introduction to Sun WorkShop < July 2001

APPENDIX A

Sun WorkShop and Text Editor
Resources

This appendix describes the resources that you can set and gives you the
information you need to change the settings. This appendix has the following
sections:

= Changes to Resource Settings
= Editable Sun WorkShop Resources
= Editable Text Editor Resources

Changes to Resource Settings

The Sun WorkShop integrated programming environment uses two resource files:

= WORKSHO#ntains the resource settings for Sun WorkShop windows, including
the Browsing and Debugging windows.

= ESERVEcontains text editor resource settings.

Each resource file has two variations: one for CDE (Common Desktop Environment)
and one for non-CDE environments. The CDE version does not define generalized
color and font resources for Motif elements; it allows the CDE Style Manager to
control these elements.

Both the WORKSHGO&hd ESERVHfiles contain comments that indicate what a group
of resources pertains to. For example, the following group of resources controls the
colors used in the text editors for highlighting:

I Resources for highlight colors used by WORKSHOP in the editors

WORKSHOP.curPCColor: #8BD98B
WORKSHOP.visitPCColor: #EDCOFF
WORKSHOP.breakptColor: #FF9696

61

See the workshop (1) man page for more information about the resource files.
To change the default value of a resource, do the following:

1. Depending upon the resources you want to change, create a file called WORKSHOP
or ESERVEin your home directory (or the directory specified in your
XFILESEARCHPATHr XAPPLRESDIRenvironment variable).

2. Go to the directory where the installed resource file is located.

The resource files are located in the Sun WorkShop installation directory on your
system or network:

/opt/SUNWSspro/WSé6/lib/locale/ langlapp-defaults/CDE
lopt/SunWspro/WS6/lib/locale/ langlapp-defaults/non-CDE

lang is your current locale (for example, Cor ja).

Note — If your Sun WorkShop software is not installed in the /opt directory, ask
your system administrator for the equivalent path on your system.

3. In the installed WORKSHO# ESERVEresource file, copy the resources and default
values that you want to change.

4. Paste the resources and default values into the file you created in your home
directory.

5. Change the resource values per the instructions in this appendix.
6. Save the file.

7. Start (or exit and restart) the Sun WorkShop integrated programming
environment.

Editable Sun WorkShop Resources

You can change the following Sun WorkShop resources in the WORKSHOfsource
file (for instructions, see “Changes to Resource Settings” on page 61):

= “Highlight Colors in Editor Windows” on page 63

= “Data Graph Window Colors” on page 64

“Call Graph and Class Graph Window Colors” on page 64

“Audible Warnings” on page 65

“Debugging Buttons” on page 65

“Dbx Commands and Program I/O Window Output Lines” on page 65
“Project make Command” on page 66

62 Introduction to Sun WorkShop « July 2001

= “Browser Used to Display Web Updates” on page 66

= “Character Fonts in Hyperlink Windows” on page 66

= “Hyperlink Resources” on page 67

= “Automatic Text Wrapping” on page 68

= “Vertical Scrollbars” on page 68

= “Motif-Specific Resources” on page 69

= “Window Foreground and Background Colors” on page 70

= “Scrollbar Background and Toggle Button Colors” on page 71

Resources that affect components in the core Sun WorkShop integrated
programming environment do not affect Sun WorkShop TeamWare components or
any component started from the Tools menu in the main window.

Note — If you modify the default colors to use a non-specified color, you might
cause the Sun WorkShop integrated programming environment to fill up the color
map.

Highlight Colors in Editor Windows

The resources listed in TABLE A-1 control the colors used to highlight functions,
breakpoints, query matches, and build errors in source code displayed in the text
editor windows (for an example of highlighting, see FIGURE 4-1).

TABLE A-1 Editor Highlight Color Resources

Resource Name Description Default Value
WORKSHOP.curPCColor Current function #8BD98B
WORKSHOP.visitPCColor Visited function #EDCOFF
WORKSHOP.breakptColor Breakpoint #FF9696
WORKSHOP.disabledBreakptColor Disabled breakpoint #BDBDBD
WORKSHOP.matchColor Pattern or symbol match #99CFFF
WORKSHOP.errorColor Current build error #FFCC40

Appendix A Sun WorkShop and Text Editor Resources 63

Data Graph Window Colors

The resources listed in TABLE A-2 control the colors used in the graph types in the
Data Graph window of the debugger (see Debugging a Program With dbx).

TABLEA-2 Data Graph Window Color Resources

Resource Name Description Default Value
WORKSHOP.dgLineColor Color for Line graph type #0OOOOFF
WORKSHOP.dgFillColor Color for Fill graph type #FDF5E6
WORKSHOP.dgMeshColor Color for Mesh graph type #OOOOFF

Call Graph and Class Graph Window Colors

The resources listed in TABLE A-3 control the colors of the nodes, the lines (or arrows)
connecting the nodes, and background color of the graph pane in the Call Graph
window (see FIGURE 5-4) and the Class Graph window (see FIGURE 5-5).

TABLE A-3 Class Graph and Call Graph Window Resources

Resource Name Description Default Value

WORKSHOP*labelNodeBackground Background color of each #EFEFEF
node

WORKSHOP*viewBackground Graph pane background #FDF5EG6

(Default uses X's Old Lace)
Node Properties When Unhighlighted

WORKSHOP*arcForeground Arrow between nodes #000000
WORKSHOP*nodeForegroundColor Node border #000000
WORKSHOP*labelNodeForeground Node text #000000

Node Properties When Highlighted
WORKSHOP*arcHighlightColor Arrow between nodes #FF0O000
WORKSHOP*nodeHighlightColor Node border #FF0000

64 Introduction to Sun WorkShop « July 2001

Audible Warnings

The resource listed in TABLE A-4 enables you to turn on and turn off audible warning
beeps. The possible values are -XmBell and -XmNONE

TABLE A-4 Audible Warning Resources

Resource Name Description Default Value

WORKSHOP*audibleWarning Turns audible beeps on and off XmBell

Debugging Buttons

The resource listed in TABLE A-5 enables you to set the delay in milliseconds before
debugging and text editor buttons are disabled when dbx starts. This disabling
prevents button flashes when you are stepping through code. If you are running the
Sun WorkShop tools on a slow system or over an ISDN line, you might want to
increase this delay.

TABLE A5 Debugger Button Disable Delay Resource

Resource Name Description Default Value
WORKSHOP.ButtonDisableDelay Delays disabling of debugging 250

and text editor buttons when dbx

starts

Dbx Commands and Program I/O Window
Output Lines

The resource listed in TABLE A-6 sets the number of lines of output to save in the Dbx
Commands window and the Program Input/Output window.

TABLEA-6 Dbx Commands and Program I/O Windows Output Line Resource

Resource Default Value

WORKSHOP*dtTerm.savelLines 1000

Appendix A Sun WorkShop and Text Editor Resources 65

Project make Command

The resource listed in TABLE A-7 sets the make command used to build projects. It
must accept the -f flag as well as the target and macros operands. For example, you
can write your own wrapper around make that filters out certain warnings and
passes the flags on to make. See the dmake(1) and make(1) man pages for more
information.

TABLE A-7 Project make Command Resource

Resource Default Value

WORKSHOP.ProjectMakeCommand dmake -m serial

Browser Used to Display Web Updates

The resource listed in TABLE A-8 enables you to change the default path for the
browser used to display the Sun WorkShop Web updates page (to access the Web
updates page, choose Help O Web Updates from any Sun WorkShop window).

TABLEA-8 Web Updates Browser Resource

Resource Description Default Value

WORKSHOP.browser Path to browser used to display Web updates netscape

Character Fonts in Hyperlink Windows

Many Sun WorkShop windows use hyperlinks to connect to other windows to
facilitate the display of related information. For example, clicking on a build error in
the Building window causes an editor window to display the source code file that
contains the error. Certain resources serve as flags indicating that non-ASCII
characters written to a hyperlink display are to be interpreted as multibyte
characters. The multibyte characters are displayed in the font indicated by the
resource. The resources should be set only in locales in which there is to be a
multibyte interpretation of non-ASCII characters.

66 Introduction to Sun WorkShop « July 2001

The names of the resources as they would appear if set in the WORKSHQ#source file
are:

WORKSHOP*HTML*WCfont:
WORKSHOP*HTML*boldWCFont:
WORKSHOP*HTML*plainWCFont:
WORKSHOP*HTML*plainboldWCFont:
WORKSHOP*HTML*Font:
WORKSHOP*HTML*boldFont:
WORKSHOP*HTML*plainFont:
WORKSHOP*HTML*plainboldFont:

Each WQ(wide-character) font resource corresponds to a non-WCfont resource. If the
WCfont resource is set, WCfont dimensions determine the line spacing and baseline
of text elements written in both the WCfont and corresponding non-WCfont. The
purpose is to produce consistent spacing of a line where ASCII and multibyte
characters are mixed. The WCfont dimensions are also used for formatting a line
written only in the non-WCfonts.

Where WCfont resources are set for hyperlink displays of multibyte characters and
you change a WCfont resource, the size and spacing of WCfonts should be
proportional to the size and spacing of non-WCfonts. To get proportional formatting
you might need to modify the resources for non-WCfonts.

Hyperlink Resources

The resources listed in TABLE A-9 set the font type, weight, and angle used in
hyperlinks in Sun WorkShop windows and dialog boxes (English version). For
examples of hyperlinks in Sun WorkShop windows, see FIGURE 3-3, which shows
build error links in the Building window.

TABLEA-9 English (C) Locale Hyperlink Font Resources

Resource Name

Default Value

WORKSHOP*HTML*BoldFont -*-lucida-bold-r-normal-*-12-*-*-*-*-*.js08859- 1

WORKSHOP*HTML*PlainFont -*-|lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*.js08859-1

Appendix A Sun WorkShop and Text Editor Resources 67

TABLE A-10 lists hyperlink wide-character (WQ font resources for locales with multi-
byte characters. If set, non-ASCII characters written to HTML displays are
interpreted as multibyte characters and displayed with font indicated by the
resource.

TABLE A-10 Japanese (ja) Locale Hyperlink Font Resources

Resource Name Default Value

WORKSHOP*HTML*boldWCFont -jis-fixed-medium-r-normal--16-150-75-75-c-160-*-
WORKSHOP*HTML*plainWCFont -jis-fixed-medium-r-normal--16-150-75-75-c-160-*-
WORKSHOP*HTML*plainboldWCFont -jis-fixed-medium-r-normal--16-150-75-75-c-160-*-

68

Automatic Text Wrapping

The resource listed in TABLE A-11 lets you set text to automatically wrap or start a
new line in a Sun WorkShop window. The default value is True , which means that
text automatically wraps when it meets a window border.

TABLE A-11 Automatic Text Wrapping Resource

Resource Name Default Value

WORKSHOP*HTML*wrapPreformatText True

Vertical Scrollbars

The resource listed in TABLE A-12 enables you to turn vertical scrollbars off or on.

TABLE A-12 Vertical Scrollbar Resource

Resource Name Default Value

WORKSHOP*HTML*verticalScrollbarAlways True

Introduction to Sun WorkShop « July 2001

Motif-Specific Resources

TABLE A-13 through TABLE A-17 list resources that are specific to Motif environments
only and are not used by CDE.

TABLE A-13 Motif (non-CDE) Windowing Systems Font Resources

Resource Name Description Default Value

WORKSHOP.labelFontList Label font -*-lucida-medium-r-normal-*-12-*-*-*-*_x_%_%
WORKSHOP.buttonFontList ~ Button font -*-lucida-medium-r-normal-*-12-*-*-*-*_x__%

WORKSHOP.textFontList List font -*-lucidatypewriter-medium-r-normal-*-12-*-*-*_*__x_%

In your resource file, uncomment the resources listed in TABLE A-14 to change the
fonts in a specific Sun WorkShop window.

TABLE A-14 Window Font Resources

Resource Name Default Value

WORKSHOP*ipeProgramlOShell*userFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*.js08859-1

WORKSHOP*threadsList*fontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-**.j508859-1
WORKSHOP*handlerList*fontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*.j508859-1
WORKSHOP*processList*fontList -*-|lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*.js08859-1

This resource listed in TABLE A-15 is applicable to text in a tabular format, such as
tables.

TABLE A-15 Tabular Windows Font Resource

Resource Name Default Value

WORKSHOP.DataMonospacedFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*_%_x_x

Appendix A Sun WorkShop and Text Editor Resources 69

Window Foreground and Background Colors

TABLE A-16 lists the resources that control the foreground and background colors

used in most Sun WorkShop windows.

TABLE A-16 Windows, Dialog Boxes, Menus, and Buttons Color Resources

Resource Name

Description

Default Value

WORKSHOP*foreground

WORKSHOP*XmTextField*background
WORKSHOP*XmText*background
WORKSHOP*threadsList.background
WORKSHOP*ipeDbxCommandWindow*dtTerm.background

WORKSHOP*ipeProgramlOShell*dtTerm.background

WORKSHOP*XmDrawingArea.background

WORKSHOP*background

WORKSHOP*XmPushButton*background
WORKSHOP*XmMenuShell*background
WORKSHOP*XmList*background

WORKSHOP*topShadowColor

Foreground color of windows (text
such as labels)

Background color of text boxes
Text color
Background color of Threads pane

Background color of Dbx
Commands window

Background color of Program
Input/Output window

Background color of Stack pane,
Data Display, and so forth

Background color of Sun WorkShop
windows

Background color of buttons
Background color of menus

Background color of lists, such as
the Match list in the Browsing
window

Color of shadows at top and left
edges of buttons and text boxes

#000000

#FFFFFF
H#FFFFFF
#FFFFFF
#FFFFFF

H#FFFFFF

#FFFFFF

#DEDEDE

#DEDEDE
#DEDEDE
#DEDEDE

#FFFFFF

70 Introduction to Sun WorkShop « July 2001

Scrollbar Background and Toggle Button Colors

TABLE A-17 lists the resources for the colors of the scrollbar background (trough), and
the colors in toggle buttons to indicate toggle on or off.

TABLE A-17 Trough and Toggle Buttons Color Resources

Resource Name Description Default Value
WORKSHOP*HTML*troughColor Background color for scrollbars #DEDEDE
WORKSHOP*XmToggleButton.selectColor Color for check boxes when selected #FF9696
WORKSHOP*XmToggleButton.fillOnSelect Fill check box when selected true
WORKSHOP*XmToggleButtonGadget.selectColor Color for radio buttons when selected #FF9696
WORKSHOP*XmToggleButtonGadget.fillOnSelect Fill radio button when selected true

Editable Text Editor Resources

You can change the following Sun WorkShop resources in the ESERVEresource file
(for instructions, see “Changes to Resource Settings” on page 61):

= “Text Editor Default Path Names” on page 72

= “Blinking Pointer” on page 72

= “Fonts for Text Editor Motif Environments” on page 73

= “Text Editor Window Colors” on page 73

= “Scrolling List Background Color” on page 73

= “Writable Text Area Background Color” on page 74

= “Balloon Expression Evaluator Popup Dimensions” on page 74
= “Text Editor Audible Warnings” on page 74

Appendix A Sun WorkShop and Text Editor Resources 71

72

Text Editor Default Path Names

The resources listed in TABLE A-18 are used by the edit server to start the text editor
of your choice. If a fully qualified path is specified, it is executed.

TABLE A-18 Text Editor Default Path Resources

Resource Name Default Value
ESERVE*defaultGnuEmacsPath emacs
ESERVE*defaultXEmacsPath xemacs
ESERVE*defaultNEditPath nedit
ESERVE*defaultGVimPath gvim

The values for these resources can either be fully qualified paths or the base name of
the command (for instance, myfavoriteemacs).

If a base name is used then it is invoked from the PATHenvironment variable.

Blinking Pointer

TABLE A-19 lists the resource to change the pointer in text editor windows to a non-
blinking pointer. Default setting is for a blinking pointer. Set to 0 for a non-blinking
pointer.

TABLE A-19 Blinking Pointer Resource

Resource Name Default Value

ESERVE*DtTerm.blinkRate 250

Introduction to Sun WorkShop « July 2001

Fonts for Text Editor Motif Environments

TABLE A-20 lists font resources for the text editor windows that are specific to Motif
environments only and are not used by CDE.

TABLE A-20 Motif (non-CDE) Windowing Systems Editor Window Font Resources

Resource Name Default Value

ESERVE.labelFontList -*-lucida-medium-r-normal-*-12-*-*-*_*_*_x_%
ESERVE.buttonFontList -*-lucida-medium-r-normal-*-12-*-*-*_*__x_*
ESERVE.textFontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*__*_x
ESERVE*dtTerm*userFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*__*_x

Text Editor Window Colors

TABLE A-21 lists the resource for foreground and background colors in the text editor
windows.

TABLE A-21 Editor Windows, Dialog Boxes, Menus, and Buttons Color Resources

Resource Name Description Default Value

ESERVE*foreground Foreground color of windows black
(text such as labels)

ESERVE*background Background color of windows #dededededede
ESERVE*XmPushButton*background Background color of buttons ~ #dededededede
ESERVE*XmMenuShell*background Background color of menus #dededededede

Scrolling List Background Color

TABLE A-22 lists the resource for the background color for scrolling lists available
from a text editor.

TABLE A-22 Scrolling List Background Color Resource

Resource Name Description Default Value

ESERVE*XmList*background Background color of scrolling lists #dededededede

Appendix A Sun WorkShop and Text Editor Resources 73

74

Writable Text Area Background Color

TABLE A-23 lists colors for areas in the text editor windows containing text, other than
menus and buttons (not applicable to Emacs and XEmacs).

TABLE A-23 Writable Text Area Background Color Resources

Resource Name Default Value
ESERVE*XmTextField*background white
ESERVE*XmText*background white
ESERVE*dtTerm*background white
ESERVE*readwriteBackground white

Balloon Expression Evaluator Popup Dimensions

The resource listed in TABLE A-24 sets the maximum dimensions for the balloon
expression evaluator popup that instantly shows you the current value of the
expression at which your cursor is pointing in your editor. Width is measured in
characters, and height is measured in lines.

TABLE A-24 Balloon Expression Evaluator Popup Dimensions Resources

Resource Name Default Value
ESERVE.balloonWidth 60
ESERVE.balloonHeight 20

Text Editor Audible Warnings

The resource listed in TABLE A-25 enables you to turn off audible warning beeps in
the text editor windows. The possible values are -XmBell and -XmNONE

TABLE A-25 Text Editor Audible Warning Resource

Resource Name Description Default Value

ESERVE*audibleWarning Turns audible beeps on and off XmBell

Introduction to Sun WorkShop « July 2001

APPENDIX B

The make Utility and Makefiles

You can use the make utility and makefiles to help automate building of an
application with the Sun WorkShop integrated programming environment. This
appendix provides some basic information about the make utility, makefiles, and
makefile macros. It also refers you to dialog boxes that allow you to set makefile
options and to add, delete, and override makefile macros. To build your programs
without writing your own makefile, see “Building a Program” on page 22 and
“Building With Default Values” on page 23.

The make utility applies intelligence to the task of program compilation and linking.
Typically, a large application might exist as a set of source files and INCLUDE files,
which require linking with a number of libraries. Modifying any one or more of the
source files requires recompilation of that part of the program and relinking. You can
automate this process by specifying the interdependencies between files that make
up the application along with the commands needed to recompile and relink each
piece. With these specifications in a file of directives, make insures that only the files
that need recompiling are recompiled and that relinking uses the options and
libraries you want.

For more information, there are commercially published books on how to use make
as a program development tool, including Managing Projects with make, by Oram
and Talbott, from O’Reilly & Associates.

The Makefile

A file called makefile tells the make utility in a structured manner which source
and object files depend on other files. It also defines the commands required to
compile and link the files.

75

Each file to build, or step to perform, is called a target. Each entry in a makefile is a
rule expressing a target object’s dependencies and the commands needed to build or
make that object. The structure of a rule in the makefile is:

target: dependencies-list
TAB build-commands

For the dependencies, each entry starts with a line that names the target file,
followed by all the files the target depends on. For the build commands, each entry
has one or more subsequent lines that specify the Bourne shell commands that will
build the target file for this entry. Each of these command lines must be indented by
a tab character.

Fortran 77 Example

You have a program consisting of the following source files and a makefile:

= makefile

= commonblock
= computepts.f

= pattern.f

= startupcore.f

Both pattern.f and computepts.f have an INCLUDE of commonblock , and you
wish to compile each .f file and link the three relocatable files, along with a series of
libraries, into a program called pattern

The makefile contains the following lines.

CODE EXAMPLE B-1 Fortran 77 Makefile

pattern: pattern.o computepts.o startupcore.o
f77 pattern.o computepts.o startupcore.o —lcore77 \
—Icore —Isunwindow —Ipixrect —o pattern
pattern.o: pattern.f commonblock
f77 —c —u pattern.f
computepts.o: computepts.f commonblock
f77 —c —u computepts.f
startupcore.o: startupcore.f
f77 —c —u startupcore.f

The first line of this makefile indicates that making pattern depends on
pattern.o , computepts.0o , and startupcore.o . The next line and its
continuations give the command for making pattern from the relocatable.o files
and libraries.

76 Introduction to Sun WorkShop + July 2001

C++ Example

You have a program consisting of the following source files and a makefile:

= manythreads.cc
= Makefilemany.cc
= thr.cc

= misc.h

= defines.h

The target files are:

= many
= manythreads
= thrl

The makefile contains the following lines.

CODE EXAMPLE B-2 C++ Makefile

all: many manythreads thrl
many: many.cc

CC -0 many many.cc -g -D_REENTRANT -Im -Insl -Isocket -lthread
thrl: thr.cc

CC -o thrl thr.cc -g -D_REENTRANT -Im -Insl -Isocket -Ithread
manythreads: manythreads.cc

CC -0 manythreads -g -D_REENTRANT manythreads.cc -Insl \

-Isocket -Ithread

The first line of this makefile groups a set of targets with the label all. ~ The
succeeding lines give the commands for making the three targets, each of which has
a dependency on one of the source files.

The make Utility

To start the make utility, type the following at a command line:

% make

You can add a number of options to the make command for your application using
the Build Options dialog box (see “Specifying Build Options” on page 23).

Appendix B The make Utility and Makefiles 77

The make utility looks for a file named makefile or Makefile in the current
directory and takes its instructions from that file.

The make utility:

1. Reads makefile to determine all the target files it must process, the files they
depend on, and the commands needed to build them

2. Finds the date and time each file was last changed

3. Rebuilds any target file that is older than any of the files it depends on, using the
commands from makefile for that target

To make writing a makefile easier, the make utility has default rules that it uses
depending on the suffix of a target file. Recognizing the .f suffix, make uses the f77
compiler, passing as arguments any flags specified by the FFLAGSmacro, the -c
flag, and the name of the source file to be compiled.

CODE EXAMPLE B-3 demonstrates this rule twice.

CODE EXAMPLE B-3 make Default Suffix Rule

OBJ = pattern.o computepts.o startupcore.o
FFLAGS=-u
pattern: $(OBJ)
f77 $(OBJ) —Icore77 —Icore —Isunwindow \
—Ipixrect —o pattern
pattern.o: pattern.f commonblock
f77 $(FFLAGS) —c pattern.f
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

make uses default rules to compile computepts.f and startupcore.f . Similarly,
the suffix rules for .f95 files invoke the f95 compiler.

78

Macros

The make utility’s macro facility allows simple parameterless string substitutions.
For example, the list of relocatable files that make up the target program pattern
can be expressed as a single macro string, making it easier to change. See also the
make(1S) man page for information about make macros.

Introduction to Sun WorkShop « July 2001

A macro string definition has the form:

% make NAME=string

Use of a macro string is indicated by $(NAME) , which is replaced by make with the
actual value of the macro string named.

This example adds a macro definition naming all the object files to the beginning of
makefile

OBJ=pattern.o computepts.o startupcore.o

Now the macro can be used in both the list of dependencies as well as on the f77
link command for target pattern in makefile

pattern: $(OBJ)
77 $(OBJ) —Icore77 —Icore —Isunwindow \
—Ipixrect —o pattern

For macro strings with single-letter names, the parentheses can be omitted.

You can use the Make Macros dialog box to add macros to or delete macros from the
Macros list in your Sun WorkShop target and reassign values for makefile macros in
the list. For more information, see “Using Makefile Macros” on page 24.

The initial values of makefile macros can be overridden with command-line options
to make. For example, you have the following line at the top of makefile

FFLAGS=-u

You also have the compile-line of computepts.f

f77 $(FFLAGS) —c computepts.f

You have the final link:

f77 $(FFLAGS) $(OBJ) —Icore77 —Icore —Isunwindow \
Ipixrect —o pattern

Appendix B The make Utility and Makefiles 79

A make command without arguments uses the value of FFLAGSset above. However,
this can be overridden from the command line:

% make "FFLAGS=-u -O"

The definition of the FFLAGSmacro on the make command line overrides the
makefile initialization, and both the -O flag and the -u flag are passed to f77 .
FFLAGS=can also be used on the command line to reset the macro so that it has no
effect.

80 Introduction to Sun WorkShop « July 2001

APPENDIX C

The dmake Utility

This appendix describes the way the distributed make (dmake) utility distributes
builds over several hosts to build programs concurrently over a number of
workstations or multiple CPUs. See also the dmake(1) man page.

Basic Concepts

Distributed make (dmake) is a superset of the make utility and allows you to
concurrently distribute the process of building large projects, consisting of many
programs, over a number of workstations and, in the case of multiprocessor systems,
over multiple CPUs.

You execute dmake on a dmake host and distribute jobs to build servers. You can
also distribute jobs to the dmake host, in which case it is also considered to be a
build server. The dmake utility distributes jobs based on makefile targets that dmake
determines (based on your makefiles) can be built concurrently. From the dmake
host you can control which build servers are used and how many dmake jobs are
allotted to each build server. The number of dmake jobs that can run on a given
build server can also be limited on that server.

The distribution of dmake jobs is controlled in two ways:

1. A dmake user on a dmake host can specify the machines to use as build servers
and the number of jobs to distribute to each build server.

2. The owner of a build server (a user who can alter the /etc/opt/'SPROdmake/
dmake.conf build server configuration file) can control the maximum total
number of dmake jobs that can be distributed to that build server.

81

Note — If you access dmake from the Building window, see the online help for
information about specifying your build servers and jobs. If you access dmake from
the command line, see the dmake(1) man page.

To understand dmake, you should know about:

= The dmake host
= The build server

The dmake Host

The dmake host is defined as the machine on which the dmake command is initially
issued. The dmake utility searches for a runtime configuration file to determine
where to distribute jobs. Generally, this file must be in your home directory on the
dmake host and is named .dmakerc . The dmake utility searches for the runtime
configuration file in these locations and in the following order:

1. The path name you specify on the command line using the -¢ option

2. The path name you specify using the DMAKE_RCFILEmakefile macro

3. The path name you specify using the DMAKE_RCFILEenvironment variable
4. $(HOME)/.dmakerc

If a runtime configuration file is not found, the dmake utility distributes two jobs to
the dmake host.

The runtime configuration file allows you to specify a list of build servers and the
number of jobs you want distributed to each build server. CODE EXAMPLE C-1 is an
example of a .dmakerc file.

CODE EXAMPLE C-1 .dmakerc File

My machine. This entry causes dmake to distribute to it.
falcon {jobs=1}

hawk

eagle {jobs=3}

Manager's machine. She’s usually at meetings

heron {jobs=4}

avocet

The entries falcon , hawk, eagle , heron , and avocet are listed build servers. You
can specify the number of jobs you want distributed to each build server. The default
number of jobs is two. Any line that begins with the # character is interpreted as a

82 Introduction to Sun WorkShop « July 2001

comment. In the example above, the list of build servers includes falcon which is
also the dmake host. The dmake host can also be specified as a build server. If you do
not include it in the runtime configuration file, no dmake jobs are distributed to it.

You can also construct groups of build servers in the runtime configuration file. The
dmake utility provides you with the flexibility of easily switching between different
groups of build servers as circumstances warrant. For instance, you may define
groups of build servers for builds under different operating systems, or you may
define groups of build servers that have special software installed on them.

CODE EXAMPLE C-2 shows a .dmakerc file that contains groups of build servers.

CODE EXAMPLE C-2 .dmakerc File With Groups of Build Servers

earth {jobs=2}
mars {jobs =3}

group lab1 {
host falcon{ jobs = 3}
host hawk
host eagle {jobs=3}
}
group lab2 {
host heron
host avocet{ jobs =3}
host stilt {jobs=2}
}
group labs {
group labl
group lab2
}
group sunos5.x {
group labs
host jupiter

host venus{ jobs =2}
host pluto {jobs=3}

Formal groups are specified by the group keyword and lists of their members are
delimited by braces ({}). Build servers that are members of groups are specified by
the optional host keyword. Groups can be members of other groups. Individual
build servers can be listed in runtime configuration files that also contain groups of
build servers; in this case, dmake treats these build servers as members of the
unnamed group.

Appendix C The dmake Utility 83

84

In order of precedence, the dmake utility distributes jobs to the following:

1. The formal group specified on the command-line as an argument to the --g
option

2. The formal group specified by the DMAKE_GROUWRakefile macro
3. The formal group specified by the DMAKE_GROU#vironment variable
4. The first group specified in the runtime configuration file

The dmake utility allows you to specify a different execution path for each build
server. By default dmake looks for the dmake support binaries on the build server in
the same logical path as on the dmake host. You can specify alternate paths for build
servers as a host attribute in the .dmakerc file. For example:

CODE EXAMPLE C-3 .dmakerc File With Alternate Paths for Build Servers

group labl {
host falcon{ jobs
host hawk{ path

10 , path = "/set/dist/sparc-S2/bin" }
"/opt/'SUNWSspro/bin" }

You can use double quotation marks to enclose the names of groups and hosts in the
.dmakerc file. This allows you more flexibility in the characters that you can use in
group names. Digits are allowed, as well as alphabetic characters. Names that start
with digits should be enclosed in double quotes. For example:

CODE EXAMPLE C-4 .dmakerc File With Special Characters

group "123_lab" {
host "456_hawk"{ path = "/opt/'SUNWSspro/bin" }

}

The Build Server

Each build server that is to participate in a distributed build must have a file called
letc/opt/SPROdmake/dmake.conf . This file is the build server configuration file
and specifies the maximum total number of dmake jobs that can be distributed to
that particular build server by all dmake users. In addition, it might specify the nice
priority under which all dmake jobs should run.

Note — If the /etc/opt/'SPROdmake/dmake.conf file does not exist on a build
server, no dmake jobs will be allowed to run on that server.

Introduction to Sun WorkShop « July 2001

CODE EXAMPLE C-5 is an example of an /etc/opt/SPROdmake/dmake.conf file.
This file sets the maximum number of dmake jobs permitted to run on a build server
(from all dmake users) to be eight (8).

CODE EXAMPLE C-5 dmake.conf File

max_jobs: 8
nice_prio: 5

You can use a machine as a build server if it meets the following requirements:

= From the dmake host (the machine you are using), you must be able to use rsh
without being prompted for a password to remotely execute commands on the
build server. See the rsh (1) man page. For example:

% rsh build-server which dmake
lopt/SUNWSspro/bin/dmake

= The bin directory in which the dmake software is installed must be accessible
from the build server. It is common practice to have all build servers share a
common dmake installation directory. See the share (1M) and mount (1IM) man
pages.

By default, dmake assumes that the logical path to the dmake executables on the
build server is the same as on the dmake host. You can override this assumption
by specifying a path name as an attribute of the host entry in the runtime
configuration file. For example:

group sparc-cluster {
host wren {jobs = 10, path = “/export/SUNWSspro/bin"}
host stimpy { path = “/Jopt/SUNWSspro/bin” }

= The source hierarchy you are building must be accessible from the build server
and mounted under the same name.

Appendix C The dmake Utility 85

86

Impact of the dmake Utility on Makefiles

To run a distributed make, use the executable file dmake in place of the standard
make utility. You should understand the Solaris make utility before you use dmake.
If you need to read more about the make utility, see the Programming Utilities Guide
(available on the http://docs.sun.com Web site) and the make(1) man page. If
you use the make utility, the transition to dmake requires little or no alteration.

The methods and examples shown in this section present the kinds of problems that
lend themselves to being solved with dmake. This section does not suggest that any
one approach or example is the best.

As procedures become more complicated, so do the makefiles that implement them.
The examples in this section illustrate common code-development predicaments and
some straightforward methods to simplify them using dmake.

If you use a makefile template from the outset of your project, custom makefiles that
evolve from the makefile templates will be more familiar, easier to understand,
easier to integrate, easier to maintain, and easier to reuse.

Concurrent Building of Targets

Large software projects typically consist of multiple independent modules that can

be built concurrently. The dmake utility supports concurrent processing of targets on
multiple machines over a network. This concurrency can markedly reduce the time
required to build a large project.

When given a target to build, dmake checks the dependencies associated with that
target, and builds those that are out of date. Building those dependencies may, in
turn, entail building some of their dependencies. When distributing jobs, dmake
starts every target that it can. As these targets complete, dmake starts other targets.
Nested invocations of dmake are not run concurrently by default, but this can be
changed (see “Parallelism” on page 90 for more information).

Since dmake builds multiple targets concurrently, the output of each build is
produced simultaneously. To avoid intermixing the output of various commands,
dmake collects output from each build separately. The dmake utility displays the
commands before they are executed. If an executed command generates any output,
warnings, or errors, dmake displays the entire output for that command. Since
commands started later might finish earlier, this output might be displayed in an
unexpected order.

Introduction to Sun WorkShop « July 2001

Limitations on Makefiles

Concurrent building of multiple targets places some restrictions on makefiles.
Makefiles that depend on the implicit ordering of dependencies might fail when
built concurrently. Targets in makefiles that modify the same files may fail if those
files are modified concurrently by two different targets. Some examples of possible
problems are discussed in this section.

Dependency Lists

When building targets concurrently, it is important that dependency lists be
accurate. For example, if two executables use the same object file but only one
specifies the dependency, then the build may cause errors when done concurrently.
For example, consider the following makefile fragment:

all: progl prog2
progl: progl.o aux.o

$(LINK.c) progl.o aux.o -0 progl
prog2: prog2.o

$(LINK.c) prog2.0 aux.o -0 prog2

When built serially, the target aux.o is built as a dependent of progl and is up-to-
date for the build of prog2 . If built in parallel, the link of prog2 can begin before
aux.o is built and is therefore incorrect. The .KEEP_STATE feature of make detects
some dependencies, but not the one shown above.

Explicit Ordering of Dependency Lists

Other examples of implicit ordering dependencies are more difficult to fix. For
example, if all of the headers for a system must be constructed before anything else
is built, then everything must be dependent on this construction. This causes the
makefile to be more complex and increases the potential for error when new targets
are added to the makefile. The user can specify the special target .WAIT in a
makefile to indicate this implicit ordering of dependents. When dmake encounters
the WAIT target in a dependency list, it finishes processing all prior dependents
before proceeding with the following dependents. More than one .WAIT target can
be used in a dependency list. The following example shows how to use .WAIT to
indicate that the headers must be constructed before anything else.

all: hdrs .WAIT libs functions

Appendix C The dmake Utility 87

88

You can add an empty rule for the WAIT target to the makefile so that the makefile
is compatible with the make utility.

Concurrent File Modification

You must make sure that targets built concurrently do not attempt to modify the
same files at the same time. This can happen in a variety of ways. If a new suffix rule
is defined that must use a temporary file, the temporary file name must be different
for each target. You can accomplish this by using the dynamic macros $@or $* . For
example, a .c.0 rule that performs some modification of the .c file before
compiling it might be defined as:

.c.0:
awk -f modify.awk $*.c > $*.mod.c
$(COMPILE.c) $*.mod.c -0 $*.0
$(RM) $*.mod.c

Concurrent Library Update

Another potential concurrency problem is the default rule for creating libraries that
also modifies a fixed file, that is, the library. The inappropriate .c.a rule causes
dmake to build each object file and then archive that object file. When dmake
archives two object files in parallel, the concurrent updates will corrupt the archive
file.

.c.a:
$(COMPILE.C) -0 $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

A Dbetter method is to build each object file and then archive all the object files after
completion of the builds. An appropriate suffix rule and the corresponding library
rule are:

.c.a:
$(COMPILE.c) -0 $% $<

lib.a: lib.a($(OBJECTS))
$(AR) $(ARFLAGS) $(OBJECTS)
$(RM) $(OBJECTS)

Introduction to Sun WorkShop « July 2001

Multiple Targets

Another form of concurrent file update occurs when the same rule is defined for
multiple targets. An example is a yacc(l) program that builds both a program and
a header for use with lex(1) . When a rule builds several target files, it is important
to specify them as a group using the + notation. This is especially so in the case of a
parallel build.

y.tab.c y.tab.h: parser.y
$(YACC.y) parser.y

This rule is actually equivalent to the two rules:

y.tab.c: parser.y
$(YACC.y) parser.y

y.tab.h: parser.y
$(YACC.y) parser.y

The serial version of make builds the first rule to produce y.tab.c and then
determines that y.tab.h is up-to-date and need not be built. When building in
parallel, dmake checks y.tab.h before yacc has finished building y.tab.c and
notices that y.tab.h does need to be built, it then starts another yacc in parallel
with the first one. Since both yacc invocations are writing to the same files

(y.tab.c and y.tab.h), these files are apt to be corrupted and incorrect. The
correct rule uses the + construct to indicate that both targets are built simultaneously
by the same rule. For example:

y.tab.c + y.tab.h: parser.y
$(YACC.y) parser.y

Appendix C The dmake Utility 89

90

Parallelism

Sometimes file collisions cannot be avoided in a makefile. An example is xstr(1) ,
which extracts strings from a C program to implement shared strings. The xstr
command writes the modified C program to the fixed file x.c and appends the
strings to the fixed file xs.c . Since xstr must be run over each C file, the following
new .C.0 rule is commonly defined:

.C.0:
$(CC) $(CPPFLAGS) -E $*.c | xstr -c -
$(CC) $(CFLAGS) $(TARGET_ARCH) - x.C
mv X.0 $*.0

The dmake utility cannot concurrently build targets using this rule since the build of
each target writes to the same x.c and xs.c files. Nor is it possible to change the
files used. You can use the special target .NO_PARALLEL to tell dmake not to build
these targets concurrently. For example, if the objects being built using the .c.0 rule
were defined by the OBJECTSmacro, the following entry would force dmake to
build those targets serially:

.NO_PARALLEL: $(OBJECTS)

If most of the objects must be built serially, it is easier and safer to force all objects to
default to serial processing by including the .NO_PARALLEL: target without any
dependents. Any targets that can be built in parallel can be listed as dependencies of
the .PARALLEL: target:

.NO_PARALLEL:
.PARALLEL: $(LIB_OBJECT)

When dmake encounters a target that invokes another dmake command, it builds
that target serially, rather than concurrently. This prevents problems where two
different dmake invocations attempt to build the same targets in the same directory.
Such a problem might occur when two different programs are built concurrently,
and each must access the same library. The only way for each dmake invocation to
be sure that the library is up-to-date is for each to invoke dmake recursively to build
that library. The dmake utility recognizes a nested invocation only when the
$(MAKE) macro is used in the command line.

If you nest commands that you know will not collide, you can force them to be done
in parallel by using the .PARALLEL: construct.

Introduction to Sun WorkShop « July 2001

When a makefile contains many nested commands that run concurrently, the load-
balancing algorithm may force too many builds to be assigned to the local machine.
This may cause high loads and possibly other problems, such as running out of
swap space. If such problems occur, allow the nested commands to run serially.

Appendix C The dmake Utility 91

92 Introduction to Sun WorkShop « July 2001

APPENDIX D

Source Browsing With sbquery
sb init ,and sbtags

This appendix:
= Describes sbquery , one of the command-line utilities for browsing source code

= Tells you how to work with source files where database information is stored in
multiple directories

= Describes the sbtags command, which provides a quick and convenient method
for collecting browsing information from source files

The information in this chapter pertains mainly to the use of the command line to
complete tasks also available from within the Sun WorkShop integrated
programming environment. For more conceptual information on using source
browsing, see Chapter 5 and the Browsing Source Code section of the online help
(you can access the online help through the Help menu in any Sun WorkShop
window).

The sbquery Utility

The sbquery utility provides you with a command-line browsing environment that
you can access from terminals and from workstations emulating terminals. By
default, sbquery searches for symbols in the database in the current working
directory. If you want to browse a database stored in another directory, see “The
sb_init File and Commands” on page 97.

To issue a query from the command line, type sbquery , followed by any command-
line options and their arguments, followed by the symbol you want to search for:

% sbquery [options] symbols

93

sbquery displays a list of matches that includes the file in which the symbol
appears, the line number, the function containing the symbol, and the source line
containing the symbol.

Options
To obtain a list of the sbquery command-line options, type sbquery at the shell

prompt. TABLE D-1 lists and describes the options (see also the sbquery (1) man
page).

TABLED-1 sbquery Options

Arguments Description

-pattern symbol Queries on symbol, which may contain special
characters, including a leading dash (-). This option
allows you to query on a symbol that looks like a
command-line option. For instance, you can query on
the symbol -help , and sbquery distinguishes it from
the regular option -help .

-break_lock Breaks the lock on a locked database. This argument
might be needed if the update of the index file is
aborted. The next time you issue a query you might
get a message telling you that the database is locked.
After using this option, your database may be in an
inconsistent state. To ensure consistency, remove the
database directory and recompile your program.

-files_only Lists only the files where the symbols you are
searching for appear.

-help Displays a synopsis of the shquery command.
Equivalent to typing sbquery with no options and no
symbol.

-help_focus Displays a list of the focus options available for

querying only specific program types in a directory.
Use focus options (see TABLE D-3) to issue a query
limited to specific units of code such as programs or

functions.
-help_filter language Displays a list of the languages for which filter options
are available for -help_filter . Displays a list of the

filter options for the language for -help_filter
language. Use filter options (see TABLE D-2) to search
for symbols based on how they are used in a program.

94 Introduction to Sun WorkShop < July 2001

TABLED-1 sbquery Options (Continued)

Arguments

Description

max_memory size

-no_case

-no_source

-no_update

-0 file

-show_db_dirs

-symbols_only

-version

-sh_pattern

-reg_expr

-literal

Sets the approximate amount of memory in megabytes
that should be allocated before sbquery uses
temporary files when building the index file.

Makes the query case-insensitive.

Displays only the file name and line number
associated with each match and not the source line
containing the match.

Does not rebuild the index file when you issue a query
following compilation. If you do not include this
option and issue a query following compilation or
recompilation, then the database updates and
processes your query.

Sends query output to file.

Lists all database directories scanned when you issue
a query. The list includes the following:

the database directory in the current working
directory and all other database directories specified
by the import or export commands in your

sb_init file.

Displays a list of all symbols that match the patterns
in your search pattern. This is useful when you use
wildcards in a query.

Displays the current version number.

Uses shell-style expressions when issuing a query that
includes wildcards. This wildcard setting is the
default; include this option if you are doing other
pattern matching on the same command line.

See the sh (1) man page for more information about
shell-style pattern matching.

Uses regular expressions when issuing a query that
includes wildcards. If you do not include this option,
shell-style patterns are assumed.

Uses only literal strings and does not use any
wildcard expressions for the query. This is useful
when you want to search for a string that contains
meta characters from other wildcard schemes.

Two types of options are available to help you narrow your search: filter options

described in TABLE D-2 and focus options described in TABLE D-3.

Appendix D Source Browsing With sbquery , sb_init , and sbtags

95

The filter options are used to search for symbols based on how they are used in a
program. For example, you could limit your search to declarations of variables.

% sbquery -help_filter language

TABLE D-2 Filter Language Options

Filter Option Description

ansi_c C

sun_as Assembly language
sun_c_plus_plus C++

sun_f77 Fortran 77

The focus options listed in TABLE D-3 limit your search to specific classes of code,
such as particular programs, functions, or libraries.

% sbquery focus-option symbol

TABLED-3 Focus Options

Focus Option Description

-in_program program Limits query to matches in program.
-in_directory directory Limits query to matches in directory.
-in_source_file source-file Limits query to matches in source-file.
-in_function function Limits query to matches in function.
-in_class class Limits query to matches in class.
-in_template template Limits query to matches in template.
-in_language language Limits query to matches in language.

Note — If you include two or more focus options, a match is returned if it is found
with any of the supplied focus options.

96 Introduction to Sun WorkShop « July 2001

Environment Variables

Environment variables provide information that affects the operation of sbquery
(and source browsing in the Sun WorkShop integrated programming environment).

TABLE D-4 Environment Variables

Variable Description
HOME The name of your login directory.
PWD The full path name of the current directory.

SUNPRO_SB_ATTEMPTS_MAX The maximum number of times the index builder
tries to access a locked database.

SUNPRO_SB_EX_FILE_NAME The absolute path name of the
sun_source_browser.ex file.

SUNPRO_SB_INIT_FILE_NAME The absolute path name of the shb_init file. For
more information on sb_init , see “The sb_init File
and Commands” on page 97.

The sb_init File and Commands

This section describes how to work with source files where database information is
stored in multiple directories. As a default, the database is built in the current
working directory and searches that database when you issue a query.

The text file sb_init is used by Sun WorkShop source browsing mode, the
compilers, and sbtags to obtain control information about the source browsing
database structure. Use sb_init if you want to work with source files whose
database information is stored in multiple directories.

The sb_init file should be placed in the SUnWS_config directory, which should be
placed in the directory from which source browsing, the compilers, and sbtags are
run. These tools look in the current working directory for the sb_init file.

The default is to look in the current working directory for the sb_init file. To
instruct the Sun WorkShop integrated programming environment and the compiler
to search for the sh_init file in another directory, set the environment variable
SUNPRO_SB_INIT_FILE_NAMEto absolute-pathnamelsb_init

Appendix D Source Browsing With sbquery , sb_init , and sbtags 97

98

To use an sb_init command, add the command to the sb_init file. The sb_init
file is limited to the following commands:

TABLED-5 sb_init Commands

Comand Description

import Reads databases in directories other than the current working
directory.

export Writes database component files associated with specified source

files to directories other than the current working directory of the
compiler. This command also acts as an import command.

replacepath Specifies how to modify paths to file names found in the database,
allowing you to move a database.

automount-prefix Enables you to browse source files on a machine other than the one
on which you compiled your program.

cleanup-delay Limits the time elapsed between rebuilding the index and the
associated database garbage collection.

import

% import pathname

This command allows the Sun WorkShop source browsing mode to read databases in
directories other than the current working directory. Use of the import command
enables you to retain separate databases for separate directories.

For example, you may want to set up administrative boundaries so that
programmers working on Project A cannot write into directories for Project B and
vice versa. In that case, Project A and Project B each need to maintain their own
databases, both of which can then be read but not written by programmers working
on the other project.

export

% export prefix into path

This command causes the compilers and sbtags to write database component files
associated with source files to directories other than the current working directory
used by the Sun WorkShop source browsing mode and the compiler.

Introduction to Sun WorkShop « July 2001

Whenever the compiler processes a source file whose absolute path starts with prefix,
the resulting browser database (.bd) file is stored in path.

The export command contains an implied import command of path, so that
exported database components are automatically read by the Sun WorkShop source
browsing mode.

The export command enables you to save disk space by placing database files
associated with identical files, such as #include files from /usr/include ,ina
single database, while still retaining distinct databases for individual projects.

If your sb_init files include multiple export commands, then you must arrange
them from the most specific to the least specific. The compiler scans export
commands in the same order that it encounters them in the sb_init file.

replacepath

% replacepath from-prefix to-prefix

This command specifies how to modify path names in the source browsing database.

In general, from-prefix corresponds to the automounter mount point (the path name
where the automounter actually mounts the file system); fo-prefix corresponds to the
automounter trigger point (the path name known and used by the developer).

There is considerable flexibility in how an automounter is used; the method can vary
from host to host.

Path replacement rules are matched in the order that they are found, and matching
stops after a replacement is done.

The default replacepath ~ command is used to strip away automounter artifacts:

% replacepath [tmp_mnt

When used for this purpose, the command should be given with the mount point as
the first argument and the trigger point as the second argument.

Appendix D Source Browsing With sbquery , sb_init , and sbtags 99

100

automount-prefix

% automount-prefix mount-point trigger-point

The automount-prefix command enables you to browse on a machine other than
the one on which you compiled your program. This command is identical to the
replacepath ~ command except that automount-prefix path translations occur at
compile time and are written into the database.

The automount-prefix command defines which automounter prefixes to remove
from the source names stored in the database. The directory under which the
automounter mounts the file systems is the mount-point; the trigger-point is the prefix
you use to access the exported file system. The default is / .

If the path in the database fails, the path translations from both commands (that is,
automount-prefix and replacepath) are used to search for source files while
browsing.

At first glance, searching both paths may not seem possible; the browser database
that is created when you run the compiler contains the absolute path for each source
file. If the absolute path is not uniform across machines, then Sun WorkShop will not
be able to display the source files when it responds to a query.

To get around this problem, you can do one of the following:

= Ensure that all source files are mounted at the same mount point on all machines.

» Compile your programs in an automounted path. A reference to such a path
causes the automounter to automatically mount a file system from another
machine.

There is a default automount-prefix command that is used to strip away
automounter artifacts:

% automount-prefix | tmp-mnt [
The default rule is generated only if no automount-prefix commands are
specified.

For more information on using the automounter, see the automount (1M) man page.

cleanup-delay

This command limits the time elapsed between rebuilding the index and the
associated database garbage collection. The compilers automatically invoke
sbcleanup if the limit is exceeded. The default value is 12 hours.

Introduction to Sun WorkShop « July 2001

The sbtags Utility

The sbtags command provides a method for collecting browsing information from
source files, enabling you to collect minimal browsing information for programs that
do not compile completely. See also the sbtags (1) man page.

The sbtags command collects a subset of the information available through
compilation. The reduced information restricts some browsing functionality. A
database generated by sbtags enables you to perform queries on functions and
variables and to display the function call graph.

A tags database:

= Cannot issue queries about local variables

» Cannot browse classes

» Cannot graph class relationships

= Has limited ability to issue complex queries

= Has limited ability to focus queries

= Has less reliability than compiled information

Once a file has been changed, it often need not be scanned again to incorporate
changes into the database.

An sbtags database is based on a lexical analysis of the source file. Though it does
not always correctly identify all the language constructs, it will operate on files that
will not compile and is faster than recompilation.

sbtags recognizes definitions for types and functions. It also collects information on
function calls. No other information is collected (in particular, other semantic
information for complex queries is not collected).

The functionality of sbtags is similar to ctags and etags , except for the Call
Grapher information. You may mix direct queries to the database for definitions and
graphing with pattern-matching queries.

With an sbtags generated database:

» Class Browser and Class Graph features are not available.

» The database does not contain information on all symbols and strings. It contains
information on functions, classes, types, and calls to functions.

» Time is saved since the shtags program runs faster than the compiler.
» The database size is much smaller than the size of your source code.

= The database content is not guaranteed to be semantically correct because the
sbtags program performs only simple syntactic and semantic analysis and may
sometimes be in error.

Appendix D Source Browsing With sbquery , sb_init , and sbtags 101

= A database is generated even if the source code cannot be compiled because the
code is incomplete or semantically incorrect.

To generate a browsing database using sbtags , type the following at a command
line:

% sbtags file

file is the file for which you want to generate the database. See the sbtags (1) man
page for more information.

102 Introduction to Sun WorkShop « July 2001

Glossary

build command

build directory

data display

data history

debugging session

debug mode

distributed make
(dmake)

makefile

make target

menu picklist

pattern search mode

picklist

The command that starts the make utility, which reads the makefile and builds
the make targets.

The directory from which the build process is started and also the default
directory for the makefile.

A feature of the debugging service that allows you to watch the changes in the
value of an expression during program execution.

A feature of the debugging service that allows you to evaluate expressions and
change the value of a variable while debugging a program.

A program with an associated debug process. You can debug many programs
at the same time using the session manager.

A debugging state that allows you to debug your program using the full
functionality of the debugging service. See also quick mode.

A version of the make utility that organizes the build into multiple tasks and
distributes those tasks to multiple CPUs and workstations.

A file that contains entries that tell the make utility in a structured manner
which source and object files depend on other files. It also defines the
commands required to compile and link the files.

An object that the make utility knows how to build from the directions (rules)
contained in the makefile.

A list of recently used files, targets, programs, projects, or experiments located
on Sun WorkShop menus, allowing easy access to your most recently accessed
items.

A mode in the Browsing window that allows you to search source code for any
text string, including text embedded within comments. See also source
browsing mode.

See menu picklist.

Glossary 103

104

project

quick mode

run parameters

source browsing
mode

target

A list of files and compiler, debugger, and build-related options used to build
an executable, a static library/archive, a shared library, a Fortran application, a
complex application, or a user makefile application.

A debugging state that allows you to run a program normally but with
debugging ready in the background to save the program in case your program
terminates abnormally. See also debug mode.

The program arguments, the directory in which the program is run, and any
environment variables passed to your program while your program is being
debugged.

A mode in the Browsing window that allows you to find all occurrences of any
program-defined symbol in your code by searching in a database that is
generated when Sun WorkShop compiles your source files with a source
browsing option (-xsb). See also pattern search mode.

An object that can be built.

Introduction to Sun WorkShop « July 2001

Index

A

Active Sessions dialog box 37
address-space data 52
ancestor file 55

archiving libraries 88
automatic merging 59

B

balloon expression evaluator 33
breakpoint, On Access 33
breakpoints 32
Breakpoints window 32, 35
browser 10
browser database 43
browsing
an automounted path 100
classes 47
closing 49
exiting 49
on a different machine than compiling 100
relationship to graphing 44
browsing database 43
breaking lock on 94
exporting 98
importing 98
modifying path names in 99
Browsing window
pattern search mode 40
source browsing mode 42

build
command 19
directory 19
environment variables 24
errors 25
options 23, 77
servers 81
Build Options dialog box 23
building
an entire project 22
project targets 15, 22
with default values 23
with your own values 23
Building window 21

C

Call Graph window 45

call stack
examining 35
moving down one level in 35
moving up one level in 35
popping 35
popping to current frame 35
removing multiple frames from 35
removing stopped in function from 35

Callers-Callees window 54

Class Browser window 48

class browsing 47

Class Graph window 46

clock-based profiling 52, 54

Index

105

closing

browsing 49

building 26

Debugging window 38
code

stepping through 31

tracing 35
collecting performance data 52
compiler-generated browser database 43
compilers 8
compilers, accessing 3
compiling in an automounted path 100
concurrent file modification 88
configuration file, runtime 82

D
Data Display tab 32, 33
Data Display window 32
Data History tab 32
data values, monitoring 33
dbx commands 27
Dbx Commands window 27, 35
debug mode 28
debugging 9
child process 37
defaults 31
in debug mode 28
in quick mode 28
multiple programs side by side 37
multiple sessions 36
multithreaded programs 36
options 31
preparing for 28
session, customizing 31
setting breakpoints 32
starting 28
Debugging Options dialog box 31
Debugging window 27
closing 38
Data Display tab 33
Data History tab 32
Sessions tab 37
Stack pane 35
Threads tab 36

106 Introduction to Sun WorkShop < July 2001

default editor 17
default editor, setting 17
Define New Target dialog box 22
dependency lists 87
dialog boxes
Active Sessions 37
Build Options 23
Debugging Options 31
Define New Target 22
Edit Target 22
Environment Variables 24
Make Macros 24, 79
Text Editor Options 17
Welcome to Sun WorkShop 14
difference
defined 57
next 57
options 59
previous 57
remaining 57
resolved 57
differences
between text files 57
moving between 58
resolving automatically 59
distributed build 23
distributed make 81
dmake
basic concepts 81
command 90
host 81
impact on makefiles 86
jobs, controlling 81
nested invocations of 90
dmake.conf file 24, 84
.dmakerc file 82
documentation index 4
documentation, accessing 4

E
Edit Target dialog box 22
Editable 71
editor
default 17
options 17

editors 7, 17
environment variables 29
build 24
for sbquery 97
HOMB7
PWD7
SUNPRO_SB_ATTEMPTS_M#&X
SUNPRO_SB_EX_FILE_NAM&
SUNPRO_SB_INIT_FILE_NAME97, 97
Environment Variables dialog box 24
evaluating expressions 32
event, defined 35
exiting
browsing 49
building 26
debugging 38
experiment file 51
export command (sb_init file) 98
expression evaluation, instantly 33
expressions, evaluating 32

F

file
.dmakerc 82
ancestor 55
collision 90
dmake.conf 24,84
merging output 60
runtime configuration 23
sb_init 97

files
loading into Merging 55
merging 55

function
stepping into 31
stepping out of 32
stepping over 31
stopped in 35

function call, graphing 45

G
-g option 28
-g0 option 28

graphical user interfaces, designing 11
graphing
function call 45
relationship to browsing 45
subroutine call 45

H
hollow font 58
HOMEnvironment variable 97

I
icons, Merging window 57
import command (sb_init file) 98

L

library update, concurrent 88
limitations on makefiles 87
loading files into Merging 55
LockLint 10

M

macros
dynamic 88
makefile 78
main window 16
Make Macros dialog box 24, 79
make target, defined 20, 76
make utility 19, 75
makefile
C++ example 77
creating 22
defined 20, 75
file collisions in 90
Fortran 77 example 76
impact of dmake utility on 86
limitations 87
restrictions 87
rules, defined 76

Index

107

makefile macro 78
defined 24
overriding 79
man pages, accessing 2
MANPATH environment variable, setting
merging options 60
merging source files 55
Merging window icons 57
monitoring data values 33
moving between differences 58
multiple debugging sessions 36
multiple targets 89
multithreaded programs, debugging 36

N
next difference, defined 57
.NO_PARALLELdmake target 90

O]

option
-g 28
-g0 28

options
debugging 31
project 18
startup 17
text editor 17

outline font 58

P

.PARALLEL dmake target 90
parallelism, restricting 90
PATHenvironment variable, setting 3

pattern search
in multiple directories 41
special characters 41

pattern search mode 39
Performance Analyzer 51
performance data, collecting 52
performance-profiling tools 51

108 Introduction to Sun WorkShop « July 2001

previous difference, defined 57
program arguments 29
project

defined 13

options 18

wizard 14
project file information, sharing 15
projects

creating 14

editing 16
PWDenvironment variable 97

Q
quick mode, debugging 28

R

remaining difference, defined 57
resolved difference, defined 57
resolving differences automatically 59

resource file
ESERVBEr1
WORKSHGR
resources
changing 62
editable 62
Sun WorkShop windows 45, 46, 61
text editor 61
restricting parallelism 90
restrictions on makefiles 87
run parameters
program arguments 29
run directory 29

runtime checking 34

S

Sampling Analyzer 51

Sampling Collector 51

saving merging output 60

sb_init file 97

sb_init file commands
automount-prefix 98, 100

cleanup-delay 98,100

export 98

import 98

replacepath 98,99
sbquery

displaying symbols only 95
displaying version number 95
environment variables 97
filter language options 96
focus options 96
no rebuilding of index file 95
options 94
sending output to a file 95
setting maximum memory 95
source browsing with 93
using regular expressions in 95
using shell-style expressions in 95
sbtags command 101
Sessions tab 37
setting
breakpoints 32
default editor 17
difference options 59
merging options 60
window colors and fonts 16, 17
sharing project file information 15
shell prompts 2
Solaris versions supported 2
source browsing 10
from multiple machines 100
in multiple directories 44
special characters 43
uncompiled programs 101
with sbquery 93
source browsing databases 43
breaking lock on 94
compiler-generated 43
exporting 98
importing 98
modifying path names in 99
tags-generated 43
source browsing mode 42
source code management tools 11
special characters
in pattern search 41
in source browsing 43
Stack pane 35

starting Sun WorkShop 13
startup options 17
stepping
forward one source line 31
into function 31
out of function 32
over function 31
through code 31

stopped in function 35
subroutine call, graphing 45

Sun WorkShop TeamWare 11

Sun WorkShop tools, accessing 18

SUNPRO_SB_ATTEMPTS_Mé&n¢ironment
variable 97

SUNPRO_SB_EX_FILE_NAMénvironment
variables 97

SUNPRO_SB_INIT_FILE_NAMEenvironment
variable 97

T
tabs
Data Display 32, 33
Data History 32

Sessions 37
Threads 36

tags database 43
defined 101
limitations 101
restrictions 101
target
building multiple concurrently 86, 87
complex project 20
multiple 89
Sun WorkShop 19
user makefile 20

Text Editor Options dialog box 17

text editor, default 17

text editors 7, 17

Threads tab 36

thread-synchronization wait tracing 54
tools 18

tracing code 35

typographic conventions 1

Index 109

U

unlocking browsing database 94
user makefile

project 23

target 20

\Y
Visual GUI-building tool 11

W
WAIT dmake target 87
Welcome to Sun WorkShop dialog box 14
windows
Breakpoint 32
Breakpoints 35
Building 21
Call Graph 45
Callers-Callees 54
Class Browser 48
Class Graph 46
Data Display 32
Dbx Commands 27
Debugging 27
main 16

110 Introduction to Sun WorkShop « July 2001

	Introduction to Sun WorkShop
	Contents
	Figures
	Tables
	Code Examples
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun WorkShop Development Tools and Man Pages
	Accessing Sun WorkShop Compilers and Tools
	To Determine If You Need to Set Your PATH Environment Variable
	To Set Your PATH Environment Variable to Enable Access to Sun WorkShop Compilers and Tools

	Accessing Sun WorkShop Man Pages
	To Determine If You Need to Set Your MANPATH Environment Variable
	To Set Your MANPATH Environment Variable to Enable Access to Sun WorkShop Man Pages

	Accessing Sun WorkShop Documentation
	Accessing Related Documentation
	Ordering Sun Documentation
	Sending Your Comments

	About the Sun WorkShop Integrated Programming Environment
	Integrated Text Editors
	Compilers
	Integrated Debugging
	Source Code Browsing
	Performance, Source Code Management, and GUI-Building Tools
	Multithreaded Development Tools
	Sun WorkShop TeamWare
	Sun WorkShop Visual

	Getting Started
	Working With Projects
	Creating a Project
	Building Project Targets
	Editing a Project

	Using the Main Window
	Choosing a Text Editor and Text Editor Options
	Setting Startup and Project Options
	Startup Options
	Project Options

	Accessing Sun WorkShop Tools

	Building Programs
	Working With Targets
	Sun WorkShop Target
	User Makefile Target

	Using the Building Window
	Building a Program
	Building With Default Values
	Specifying Your Own Build Values
	Specifying Build Options
	Using Makefile Macros
	Using Environment Variables

	Identifying Build Errors
	Exiting Building

	Debugging a Program
	Preparing for Debugging
	Starting Debugging
	Customizing the Debugging Window
	Stepping Through Your Code
	Setting Breakpoints
	Examining Values and Data
	Monitoring Data Values
	Collecting Performance Data
	Detecting Runtime Errors
	Tracing Code
	Examining the Call Stack
	Debugging Multithreaded Programs
	Debugging Processes Simultaneously
	Managing Sessions
	Debugging a Child Process

	Exiting Debugging

	Browsing Source Code
	Using Pattern Search Mode
	Pattern Search Special Characters
	Multiple Directory Searches

	Using Source Browsing Mode
	Source Browsing Databases
	Source Browsing Special Characters
	Multiple Directory Browsing

	Relating Browsing and Graphing
	Graphing Functions
	Graphing Classes
	Browsing Classes
	Exiting Browsing

	Analyzing Program Performance
	Collecting Performance Data
	Analyzing Performance Data
	Examining Function and Load-Object Metrics
	Examining Caller and Callee Metrics
	Displaying Annotated Source and Disassembly Code

	Merging Source Files
	Loading Files into Merging
	Working With Differences
	Reading Merging Icons
	Two Input Files
	Three Input Files

	Moving Between Differences
	Resolving Differences
	Setting Difference Options

	Merging Automatically
	Saving the Output File
	Setting Merging Options

	Sun WorkShop and Text Editor Resources
	Changes to Resource Settings
	Editable Sun WorkShop Resources
	Highlight Colors in Editor Windows
	Data Graph Window Colors
	Call Graph and Class Graph Window Colors
	Audible Warnings
	Debugging Buttons
	Dbx Commands and Program I/O Window Output Lines
	Project make Command
	Browser Used to Display Web Updates
	Character Fonts in Hyperlink Windows
	Hyperlink Resources
	Automatic Text Wrapping
	Vertical Scrollbars
	Motif-Specific Resources
	Window Foreground and Background Colors
	Scrollbar Background and Toggle Button Colors

	Editable Text Editor Resources
	Text Editor Default Path Names
	Blinking Pointer
	Fonts for Text Editor Motif Environments
	Text Editor Window Colors
	Scrolling List Background Color
	Writable Text Area Background Color
	Balloon Expression Evaluator Popup Dimensions
	Text Editor Audible Warnings

	The make Utility and Makefiles
	The Makefile
	Fortran 77 Example
	C++ Example

	The make Utility
	Macros

	The dmake Utility
	Basic Concepts
	The dmake Host
	The Build Server

	Impact of the dmake Utility on Makefiles
	Concurrent Building of Targets
	Limitations on Makefiles
	Dependency Lists
	Explicit Ordering of Dependency Lists
	Concurrent File Modification
	Concurrent Library Update
	Multiple Targets

	Parallelism

	Source Browsing With sbquery, sb_init, and sbtags
	The sbquery Utility
	Options
	Environment Variables

	The sb_init File and Commands
	import
	export
	replacepath
	automount-prefix
	cleanup-delay

	The sbtags Utility

	Glossary
	Index

