
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

Introduction to Sun WorkShop

Forte Developer 6 update 2
(Sun WorkShop 6 update 2)

Part No. 806-7980-10
July 2001, Revision A

Please
Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Cray Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Cray Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new Forte

organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Before You Begin 1

Typographic Conventions 1

Shell Prompts 2

Supported Platforms 2

Accessing Sun WorkShop Development Tools and Man Pages 2

Accessing Sun WorkShop Documentation 4

Accessing Related Documentation 5

Ordering Sun Documentation 5

Sending Your Comments 6

1. About the Sun WorkShop Integrated Programming Environment 7

Integrated Text Editors 7

Compilers 8

Integrated Debugging 9

Source Code Browsing 10

Performance, Source Code Management, and GUI-Building Tools 10

Multithreaded Development Tools 10

Sun WorkShop TeamWare 11

Sun WorkShop Visual 11
v

2. Getting Started 13

Working With Projects 13

Creating a Project 14

Building Project Targets 15

Editing a Project 16

Using the Main Window 16

Choosing a Text Editor and Text Editor Options 17

Setting Startup and Project Options 17

Accessing Sun WorkShop Tools 18

3. Building Programs 19

Working With Targets 19

Sun WorkShop Target 19

User Makefile Target 20

Using the Building Window 21

Building a Program 22

Building With Default Values 23

Specifying Your Own Build Values 23

Specifying Build Options 23

Using Makefile Macros 24

Using Environment Variables 24

Identifying Build Errors 25

Exiting Building 26

4. Debugging a Program 27

Preparing for Debugging 28

Starting Debugging 28

Customizing the Debugging Window 31

Stepping Through Your Code 31
vi Introduction to Sun WorkShop • July 2001

Setting Breakpoints 32

Examining Values and Data 32

Monitoring Data Values 33

Collecting Performance Data 34

Detecting Runtime Errors 34

Tracing Code 35

Examining the Call Stack 35

Debugging Multithreaded Programs 36

Debugging Processes Simultaneously 36

Managing Sessions 37

Debugging a Child Process 37

Exiting Debugging 38

5. Browsing Source Code 39

Using Pattern Search Mode 39

Pattern Search Special Characters 41

Multiple Directory Searches 41

Using Source Browsing Mode 42

Source Browsing Databases 43

Source Browsing Special Characters 43

Multiple Directory Browsing 44

Relating Browsing and Graphing 44

Graphing Functions 45

Graphing Classes 46

Browsing Classes 47

Exiting Browsing 49

6. Analyzing Program Performance 51

Collecting Performance Data 52
Contents vii

Analyzing Performance Data 53

Examining Function and Load-Object Metrics 54

Examining Caller and Callee Metrics 54

Displaying Annotated Source and Disassembly Code 54

7. Merging Source Files 55

Loading Files into Merging 55

Working With Differences 57

Reading Merging Icons 57

Moving Between Differences 58

Resolving Differences 58

Setting Difference Options 59

Merging Automatically 59

Saving the Output File 60

Setting Merging Options 60

A. Sun WorkShop and Text Editor Resources 61

Changes to Resource Settings 61

Editable Sun WorkShop Resources 62

Highlight Colors in Editor Windows 63

Data Graph Window Colors 64

Call Graph and Class Graph Window Colors 64

Audible Warnings 65

Debugging Buttons 65

Dbx Commands and Program I/O Window Output Lines 65

Project make Command 66

Browser Used to Display Web Updates 66

Character Fonts in Hyperlink Windows 66

Hyperlink Resources 67
viii Introduction to Sun WorkShop • July 2001

Automatic Text Wrapping 68

Vertical Scrollbars 68

Motif-Specific Resources 69

Window Foreground and Background Colors 70

Scrollbar Background and Toggle Button Colors 71

Editable Text Editor Resources 71

Text Editor Default Path Names 72

Blinking Pointer 72

Fonts for Text Editor Motif Environments 73

Text Editor Window Colors 73

Scrolling List Background Color 73

Writable Text Area Background Color 74

Balloon Expression Evaluator Popup Dimensions 74

Text Editor Audible Warnings 74

B. The make Utility and Makefiles 75

The Makefile 75

Fortran 77 Example 76

C++ Example 77

The make Utility 77

Macros 78

C. The dmake Utility 81

Basic Concepts 81

The dmake Host 82

The Build Server 84

Impact of the dmake Utility on Makefiles 86

Concurrent Building of Targets 86

Limitations on Makefiles 87
Contents ix

Parallelism 90

D. Source Browsing With sbquery , sb_init , and sbtags 93

The sbquery Utility 93

Options 94

Environment Variables 97

The sb_init File and Commands 97

The sbtags Utility 101

Glossary 103

Index 105
x Introduction to Sun WorkShop • July 2001

Figures

FIGURE 2-1 Main Window 16

FIGURE 3-1 Building Window 21

FIGURE 3-2 Define New Target Dialog Box 22

FIGURE 3-3 Build Errors in the Build Output Display Pane of the Building Window 25

FIGURE 3-4 Build Error and Dialog Box With Associated Error Message Defined 26

FIGURE 4-1 Debugging Window 30

FIGURE 5-1 Browsing Window in Pattern Search Mode 40

FIGURE 5-2 Browsing Window in Source Browsing Mode 42

FIGURE 5-3 How Browsing, the Graphers, and the Class Browser Interrelate 45

FIGURE 5-4 Call Graph Window 46

FIGURE 5-5 Class Graph Window 47

FIGURE 5-6 Class Browser Window 48

FIGURE 7-1 Merging Window 56
Figures xi

xii Introduction to Sun WorkShop • July 2001

Tables

TABLE 5-1 Pattern Search Special Characters 41

TABLE 5-2 Source Browsing Special Characters 44

TABLE 6-1 Types of Data to Collect 52

TABLE 6-2 Types of Data to View and Analyze 53

TABLE A-1 Editor Highlight Color Resources 63

TABLE A-2 Data Graph Window Color Resources 64

TABLE A-3 Class Graph and Call Graph Window Resources 64

TABLE A-4 Audible Warning Resources 65

TABLE A-5 Debugger Button Disable Delay Resource 65

TABLE A-6 Dbx Commands and Program I/O Windows Output Line Resource 65

TABLE A-7 Project make Command Resource 66

TABLE A-8 Web Updates Browser Resource 66

TABLE A-9 English (C) Locale Hyperlink Font Resources 67

TABLE A-10 Japanese (ja) Locale Hyperlink Font Resources 68

TABLE A-11 Automatic Text Wrapping Resource 68

TABLE A-12 Vertical Scrollbar Resource 68

TABLE A-13 Motif (non-CDE) Windowing Systems Font Resources 69

TABLE A-14 Window Font Resources 69

TABLE A-15 Tabular Windows Font Resource 69

TABLE A-16 Windows, Dialog Boxes, Menus, and Buttons Color Resources 70
Tables xiii

TABLE A-17 Trough and Toggle Buttons Color Resources 71

TABLE A-18 Text Editor Default Path Resources 72

TABLE A-19 Blinking Pointer Resource 72

TABLE A-20 Motif (non-CDE) Windowing Systems Editor Window Font Resources 73

TABLE A-21 Editor Windows, Dialog Boxes, Menus, and Buttons Color Resources 73

TABLE A-22 Scrolling List Background Color Resource 73

TABLE A-23 Writable Text Area Background Color Resources 74

TABLE A-24 Balloon Expression Evaluator Popup Dimensions Resources 74

TABLE A-25 Text Editor Audible Warning Resource 74

TABLE D-1 sbquery Options 94

TABLE D-2 Filter Language Options 96

TABLE D-3 Focus Options 96

TABLE D-4 Environment Variables 97

TABLE D-5 sb_init Commands 98
xiv Introduction to Sun WorkShop • July 2001

Code Examples

CODE EXAMPLE B-1 Fortran 77 Makefile 76

CODE EXAMPLE B-2 C++ Makefile 77

CODE EXAMPLE B-3 make Default Suffix Rule 78

CODE EXAMPLE C-1 .dmakerc File 82

CODE EXAMPLE C-2 .dmakerc File With Groups of Build Servers 83

CODE EXAMPLE C-3 .dmakerc File With Alternate Paths for Build Servers 84

CODE EXAMPLE C-4 .dmakerc File With Special Characters 84

CODE EXAMPLE C-5 dmake.conf File 85
Code Examples xv

xvi Introduction to Sun WorkShop • July 2001

Before You Begin

Introduction to Sun WorkShop acquaints you with the basic program development

features of the Sun WorkShop™ integrated programming environment. This book is

intended for application developers who have a working knowledge of Fortran, C,

or C++, the Solaris™ operating environment, and UNIX® operating system

commands.

To get updates about Sun WorkShop tools through the Web, use the Web Updates

Dialog Box. To open the Web Updates dialog box, choose Help ➤ Web Updates in

any Sun WorkShop window.

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.
1

Shell Prompts

Supported Platforms

This Sun WorkShop™ release supports versions 2.6, 7, and 8 of the Solaris™ SPARC™

Platform Edition and Solaris™ Intel Platform Edition operating environments.

Accessing Sun WorkShop Development

Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Sun

WorkShop compilers and tools, you must have the Sun WorkShop component

directory in your PATHenvironment variable. To access the Sun WorkShop man

pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 update 2 Installation Guide or your system

administrator.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
2 Introduction to Sun WorkShop • July 2001

Note – The information in this section assumes that your Sun WorkShop 6 update 2

products are installed in the /opt directory. If your product software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

% echo $PATH
Before You Begin 3

To Determine If You Need to Set Your MANPATHEnvironment
Variable

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in the next

section for setting your MANPATHenvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Sun WorkShop

Documentation

You can access Sun WorkShop product documentation at the following locations:

■ The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser

to the following file:

/opt/SUNWspro/docs/index.html

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Manuals are available from the docs.sun.comsm Web site.

% man workshop
4 Introduction to Sun WorkShop • July 2001

The docs.sun.com Web site (http://docs.sun.com) enables you to read,

print, and buy Sun Microsystems manuals through the Internet. If you cannot

find a manual, see the documentation index installed with the product on your

local system or network.

Accessing Related Documentation

The following table describes related documentation that is available through the

docs.sun.com Web site.

Ordering Sun Documentation

You can order product documentation directly from Sun through the

docs.sun.com Web site or from Fatbrain.com, an Internet bookstore. You can find

the Sun Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Document Collection Document Title Description

Numerical Computation

Guide Collection

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Solaris 8 Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris 8 Software

Developer Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris 8 Software

Developer Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
Before You Begin 5

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com
6 Introduction to Sun WorkShop • July 2001

CHAPTER 1

About the Sun WorkShop Integrated
Programming Environment

The Sun WorkShop integrated programming environment simplifies complex

development tasks by providing integrated tools for building, editing, debugging,

source browsing, and tuning your C++, C, and Fortran 77/95 software development

projects.

The Sun WorkShop integrated programming environment includes:

■ Integrated text editors

■ Compilers

■ Integrated debugging

■ Source code browsing

■ Performance, source code management, and GUI-building tools

Note – To access the documentation described in this chapter, see “Accessing Sun

WorkShop Documentation” on page 4.

Integrated Text Editors
Text editors are the center of the Sun WorkShop integrated programming

environment. The Sun WorkShop integrated programming environment makes it

possible to evaluate expressions, set breakpoints, and step through functions from

your text editor.

This release provides the following integrated editors:

■ NEdit. A graphical user interface-style plain-text editor for X/Motif systems.

NEdit is the default Sun WorkShop editor (to change your text editor, see

“Choosing a Text Editor and Text Editor Options” on page 17). For more

information about NEdit, see “NEdit Editor Window” in the Text Editing section

of the online help and the NEdit web page at http://www.nedit.org .
7

■ XEmacs. A customizable text editor and application development system. For

more information, see “XEmacs Editor Window” in the Text Editing section of the

online help and the XEmacs web page at http://www.xemacs.org .

■ GNU Emacs. An extensible, customizable, self-documenting real-time display

editor. For more information, see “GNU Emacs Editor Window” in the Text

Editing section of the online help and the GNU web page at

http://www.gnu.org .

■ Vi. A screen-based editor on UNIX systems. For more information, see “Vi Editor

Window” in the Text Editing section of the online help.

■ Vim. An improved version of the vi standard text editor (with graphical user

interface option) for UNIX systems. For more information, see “Vim Editor

Window” in the Text Editor section of the online help or the Vim web page at

http://www.vim.org .

Note – Not all text editors are available in all locales.

For more information about the Sun WorkShop editors, see:

■ “Choosing a Text Editor and Text Editor Options” on page 17

■ The Text Editing section in the online help

Compilers
This release supports the following compilers:

■ C++ compiler

The C++ compiler (CC) supports the ISO standard for C++, ISO IS 14882:1998,

Programming Language C++. The following requirements in the standard are not

supported in this release: Templates as template parameters and universal

character names. For more information about the C++ compiler, see the

C++ User’s Guide.

■ C compiler

The C compiler (cc) is fully compliant with the 1990 ISO (ANSI) C language and

environment standard and all Amendments there of, and it also supports

traditional K&R C. The C compiler also supports the OpenMP C/C++

Application Program Interface Version 1.0 specificaiton. The C optimizer provides

significant performance increases over nonoptimized code. The code optimizer

removes redundancies, efficiently allocates registers, and schedules instructions.

Also featured is an incremental linker to reduce linktime during the debugging

phase. For more information about the C compiler, see the C User’s Guide.
8 Introduction to Sun WorkShop • July 2001

■ Fortran compilers

■ Fortran 95

This release is a complete implementation of the Fortran 95 ISO/IEC 1539:1997

standard. This standard has added many features. The Fortran 95 compiler also

implements the OpenMP 2.0 multiprogramming interface. In addition, the

Fortran 95 compiler works with the rest of the Sun WorkShop tools to

automatically parallelize your code. For more information about the Fortran 95

compiler, see the Fortran User’s Guide or Fortran Programming Guide.

■ Fortran 77

This compiler is a complete implementation of the Fortran 77 ANSI X3.9-1978,

ISO 1539-1980 standards. It has extensions that provide compatibility with

VAX VMS Fortran and Cray Fortran. The Fortran 77 compiler works with the

rest of the Sun WorkShop tools to automatically parallelize your code. For

more information about the Fortran 77 compiler, see the Fortran User’s Guide or

Fortran Programming Guide.

Integrated Debugging
The Sun WorkShop integrated programming environment uses a source code

Debugging window that provides the ability to run a program in a controlled

fashion and to inspect the state of a stopped program. You can perform most

debugging operations from the Debugging window and the windows accessed from

it. You can also perform basic debugging operations from a text editor window

containing the source code, which opens automatically when you load a program for

debugging. You have complete control of the dynamic execution of a program,

including the collection of performance data. A line-oriented, source-level debugger

called dbx is also included.

For more information, see:

■ Chapter 4

■ The Using the Debugging Window section of the online help

■ The Using dbx Commands section of the online help
Chapter 1 About the Sun WorkShop Integrated Programming Environment 9

Source Code Browsing
You can browse source code written in C, C++, and Fortran 77/95 by issuing a query

in the Browsing window in either pattern search mode or source browsing mode.

Pattern search mode allows you to search your source code for any text string,

including text embedded within comments. Source browsing mode allows you to

find all occurrences of any program-defined symbol in your code by searching in a

database that is generated when your source files are compiled with a source

browsing option. When you are creating or editing a project in the project wizard,

you can select to generate the database when your code is compiled. You then view

the occurrences or matches to your query with their surrounding source code in the

Browsing window match pane.

You can also graph the function and subroutine relationships in your program, and

if your source code is written in C++, you can browse and graph the classes defined

in your program.

For more information, see:

■ Chapter 5

■ The Browsing Source Code section of the online help

Performance, Source Code Management,
and GUI-Building Tools
By default, the Sun WorkShop main window provides access through the Tools

menu to the Performance Analyzer, which helps you analyze your program

performance, and Merging, which is part of Sun WorkShop TeamWare source code

management tools. If you have the C++ compiler, you also have access to Sun

WorkShop Visual, which is a GUI-building tool.

Multithreaded Development Tools

The Sun WorkShop integrated programming environment includes tools for

developing multithreaded applications. The Debugging window supports dynamic

analysis and control of multithreaded programs. LockLint analyzes source code for

potential synchronization errors, such as deadlock and data race conditions. With
10 Introduction to Sun WorkShop • July 2001

the Sampling Collector and Performance Analyzer, you can examine a wide range of

metrics, broken down by functions, load objects, sampling intervals, or threads and

lightweight processes (LWPs) in multithreaded programs.

For more information, see:

■ Chapter 6

■ Analyzing Program Performance With Sun WorkShop

■ The Analyzing Program Performance section of the online help

■ “Multithreaded Program Debugging” in the Using the Debugging Window

section of the online help

Sun WorkShop TeamWare

Sun WorkShop TeamWare source code management tools allow you to manage

source code files through a set of GUIs or from the command line. Sun WorkShop

TeamWare allows a team to work in parallel at different sites to coordinate, integrate,

and build a product.

For more information:

■ See Chapter 7 in this book.

■ See the Sun WorkShop TeamWare User’s Guide.
■ Choose Help from the TeamWare Configuring window menu bar.

Sun WorkShop Visual

Sun WorkShop Visual helps you design graphical user interfaces (GUIs), generate

portable object-oriented code, and develop Motif, Java, or Microsoft Foundation

Class GUIs. Visual automatically generates the code when the design is complete.

For more information, see the Sun WorkShop Visual User’s Guide.
Chapter 1 About the Sun WorkShop Integrated Programming Environment 11

12 Introduction to Sun WorkShop • July 2001

CHAPTER 2

Getting Started

After you install and enable access to the Sun WorkShop tools (see “Accessing Sun

WorkShop Development Tools and Man Pages” on page 2), you can start the Sun

WorkShop integrated programming environment by typing the following at a

command line:

For more information about the workshop command, see the workshop (1) man

page.

This chapter describes how to begin working in the Sun WorkShop integrated

programming environment and contains basic information about:

■ Working with projects

■ Using the main window

For step-by-step instructions and more information, see the Sun WorkShop online

help (you can access the online help through the Help menu in any Sun WorkShop

window).

Working With Projects
This release uses projects to keep track of the files, programs, and targets associated

with your development projects and to build your programs without your needing

to write a makefile. A project is a list of files and compiler, debugger, and build-

related options used to build an executable, a static library/archive, a shared library,

a Fortran application, a complex application, or a user makefile application.

% workshop&
13

When you start the Sun WorkShop integrated programming environment, the

Welcome to Sun WorkShop dialog box opens and gives you immediate access to Sun

WorkShop projects and the project wizard. Click on the “projects” link in the

description pane to access information about projects in the online help. You can also

click Help in the Welcome to Sun WorkShop dialog box for more information about

that dialog box.

Through the Welcome to Sun WorkShop dialog box or the commands available from

the Project menu in the main window, you can:

■ Create a new project or build a simple program using the project wizard and your

own makefile or a makefile Sun WorkShop creates for you (see “Creating a New

Project” in the Working With Projects section of the online help)

■ Change existing project settings, including how you want your project compiled

and whether you want source browsing information generated (see “Editing a

Project” and “Edit Current Project Window” in the Working With Projects section

of the online help)

If you have Sun WorkShop worksets, you can automatically convert your worksets

to projects when you load them (for step-by-step instructions, see “Converting a

Workset to a Project” in the Working With Projects section of the online help).

You can also choose to use the Sun WorkShop integrated programming environment

without loading a project. Picklists keep track of the files, programs, directories, and

targets associated with your development projects (see “Sun WorkShop Targets” in

the Building Programs section of the online help for more information). You can

access each file, build target, and debug executable from the menus in the Sun

WorkShop main window.

Creating a Project

Through the Welcome to Sun WorkShop dialog box or through the Project menu in

the main window, you can ask the project wizard to help you create a project.

From the Welcome to Sun WorkShop dialog box, you can:

Create a New Project The Create a New Project wizard guides you through

creating a new project from existing source files. You

choose the type of project, and the wizard prompts you

for information to create that type of new project.

Build a Simple Program The Create New Project wizard helps you build a single

executable from a set of source files. There are limited

compilation options and only standard libraries to which

to link.
14 Introduction to Sun WorkShop • July 2001

The Create New Project wizard prompts you to define your project settings. Then

the Sun WorkShop integrated programming environment creates the type of project

you defined (a file with a .prd file extension) with the source files you requested.

You can share that project file information with multiple members of your

development team by creating a project that has an absolute/full path to the project

file and a relative (file/base name only) project directory. For example, your team

has a workspace for your project, and you create a project named ws.prd in the top

level directory of the workspace:

Project file name: /home/workspaces/ws/ws.prd
Project directory: .

A team member can have a copy of the workspace in /export/myws and by

opening the project file /export/myws/ws.prd , the project applies to that team

member’s local files and to no other team member’s files.

Building Project Targets

Once you have created your project, you can build project targets by doing one of

the following:

■ Click Build in the main window tool bar.

■ Choose Build ➤ Build Project from the main window.

■ Use the makeprd command at the command line (for example, to build your

project from the command line as part of a script or cron file).

After you select one of these methods, the Sun WorkShop integrated programming

environment:

1. Creates a makefile from the project settings you defined in the Create New Project

wizard or the Edit Current Project window.

2. Opens the Building window.

3. Starts the make utility.

4. Shows the results of the build in the Building window.

When you click on a build error hypertext link in the Building window, your text

editor opens with the build error highlighted so you can examine and fix it.

Create an Empty Project The Create Empty Project dialog box opens, and you

request that a new project be created that has no existing

source files. A text editor window opens so you can

begin creating your program.
Chapter 2 Getting Started 15

For more information, see:

■ Chapter 3

■ The Building Programs section of the online help

■ The makeprd (1) man page

Editing a Project

You can edit your project through the Edit Current Project window. To open the Edit

Current Project window, choose Project ➤ Edit Project in the Sun WorkShop main

window. For more information, see “Editing a Project” and “Edit Current Project

Window” in the Working With Projects section of the online help.

Using the Main Window
The main window helps you access the tools you need to create, develop, debug,

and fine tune your applications and lets you choose your text editor and set different

types of options.

FIGURE 2-1 Main Window

For more information about the main window, see “Sun WorkShop Main Window”

in the online help. (To open the online help, choose Help ➤ Contents in the Sun

WorkShop main window.) To set colors, fonts and other types of resources used in

WorkShop windows, see Appendix A.

Title bar

Menu bar

Tool bar

Status area
16 Introduction to Sun WorkShop • July 2001

Choosing a Text Editor and Text Editor Options

This release provides the following integrated editors:

■ NEdit (the Sun WorkShop default editor)

■ XEmacs

■ GNU Emacs

■ Vim (with graphical user interface option)

■ Vi

To change your default editor and set text editor options, choose Options ➤ Text

Editor Options in the Sun WorkShop main window. The Text Editor Options dialog

box opens. The options displayed in the dialog box change depending upon the

editor you choose in the Editor to Use pull-down menu. The editor you choose will

remain your default editor until you select another editor in the Text Editor Options

dialog box.

For more information about each editor’s options, see:

■ The online documentation available from the Help menu in the editor’s menu bar

■ “Text Editor Options Dialog Box” in the Text Editing section of the Sun WorkShop

online help

You can set colors, fonts and other types of resources used in Sun WorkShop

integrated text editors. For information on changing the default resources of Sun

WorkShop in the Common Desktop Environment (CDE) and non-CDE

environments, see Appendix A.

Setting Startup and Project Options

The Sun WorkShop integrated programming environment offers you startup and

project options through the Options menu in the main window.

Startup Options

By default at startup, the Sun WorkShop integrated programming environment:

■ Remembers the size and position of its windows from your previous Sun

WorkShop session and redisplays them

■ Shows the splash screen

■ Shows the Welcome to Sun WorkShop dialog box
Chapter 2 Getting Started 17

To change these startup options, choose Options ➤ Startup Options from the main

window menu bar to open the Startup Options dialog box. For more information

about these options, see “Startup Options Dialog Box” in the Sun WorkShop Main

Window section of the online help.

Project Options

By default, the Sun WorkShop integrated programming environment treats projects

in the following way:

■ At startup, Sun WorkShop opens the last project you had open and populates

your menu picklists with the items contained in that project.

■ When you exit Sun WorkShop or open another project, Sun WorkShop prompts

you to save or discard project changes instead of saving automatically.

■ When you exit Sun WorkShop or open another project, Sun WorkShop

automatically saves your menu picklist entries on all your menus.

■ Sun WorkShop sets the maximum number of menu picklist entries at 20.

■ Sun WorkShop uses the directory from which it was started as the default

directory for its tools.

To change these project options, choose Options ➤ Project Options from the main

window menu bar to open the Project Options dialog box. For more information

about these options, see “Project Options Dialog Box” in the Sun WorkShop Main

Window section of the online help.

Accessing Sun WorkShop Tools

The main window helps you access the tools you need to create, develop, debug,

and fine tune your applications. The following chapters introduce you

Sun WorkShop tools and how Sun WorkShop tools can help you:

■ Build your development projects

■ Debug your programs

■ Browse your code

■ Analyze your program’s performance

■ Merge your source files
18 Introduction to Sun WorkShop • July 2001

CHAPTER 3

Building Programs

Sun WorkShop projects allow you to customize your builds, build your programs

without having to write a makefile, or build a program using your own makefile.

You can also build an application without a current project, run one build job or

several build jobs concurrently, and fix build errors using the Building window and

the Sun WorkShop editor of your choice.

For step-by-step instructions and more information, see the Building Programs

section of the online help (you can access the online help through the Help menu in

any Sun WorkShop window).

Working With Targets
When building in Sun WorkShop, two types of targets are involved:

■ Sun WorkShop targets

■ User makefile targets

Sun WorkShop Target

A Sun WorkShop target is an object derived from the build directory, the build

command, the makefile, and the make target:

■ Build directory. The directory from which the build process is started and also

the default directory for the makefile.

■ Build command. The command that starts the make utility, which reads the

makefile and builds the make targets.
19

■ Makefile. A file that contains entries that describe how to bring a make target up

to date with respect to those files on which it depends (called dependencies). Since

each dependency is a make target, it may have dependencies of its own. Targets

and file dependencies and subdependencies form a tree structure that make traces

when deciding whether or not to rebuild a make target.

■ Make target. An object that make knows how to build from the directions (rules)

contained in a particular makefile. For example, a make target could be all or

clean. Makefiles are generally designed so that the default target (the one you get

when you do not specify a target) is the most commonly built target.

When a Sun WorkShop target is built, it is added to the picklist of Sun WorkShop

targets in the Build menu and in the Build ➤ Edit Target command. When you

request a build to begin, you are asking the Sun WorkShop integrated programming

environment to look for the first target in the Sun WorkShop target list and build it.

A project can contain multiple targets. For an executable, static library/archive,

shared library, or Fortran application, your executable/library is one target, and a

special Clean target is another (found in the Build menu picklist). The Clean target

deletes all of your project’s generated files (for example, the .o files), the source

browsing database, the C++ templates database, the executable itself, and other

build-related files.

For a complex project, you can have more targets, which are listed in the Build menu

picklist. For example, your project can generate five libraries and an executable to

link them together. Each library or executable is then a Sun WorkShop target, and

you can build each individual one by selecting it from the Build menu picklist.

User Makefile Target

A user makefile target is an object that make knows how to build from the directions

(rules) contained in a particular makefile. Makefiles are generally designed so that

the default target (the one you get when you do not specify a target) is the most

commonly built target.

A makefile contains entries that describe how to bring a make target up to date with

respect to those files on which it depends (called dependencies). Since each

dependency is a make target, each dependency might have dependencies of its own.

Targets and file dependencies and subdependencies form a tree structure that make
traces when deciding whether or not to rebuild a make target.

For a user makefile project, each target listed in the Build menu picklist is a makefile

or a makefile target to be built.
20 Introduction to Sun WorkShop • July 2001

Using the Building Window
The Building window displays information on program compilation. You can open

the window by choosing Build ➤ Show Building Window in the Sun WorkShop

main window. FIGURE 3-1 shows the Building window.

From the Building window, you can:

■ Start a build

■ Stop a build in progress

■ Edit build parameters

■ Save the build output to another file

■ View build errors

FIGURE 3-1 Building Window

Build
button

Previous
Error button

Job Graphs
button

Stop
build
button

Next Error
button

Directory
status
field

Target
status
field

Build
Output
display

Status
area
Chapter 3 Building Programs 21

Building a Program
You can build your entire project or only one of your project targets. When you ask

for your project targets to be built, the Sun WorkShop integrated programming

environment:

1. Creates a makefile from the project definitions you provided in the Create New

Project wizard or the Edit Current Project Window.

2. Launches the make utility.

3. Opens the Building Window to show the results of the build.

For more information, see the following topics in the Building Programs section of

the online help:

■ “Building a Project”

■ “Sun WorkShop Targets”

You can also specify build parameters using the Define New Target and Edit Target

dialog boxes. You use the Define New Target dialog box to specify a new WorkShop

target and the Edit Target dialog box to modify an existing Sun WorkShop target (the

Define New Target and Edit Target dialog boxes are identical). FIGURE 3-2 shows the

Define New Target dialog box.

FIGURE 3-2 Define New Target Dialog Box

Browse
buttons
22 Introduction to Sun WorkShop • July 2001

Building With Default Values

The Sun WorkShop integrated programming environment provides a default make

target and a default make command (dmake), so you can begin a build without

specifying a build command or a make target. You must still supply a makefile when

you are building a user makefile project or when a project is not loaded (the Sun

WorkShop integrated programming environment searches for a file named

makefile or Makefile and allows make to figure out which one to use).

By using the project feature, you can ask the project wizard to create a makefile for

you through the Create New Project wizard or the Edit Current Project window.

For more information, see “Building With Default Values” in the Building Programs

section of the online help.

Specifying Your Own Build Values

If you have a makefile with a unique name, a certain make target, or a specific build

command, you can define those build values in the Define New Target dialog box or

Edit Target dialog box (this applies to a user makefile project or when a project is not

loaded). For example, by specifying your own build command, you can filter out

unnecessary warnings by passing make output through a filter. At a minimum, you

must include a build directory. The Sun WorkShop integrated programming

environment uses the make command to find the makefile using make’s search

order. See the make(1S) man page.

For more information, see “Specifying Your Own Build Values” in the Building

Programs section of the online help.

Specifying Build Options

You can specify build options in the Build Options dialog box. To open the Build

Options dialog box, click Options in the Edit Target dialog box. For information

about the options available, click Help in the Build Options dialog box. When you

are finished selecting the options you want, click OK in the Build Options dialog

box. Then click Build in the Edit Target dialog box.

Before running a distributed build for the first time, you must create a .dmakerc
runtime configuration file that specifies which machines are to participate as dmake

build servers. The file contains groups (lists) of build servers and the number of jobs

distributed to each build server. The dmake utility searches for this file on the dmake

host to know where to distribute jobs. Generally, this file is in your home directory.

If dmake does not find a runtime configuration file, it distributes two jobs to the

local host. For information on setting up a runtime configuration file, see “The
Chapter 3 Building Programs 23

.dmakerc File” in the Building Programs section of the online help and the

dmake(1) man page. For more information about the dmake utility, see Appendix C

and the dmake(1) man page.

To set up a machine to be used as a build server, you must create a configuration file

called /etc/opt/SPROdmake/dmake.conf on the server’s file system. Without

this file, dmake refuses to distribute jobs to that machine. In the dmake.conf file,

you specify the maximum number of jobs (from all users) that can run concurrently

on that build server. See “The dmake.conf File” in the Building Programs section of

the online help, Appendix C in this book, and the dmake(1) man page for more

information.

Using Makefile Macros

You can specify makefile macros in the Make Macros dialog box (to open, click

Macros in the Edit Target or Define New Target dialog box). Makefile macros let you

refer conveniently to files or command options that appear in the description file.

Through the Make Macros dialog box, you can add makefile macros to or delete

them from the Persistent Build Macros list in your Sun WorkShop target and then

reassign values for makefile macros in the list. You can also add macros currently

defined in the makefile to the list and override their values. For more information,

click Help in the Make Macros dialog box, and see Appendix B for information

about defining macros.

Using Environment Variables

You can specify environment variables for your build in the Environment Variables

dialog box (to open, click Environment Variables in the Edit Target or Define New

Target dialog box). Using the Environment Variables dialog box, you can add

environment variables to or delete them from the Persistent Environment Variables

list in your Sun WorkShop target and reassign values for environment variables in

the list. When you start the build, setenv commands for these environment

variables are prepended to the build command. For more information, click Help in

the Environment Variables dialog box.
24 Introduction to Sun WorkShop • July 2001

Identifying Build Errors
When a build fails, the build errors display in the Build Output display pane of the

Building window (see FIGURE 3-3). The location of the error is underlined and

highlighted to denote a hypertext link to the location of the error in a source file.

Each error gives the name of the file containing the error, the line number on which

the error occurs, and the error message. Clicking on the underscored error in the

Building window starts a text editor that displays the source file containing the

error. For more information, see “Fixing Build Errors” in the Building Programs

section of the online help.

Note – Only Sun compilers produce output that can be converted to hypertext links.

If you use a build command that does not call Sun compilers, you will not have links

to the source files from the build errors listed in the Building window.

FIGURE 3-3 Build Errors in the Build Output Display Pane of the Building Window
Chapter 3 Building Programs 25

Error messages issued by the Fortran, C, and C++ compilers include an information

icon () in the build error message. Click on the icon to open a pop-up window

displaying a definition of the associated error message (see FIGURE 3-4).

FIGURE 3-4 Build Error and Dialog Box With Associated Error Message Defined

Exiting Building
To kill the current build process and close all build windows, choose Build ➤ Exit

Building in the Building window.

If you want to close the building windows without killing the current build process,

choose Build ➤ Close.
26 Introduction to Sun WorkShop • July 2001

CHAPTER 4

Debugging a Program

The Sun WorkShop integrated programming environment provides the Debugging

window that can run a program in a controlled fashion and inspect the state of a

stopped program. Sun WorkShop tools give you complete control of the dynamic

execution of a program, including the collection of performance data.

Through the Debugging window (to open, choose Debug ➤ Show Debugging

Window) and the windows accessed from it, you can:

■ Start a debugging session or multiple debugging sessions

■ Determine where your program stops executing

■ Control program execution

■ Use breakpoints

■ Attach to processes

■ Trace code

■ Evaluate expressions and variables

■ Use the call stack

■ Fix your program

■ Debug multithreaded programs

■ Collect performance data

■ Use runtime checking

■ Graph arrays

■ Set up your debugging environment

■ Create custom buttons

In addition, machine-level and other commands are available to help you debug

code. You can use standard dbx commands in the Dbx Commands window.

For information about debugging how-tos, concepts, windows, and dbx commands,

see the Using the Debugging Window and Using dbx Commands sections of the

online help (you can access the online help through the Help menu in any Sun

WorkShop window).
27

Preparing for Debugging
To prepare for debugging, you must generate debugging information when you

compile your source files by doing one of the following:

■ Choose Project ➤ Edit Project in the main window, and click Select Project

Preferences. When you are finished with your selections, click OK, and then build

your project. For more information, click Help in the Edit Current Project window

or see “Editing a Project” in the Working With Projects section of the online help.

■ Compile the application using the -g or -g0 (zero) option, which instructs the

compiler to generate debugging information during compilation (for information

on how to specify these options in your makefile, see Appendix B). For more

detailed information on preparing your program for debugging, see Debugging a
Program with dbx .

Starting Debugging
To start debugging a program:

1. Choose a debugging state.

■ Choose Debug ➤ Quick Mode to run a program normally, but with debugging

ready in the background to save the program in case your program terminates

abnormally. Use Quick Mode when you think you are finished debugging, want

to avoid waiting for symbols to load, and want to test a fix you made.

■ Choose Debug ➤ Debug Mode or click Debug in the main window tool bar to

debug the program using the full functionality of the debugging service.

2. Select the program to debug.

To debug the current program, click Debug in the main window tool bar. To debug

another program, do the following:

■ To debug a program previously run or debugged in the Sun WorkShop integrated

programming environment, select the program from the Debug menu picklist.

■ To debug a program that is new to the Sun WorkShop integrated programming

environment, load the new program by choosing Debug ➤ New Program.

■ To attach to another running process, choose Debug ➤ Attach Process.
28 Introduction to Sun WorkShop • July 2001

■ To debug a core dump file from an unsuccessful program execution, choose

Debug ➤ Load Core File.

Your program loads, and the Debugging window (see FIGURE 4-1) and a text editor

window open. You can view and edit a program's source code and perform basic

debugging operations from a text editor window. The editor window tool bar

provides access to common debugging operations, especially those that use a source

component as an argument, plus buttons from other Sun WorkShop tools.

To change your default text editor and set text editor options, see “Choosing a Text

Editor and Text Editor Options” on page 17.

3. Run your program by doing one of the following:

■ Press F6.

■ Click Start in the Debugging window tool bar.

■ Choose Execute ➤ Start in the Debugging window.

■ Click Continue in the Debugging window tool bar.

■ Choose Execute ➤ Continue in the Debugging window.

For more information about the Debugging window, see “Debugging Window” in

the Using the Debugging Window section of the online help.

You can change run parameters, such as program arguments, the run directory, and

environment variables, during a debugging session. For more information, see the

following topics in the Using the Debugging Window section of the online help:

■ “Specifying Program Arguments”

■ “Specifying a Run Directory”

■ “Setting Environment Variables”
Chapter 4 Debugging a Program 29

,

FIGURE 4-1 Debugging Window

Message

InterruptDownStart Step
Over

Fix
Data
History/
Data

Stack
pane

Dbx
Commands
window

Up Continue
Step
Into

Step
Out area

Sessions/
Threads/
Breakpoints
tabs

Display/
Program
I/O tabs
30 Introduction to Sun WorkShop • July 2001

Customizing the Debugging Window
You can customize the Debugging window to change the defaults for:

■ Debugging output

■ Debugging behavior

■ Window layout

■ Window behavior

■ Data Display windows

■ Language and scoping

■ Runtime checking

■ Data grapher

■ Debugging performance

■ Forks and threads

■ Command-line only

■ Advanced options

To view the available debugging options, choose Debug ➤ Debugging Options in the

Debugging window. Using the Debugging Options dialog box, you can change

Debugging window defaults. You can also set many of the defaults by setting dbx
environment variables with the dbxenv command (for more information, see

“dbxenv Command” in the Using dbx Commands section of the online help).

For detailed information, see:

■ “Debugging Options Dialog Box” in the Using the Debugging Window section of

the online help

■ Debugging a Program With dbx

Stepping Through Your Code
You can view your code by stepping, which is moving through your code one line at

a time. As you step, a green highlighted line known as the program counter (PC)

marks your place in the program. With each step, the PC moves to the next source

line to be executed (showing you the next line to be executed).

There are three ways to step:

Step Into Proceed forward one source line. If the source line is a function call, the

debugging service stops before the first statement of the function.

Step Over Proceed forward one source line. If the source line is a function call, the

debugging service executes the entire function without stepping through the

individual function instructions.
Chapter 4 Debugging a Program 31

For detailed information about stepping through your code, see “Program Stepping”

in the Using the Debugging Window section of the online help.

Setting Breakpoints
You can set breakpoints to stop execution in the Debugging window. You can set

simple breakpoints to stop at a line of code or in a procedure or function. Set

advanced breakpoints to break in C++ classes, track changes in data, break on a

condition, break on special events, or create your own custom breakpoints.

You can set and clear breakpoints in the editor window or the Breakpoints window.

In the editor window, you can set or clear a breakpoint at a line of code or in a

function. In the Breakpoints window, you can set more complex breakpoints, such as

a breakpoint when a signal occurs. (The Breakpoints tab in the Debugging window

displays breakpoints you have already set.)

For more information on setting and using breakpoints, see “Breakpoints” and the

Using Breakpoints How-Tos in the Using the Debugging Window section of the

online help.

Examining Values and Data
An evaluation is a one-time spot-check of the value of an expression. You can

evaluate expressions at any time from the editor window or the Debugging window.

You can track the changes in a value each time the program stops using the Data

Display tab in the Debugging window or a separate Data Display window.

The results of an evaluation are listed in the Data History tab of the Debugging

window. A dashed line indicates that the evaluation context has changed since the

last evaluation. The Data History tab maintains a list of expressions you previously

evaluated in a history list. You can clear the Data History tab at any time by

choosing Data ➤ Clear History.

To evaluate an expression using the editor window, do one of the following:

Step Out Finish execution of the present function and stop on the source line

immediately following the call to that function. If the PC stops on the same

source line as the call, there are a few more machine instructions remaining

that are associated with the call. Stepping once more completes the call and

you are on the next source line.
32 Introduction to Sun WorkShop • July 2001

■ Use the balloon expression evaluator, which instantly shows you the current

value of the expression at which your cursor is pointing in your editor. For more

information, see “Using the Balloon Expression Evaluator” in the Text Editing

section of the online help.

■ Select the target variable or expression in the source display. Then do one of the

following:

■ Click Evaluate or choose WorkShop ➤ Evaluate ➤ Selected to find the value of

the selected expression.

■ Click Evaluate * or choose WorkShop ➤ Evaluate ➤ As Pointer to evaluate

where a pointer-type expression points.

The value is shown in the Data History tab, or when the result is short, the

result is printed in the footer message area of the editor window. A separator

line is inserted into the Data History tab list whenever the evaluation context

changes. For more information, see “Expression Evaluation” in the Using the

Debugging Window section of the online help.

Monitoring Data Values
By default, Data Display is a tab in the Debugging window. You can choose to have

it shown as a separate window. For more information, see “Choosing How to Show

the Data Display” in the Using the Debugging Window section of the online help.

The Data Display tab in the Debugging window allows you to watch the changes in

the value of an expression during program execution. A set of expressions you

choose is automatically evaluated every time a program stops executing—at a

breakpoint, at a step, and when the program is interrupted. When the value of an

expression changes, the value is highlighted in boldface.

The Data Display tab shows you how a value changes each time you stop execution.

If you need to monitor changes in a value as the program is running, use the On

Access breakpoint (see “Breaking On Access” in the Using the Debugging Window

section of the online help). With this breakpoint, you can ask the program to stop

whenever a specific memory location is either read or written.

From the Data Display tab or separate window, you can display pop-up windows to

view additional information about an expression, giving you control over the

information you are viewing.

For more information, see “Data Display Window” and “Data Display Tab” in the

Using the Debugging Window section of the online help.
Chapter 4 Debugging a Program 33

Collecting Performance Data
When you run your program in the Debugging window, you can use the Sampling

Collector to collect performance data and write it to experiment files to be used by

the Performance Analyzer. The Sampling Collector can gather clock-based profiling

data, synchronization wait tracing data, hardware counter overflow profiling data,

and address-space data. The Collector automatically records global execution

statistics, including page-fault and I/O data, context switches, and working-set and

paging statistics.

For more information on collecting performance data, see:

■ Chapter 6 in this book

■ Analyzing Program Performance With Sun WorkShop 6

■ The Collecting Performance Data How-Tos and Concepts in the Using the

Debugging Window section of the online help

Detecting Runtime Errors
Runtime checking (RTC) allows you to automatically detect runtime errors in an

application during the development phase. Using RTC, you can:

■ Detect memory access errors

■ Detect memory leaks

■ Collect data on memory use

■ Work with all languages

■ Work on code for which you do not have the source, such as libraries

To use runtime checking, you must turn on the type of checking you want to use

before you execute the program. Then, when you run the program, RTC compiles

reports on your memory usage.

For more information, see “Runtime Checking” in the Using the Debugging Window

section of the online help.
34 Introduction to Sun WorkShop • July 2001

Tracing Code
Tracing collects information about what is happening in your program and displays

it in the Dbx Commands window. Program execution does not stop.

An unfiltered trace displays each line of source code as it is about to be executed,

producing volumes of output. Filtering a trace to display information about events

in your program creates more selective output. For example, you can trace each call

to a function, every member function of a given name, every function in a class, or

each exit from a function. You can also trace changes to a variable.

An event is the association of a program event with a debugging action. A typical

event is a change in the value of a specified variable. A handler manages debugging

events. The trace listing in the Breakpoints window is called a trace handler because

it manages the trace, a type of event.

For more information, see “Code Tracing” in the Using the Debugging Window

section of the online help.

Examining the Call Stack
The call stack represents all currently active routines, routines that have been called

but have not yet returned to their respective caller. In the stack, the functions and

their arguments are listed in the order that they were called. The initial function

(main() for C and C++ programs) is at the top of the Stack pane; the function

executing when the program stopped is at the bottom of the Stack pane. This

function is known as the stopped in function.

The source code of the stopped in function is displayed in the editor window with

the next line to be executed highlighted in green.

You can examine the call stack by doing any of the following:

■ Move up one level in the stack by clicking Up or choosing Stack ➤ Up.

■ Move down one level in the stack by clicking Down or choosing Stack ➤ Down.

■ Remove multiple frames by placing your cursor next to the frame you want to

return to and choosing Stack ➤ Pop to Current Frame.

■ Remove the function you are stopped in from the stack by choosing Stack ➤ Pop.

■ Remove multiple frames by placing your pointer next to the frame you want to

return to and choosing Stack ➤ Pop to Current Frame.
Chapter 4 Debugging a Program 35

Using Pop gives you a limited form of undo. If you want to start executing from the

beginning of the current function again, Pop to the parent stack frame and then step

into the function. You are now back at the start of the function.

For more information on using the call stack, see “The Call Stack” in the Using the

Debugging Window section of the online help.

Debugging Multithreaded Programs
When a multithreaded program is detected, the Threads tab in the Debugging

window opens. You can display sessions by clicking the Sessions tab. For a

multithreaded program, the tab lists information about the threads in the currently

selected process. The current thread is marked with a green arrow.

For more information, see “Multithreaded Program Debugging” in the Using the

Debugging Window section of the online help.

Debugging Processes Simultaneously
You can debug more than one program at a time, with each program connected to a

separate debugging session. Following are three examples of programs you might

want to debug simultaneously:

■ A process and the child process it forks

■ A client and server program

■ Two related programs

If you are debugging a program and you ask to debug another program, a message

tells you that you are currently debugging a program. You will be prompted to

terminate or detach the current session and load a new debugging session, reuse the

current session, or debug both sessions. Choose to debug both only if you want to

debug both programs simultaneously.
36 Introduction to Sun WorkShop • July 2001

Managing Sessions

The Sessions tab in the Debugging window and the Active Sessions dialog box

maintain a list of all the debugging sessions. To open the Active Sessions dialog box,

choose Debug ➤ Manage Sessions in the Debugging Window. The current program

is marked with an arrow.

Debugging multiple sessions consumes resources and might slow down your

system. The Debugging window states how many active sessions you have. To

remove sessions you no longer need, click Detach or Quit Session in the Active

Sessions dialog box.

Although you are debugging multiple sessions, you can see the context of only one

session at a time. When you switch to a different session, the Debugging window,

the editor window, the Dbx Commands window, and the other displays change to

reflect the context of the new session.

If you want to see the programs side by side (with an editor and a Debugging

window for each program), you need to start two WorkShop applications. To

prevent the WorkShop applications from sharing the same editor, start both

WorkShop applications with the following command:

For example, start your first Sun WorkShop application with workshop -s 1 and

start your second Sun WorkShop application with workshop -s 2 . See the

workshop (1) man page for more information.

For more information on managing sessions, see “Managing Sessions” in the Using

the Debugging Window section of the online help.

Debugging a Child Process

When a process forks a child process, you can choose to debug the parent process,

the child process, or both. You can also override the normal deletion of all

breakpoints from the forked process.

For more information, see “Child Process Debugging” in the Using the Debugging

Window section of the online help.

% workshop -s editsessionname
Chapter 4 Debugging a Program 37

Exiting Debugging
If you want to close the Debugging window without quitting the processes under

the control of Sun WorkShop, choose Debug ➤ Close. The processes under the

control of Sun WorkShop continue running, using memory and CPU time. Sun

WorkShop continues to store data on these processes.

To quit all processes currently under the control of Sun WorkShop and close all

debugging windows, choose Debug ➤ Exit Debugging in the Debugging window.
38 Introduction to Sun WorkShop • July 2001

CHAPTER 5

Browsing Source Code

The Sun WorkShop integrated programming environment uses pattern search and

source browsing modes in the Browsing window to browse your C, C++, Fortran 77,

and Fortran 95 source code. Pattern search mode allows you to search your source

code for any text string, including text embedded within comments. Source

browsing mode allows you to find all occurrences of any program-defined symbol in

your code by searching in a database that is created when you ask the project wizard

to generate source browsing information at the time you create or edit your project,

compile your code with a source browsing option, or create a tags database. You

then view the occurrences or matches to your query with their surrounding source

code in the Browsing window match pane.

You can also graph the function and subroutine relationships in your program, and

if your source code is written in C++, you can browse and graph the classes defined

in your program.

For step-by-step instructions and more information about browsing, see the

Browsing Source Code section of the online help (you can access the online help

through the Help menu or Help button in any Sun WorkShop window).

Using Pattern Search Mode
Pattern search searches for any text string (including text embedded in your

comments) in the current directory or in the directories imported in the sb_init file

(for more information about sb_init and searching multiple directories, see

“Searching Multiple Directories” in the Browsing Source Code section of the online

help).
39

Use pattern search when you:

■ Want to do a quick search for a text string

■ Do not have a source browsing database in the directory you want to search

■ Do not want to graphically view function call relationships or class hierarchies

■ Do not want to examine the data or member functions of a class

Pattern search uses grep syntax and searches all source code lines for a match to the

string you type in the Pattern text box of the Browsing window (see FIGURE 5-1). For

more information, see “Searching for a Pattern” in the Browsing Source Code section

of the online help.

FIGURE 5-1 Browsing Window in Pattern Search Mode

Pattern text box Files text box
40 Introduction to Sun WorkShop • July 2001

Pattern Search Special Characters

Although you can type in the Pattern text box a pattern exactly as it appears in the

code, you can also use special characters (wildcard characters) to specify a pattern.

You can use the special characters in TABLE 5-1 in the Pattern text box in the

Browsing window.

Surrounding an expression with a caret and a dollar sign constrains the search to

match the entire line.

For more information, see “Special Characters in Pattern Search and Source

Browsing Modes” in the Browsing Source Code section of the online help.

Multiple Directory Searches

Pattern searching uses the directories listed in the sb_init text file to search source

files in multiple directories. For step-by-step instructions, see “Searching Multiple

Directories” in the Browsing Source Code section of the online help.

TABLE 5-1 Pattern Search Special Characters

Character Meaning Example

Period (.) Matches any character. l.nes matches all occurrences of

lanes or lines .

Asterisk (*) Matches zero or more

occurrences of the

preceding character.

file*() matches any string that

contains file followed by zero or

more characters and () , such as

traffic_file_close() . *file
matches only strings that begin with

file .

Caret (^) Constrains the search to

match the beginning of a

line.

^tr* finds all lines that begin with

traffic , truck , or any other string

beginning with tr .

Dollar sign ($) Constrains the search to

match the end of a line.

lanes$ finds all the lines that end

with the string lanes .

Backslash left angle

bracket (\<)

Matches the start of a

word.

\<get finds get_foobar , but not

widget .

Backslash right angle

bracket (\>)

Matches the end of a

word.

\<String\> finds String *foo ,

but not XmStringCreate() .
Chapter 5 Browsing Source Code 41

Using Source Browsing Mode
In source browsing mode, the Sun WorkShop integrated programming environment

responds to queries by searching in a database that contains information about the

source files you are browsing. Use source browsing mode when you:

■ Have a source browsing database

■ Want to search for language elements such as functions, classes, structs, unions,

or records or their usage, definitions, or assignments

■ Want to graphically view function call relationships or class hierarchies

■ Want to examine the data or member functions of a class

FIGURE 5-2 shows the Browsing window in Source Browsing mode.

FIGURE 5-2 Browsing Window in Source Browsing Mode

Match, Type, and Scope pull-down menus Match text box
42 Introduction to Sun WorkShop • July 2001

Source Browsing Databases

The Sun WorkShop integrated programming environment obtains its browsing

information from a database that describes the static structure of your program.

How the browser functions depends upon the database it accesses. The following are

the browser database choices available:

■ No database. You must use pattern search mode instead of source browsing

mode. For more information, see “Searching for a Pattern” in the Browsing Source

Code section of the online help.

■ Compiler-generated browser database. This database provides full browser

functionality. Source browsing mode responds to queries by searching through

this database.

One of the selections you can make when you are creating or editing a project is

for the project wizard to generate the database when it compiles your code or you

can generate the database by adding the appropriate source browser option to

your makefile and building your source files. For step-by-step instructions, see

“Generating a Browser Database” in the Browsing Source Code section of the

online help.

■ Tags-generated database. This database provides a way to browse source files

without compilation, allows queries on functions and global variables, and

displays function calls (graphing features not available). A tags database

recognizes only global definitions for variables, types, and functions and collects

information on function calls. Function calls for C++ members are recognized

only when members are called explicitly.

For step-by-step instructions, see “Creating a Tags Database” in the Browsing

Source Code section of the online help.

Source Browsing Special Characters

Although you can type a name or function in the Match text box exactly as it

appears in your source code, you can also use special characters (wildcard

characters) to specify a set of character strings.
Chapter 5 Browsing Source Code 43

You can use the special characters in TABLE 5-2 in the Match text box in the Browsing

window.

For more information, see “Special Characters in Pattern Search and Source

Browsing Modes” in the Browsing Source Code section of the online help.

Multiple Directory Browsing

For all projects except a user makefile project: When you create or edit your project,

if you ask the project wizard to generate source browsing information during

compilation, you will get all the browsing directories merged for you. Then when

you search in pattern search mode or source browsing mode, all the source

directories in your project are automatically searched. For more information, see

“Creating a New Project” and “Editing a Project” in the Working With Projects

section of the online help.

For a user makefile project: If you keep your source files in several directories, you

will most likely run the compiler in each of these directories. By default, the

compiler generates a separate source browsing database in each directory. Since the

source browser browses only one database at a time, it searches only that part of

your application located in the current directory. You can override this default

behavior by importing databases. For step-by-step instructions for how to import

databases, see “Browsing Multiple Directories” in the Browsing Source Code section

of the online help.

Relating Browsing and Graphing
FIGURE 5-3 shows how the Browsing window, the Call Graph window, the Class

Graph window, and the Class Browser window interrelate.

TABLE 5-2 Source Browsing Special Characters

Character Meaning Example

Period (.) Matches any character. .ehicle matches all occurrences of

vehicle or Vehicle .

Asterisk (*) Matches zero or more occurrences

of the preceding character.

vehi* matches any string that begins

with veh , such as

vehicle_length() . vehi.* matches

veh. , but not vehicle_length() .
44 Introduction to Sun WorkShop • July 2001

FIGURE 5-3 How Browsing, the Graphers, and the Class Browser Interrelate

Graphing Functions
Using the Call Graph window, you can graphically inspect the relationships of the

functions in programs using ANSI C, C++, and Fortran. You can display the

functions that either call or are called by one or more selected functions. The Call

Graph window provides a graphic representation of the call relationship of functions

and subroutines. For step-by-step instructions and more information, see “Graphing

a Function Call” in the Browsing Source Code section of the online help.

You must have a source browsing database to view function relationships (see

“Source Browsing Databases” on page 43).

Note – You can graph virtual functions, but the Sun WorkShop integrated

programming environment cannot determine the actual function that would be

called. For example, if main calls b::d() , a virtual function that could actually call

b1::d() or b2::d() , the Sun WorkShop integrated programming environment

cannot tell which function is called. The graph shows main calling b::d() , but no

connection between main and b1::d() or main and b2::d() .

To change the colors used for node background, graph pane background, node

border, node text, and arrows between nodes in the Call Graph window, edit the

WORKSHOPresource file (see “Call Graph and Class Graph Window Colors” on

page 64). Any color changes you make apply to both the Call Graph and Class

Graph windows.

FIGURE 5-4 shows the Call Graph window.

Graph function Show function source

Query symbol Show symbol source

Graph class Show class source

Call Graph

Class GraphBrowsing Text Editor

Class Browser
Browse class Show class source
Chapter 5 Browsing Source Code 45

FIGURE 5-4 Call Graph Window

Graphing Classes
Using the Class Graph window, you can graphically inspect the inheritance structure

of classes in C++ programs. The Class Graph window provides a graphic

representation of class hierarchies. For step-by-step instructions and more

information, see “Graphing a Class Hierarchy” in the Browsing Source Code section

of the online help.

To change the colors used for node background, graph pane background, node

border, node text, and arrows between nodes in the Class Graph window, edit the

WORKSHOPresource file (see “Call Graph and Class Graph Window Colors” on

page 64). Any color changes you make apply to both the Class Graph and Call

Graph windows.

FIGURE 5-5 shows the Class Graph window.

Function text box Call Graph pane Status area
46 Introduction to Sun WorkShop • July 2001

FIGURE 5-5 Class Graph Window

Browsing Classes
Using the Class Browser, you can:

■ Browse a class. You can show the class list and data function members and view

class interfaces and relationships.

■ Examine class relationships. You can select a class and examine its base, derived,

and friend classes, and you can browse classes, structs, and unions referenced in

the current class.

■ Graph a class. You can graph the class hierarchy of a class selected in the Class

Browser window.

■ Show the source of a class. You can show the source of a particular class in an

editor window.

Class text box
Class graph pane

Message footer
Chapter 5 Browsing Source Code 47

You can view information about classes and their member and friend functions in

the Class Browser window. By navigating through the classes in the source code and

libraries, you can understand how the classes were defined and used.

When you open the Class Browser window (see FIGURE 5-6), the Browser list contains

all classes of the type Class or Struct in the current source browser database.

Using the two check boxes to the right of the Browser list, you can show all types,

only classes and structs, or only the unions.

For step-by-step instructions and more information, see “Browsing a Class” in the

Browsing Source Code section of the online help.

FIGURE 5-6 Class Browser Window

Name text box
Browser list

Description pane Classes/Structs and
Unions check boxes
48 Introduction to Sun WorkShop • July 2001

Exiting Browsing
To quit the current browsing process and close all browsing windows, choose

Browse ➤ Exit Browsing in the Browsing window. If you want to close the Browsing

windows without killing the current browse process, choose Browse ➤ Close.
Chapter 5 Browsing Source Code 49

50 Introduction to Sun WorkShop • July 2001

CHAPTER 6

Analyzing Program Performance

This chapter describes the basic features of the Sampling Collector and Performance

Analyzer. The UNIX prof and gprof performance-profiling tools generate only

user CPU information. With the Sampling Collector and Performance Analyzer, you

can examine a wider range of metrics, broken down by functions, load objects,

sampling intervals, or threads and lightweight processes (LWPs) in multithreaded

programs:

■ The Sampling Collector gathers performance data during the execution of an

application and saves it to anexperiment file. Start the Sampling Collector from

the Windows menu in the Debugging window.

■ The Performance Analyzer displays the performance data in the experiment file,

so you can analyze your program’s performance and determine where it can be

improved. Start the Performance Analyzer from the Tools menu in the Sun

WorkShop main window or from the Sampling Collector window.

For detailed information about how to use these and other performance-profiling

tools included in Sun WorkShop, see:

■ Analyzing Program Performance With Sun WorkShop

■ The Analyzing Program Performance section of the Sun WorkShop online help

■ The links under “Collecting Performance Data” in the Using the Debugging

Window section of the Sun WorkShop online help

Note – Before collecting performance data you must build your application. For

information on building, see Chapter 3 and the Building Programs section of the Sun

WorkShop online help (you can access the online help through the Help menu in any

Sun WorkShop window).
51

Collecting Performance Data
The Sampling Collector gathers performance data about a program as it runs in the

Debugging window. It stores the data in an experiment file, which you then load

into the Performance Analyzer.

TABLE 6-1 describes the types of data you can collect.

The Sampling Collector automatically records global execution statistics, including

page-fault and I/O data, context switches, and working-set and paging statistics.

For detailed information about choosing the types of data to collect and running the

Sampling Collector, see:

■ Analyzing Program Performance With Sun WorkShop
■ “Choosing the Data to Collect” in the Sun WorkShop online help

Note – You can also run the Sampling Collector through dbx using the collector
subcommand or directly from the command line using the collect command. For

more information, see the dbx (1), collect (1), and collector (1) man pages and

Analyzing Program Performance With Sun WorkShop.

TABLE 6-1 Types of Data to Collect

Type Description

Clock-based profiling data Function or load-object timing information.

Hardware counter overflow

profiling data

Counts of instructions issued or executed, cache misses,

cycles, floating point operations and other hardware

operations.

Synchronization delay data Wait time on calls to synchronization routines in

multithreaded and message-passing interface (MPI)

programs.

Address-space data Information about how your application uses the pages and

segments in its address space
52 Introduction to Sun WorkShop • July 2001

Analyzing Performance Data
After you collect performance data with the Sampling Collector, you can view it in

the Performance Analyzer, a separate tool that you start from the Tools menu in the

Sun WorkShop main window or the Sampling Collector window. The Performance

Analyzer’s various displays help you to pinpoint where your program is spending

excessive execution time or otherwise making inefficient use of system resources.

The Performance Analyzer window gives you a choice of displays that you can

choose from the Data list box (see TABLE 6-2).

In the Performance Analyzer displays, you can examine data for your whole

program, or you can specify individual functions, load objects, sampling intervals,

threads, and LWPs for analysis. You can also use the Performance Analyzer to

generate a mapfile that the linker can use to make your program more efficient in its

use of the address space.

The Performance Analyzer allows you to look at Function List data for more than

one experiment at a time and view the combined data or view portions of the data

from selected experiments.

For detailed information about how to use the Performance Analyzer, see:

■ Analyzing Program Performance With Sun WorkShop
■ The Analyzing Program Performance section of the Sun WorkShop online help

TABLE 6-2 Types of Data to View and Analyze

Type Description

Function List display Shows detailed information about your program’s

functions and load objects.

Overview display Shows microstate accounting information for program

sampling intervals.

Address Space display Shows use of pages or sectors in your program’s address

space.

Execution Statistics display Shows global statistics over the program execution time.
Chapter 6 Analyzing Program Performance 53

Examining Function and Load-Object Metrics

The Function List display shows for each function or load object the exclusive and

inclusive values for the following metrics:

■ Clock-based profiling, including user CPU time, total LWP time, wall-clock time,

and system and page-fault times

■ Hardware-counter profiling (if this is available)

■ Synchronization delay data for multithreaded and MPI programs

Each metric can be displayed as an absolute value (seconds, counts) and as a

percentage of the total program metric.

You can specify which of the available metrics you want to appear in the Function

List display and the metric upon which the data is sorted. You can also open a

window that lists all available metrics for a selected function or load object.

Examining Caller and Callee Metrics

From the Function List display, you can open the Callers-Callees window, where you

can examine exclusive, inclusive, and attributed data for a selected function, its

callers, and its callees. You can also step through the program structure by selecting

a caller or a callee of the selected function, which then becomes the selected

function. You can specify which metrics to display and the metric upon which the

data is sorted. For more information, use the online help through the Help menu or

the Help button in any window.

Displaying Annotated Source and Disassembly

Code

To examine program performance line by line or instruction by instruction, you can

display source code and disassembly code annotated with program metrics and

interleaved with compiler commentary. These metrics enable you to pinpoint within

a given function which line or lines are using up the most resources or causing the

largest delay. The compiler commentary tells you about how the compiler has

transformed your code. For more information, use the online help through the Help

menu in any window.
54 Introduction to Sun WorkShop • July 2001

CHAPTER 7

Merging Source Files

Merging lets you compare two text files, merge two files into a single new file, and

compare two edited versions of a file against the original to create a new file that

contains all new edits. Merging loads and displays two text files for side-by-side

comparison, each in a read-only text pane. Any difference between the two files is

marked. A merged version of the two files, which you can edit to produce a final

merged version, is displayed.

When you load the two files to be merged, you can also specify a third file from

which the two files were created. When you have specified this ancestor file,

Merging marks lines in the descendants that are different from the ancestor and

produces a merged file based on all three files.

For more information, see the online help (choose Help ➤ Contents in the Merging

window to access online help).

Loading Files into Merging
Load files into merging by following these instructions:

1. Choose Tools ➤ Merging from the Sun WorkShop main window.

The Merging window opens (see FIGURE 7-1). The Merging window is divided into

three panes: two side-by-side panes, which display different versions of the file, and

the merged result in the bottom pane. The top two panes are read-only, the bottom

pane contains selected lines from either or both versions of the file and can be edited

to produce a final merged version.

2. Choose File ➤ Open.
55

3. In the Directory text box, select a working directory.

This is the default directory used to select and save files. The browse button to the

right of the text box displays a dialog box in which you can select a directory.

4. In the Left File and Right File text boxes, select the two files you want to compare.

5. If you are comparing the files against a common ancestor, type the earlier version
of the two files in the Ancestor File text box.

An ancestor file is required to use Auto Merge.

6. If you want to specify the name of the output file, type it in the Output File text
box.

The name filemerge.out is the default, and the file is stored in the working

directory.

7. Click Open to load the files.

The names of the left file, right file, and output file are displayed above each text

pane. In a three-way comparison, the name of the ancestor file is displayed in the

window header.

FIGURE 7-1 Merging Window
56 Introduction to Sun WorkShop • July 2001

Working With Differences
Merging operates on differences between files. When merging discovers a line that

differs between the two files to be merged (or between either of the two files and an

ancestor), it marks the lines in the two files with icons corresponding to how the

lines differ. Together, these marked lines are called a difference. As you move

through the files from one difference to the next, the lines that differ and their icons

are highlighted.

The highlighted difference is called the current difference. The differences

immediately before and immediately after are called the previous difference and the

next difference. A difference is resolved if the changes to a line are accepted. A

remaining difference is one that has not yet been resolved.

Reading Merging Icons

To help you find differences more easily, Merging highlights lines that differ with

color and icons. Yellow shows an addition, red shows a change, green shows a

deletion.

The meaning of icons is different if you are comparing two versions with each other

(two input files), or if you identify an ancestor for the two versions of the file (three

input files).

Two Input Files

When only two files have been loaded into Merging, lines in each file are marked by

icons to indicate when they differ from corresponding lines in the other file:

■ If two lines are identical, no icon is displayed.

■ If two lines are different, a vertical bar (|) is displayed next to the line in each

input text pane, and the different characters are highlighted in red.

■ If a line appears in one file but not in the other, a plus sign (+) is displayed next

to the line in the file where it appears, and the different characters are highlighted

in yellow.

■ Resolved differences are marked by icons in outline font.
Chapter 7 Merging Source Files 57

Three Input Files

When you load two files to be merged, you can also specify a third file, called the

ancestor of the two files. An ancestor file is any earlier version of the two files. When

you identify an ancestor file, it is used as a basis to compare the two files and

automatic merging can be done. Merging marks all lines in the derived files or their

descendants that differ from the ancestor and produces a merged file based on all

three files.

The lines in the files that are different from the ancestor file are marked with change

bars and colors. Here’s what each means:

■ If a line is identical in all three files, no icon is displayed.

■ If a line is not in the ancestor but was added to one or both of the descendants, a

plus sign (+) is displayed next to the line in the file where the line was added, and

the different characters are highlighted in yellow.

■ If a line is in the ancestor but has been changed in one or both of the descendants,

a vertical bar (|) is displayed next to the line in the file where the line was

changed, and the different characters are highlighted in red.

■ If a line is present in the ancestor but was removed from one or both of the

descendants, a minus sign (-) is displayed next to the line in the file from which

the line was removed, and the different characters are highlighted in green and in

strikethrough.

■ Resolved differences are marked by icons in outline font.

Moving Between Differences

You can move between differences using the buttons above the two panes or

through the Navigate menu. Use the Previous and Next buttons to scroll through the

differences without accepting them. Choose Navigate ➤ Find to navigate to a

particular text string. Choose Navigate ➤ Goto Line to navigate by line numbers.

You can also navigate between differences by using the popup menu that is available

in the Child and Parent panes. Click the right mouse button in either pane to open

the menu.

Resolving Differences

Accept the change in either the left or right pane to resolve a difference. To accept a

difference, do one of the following:

■ Click the Accept button to accept the difference.
58 Introduction to Sun WorkShop • July 2001

■ Click the Accept & Next button to accept the difference and move to the next

difference.

For more information, see the online help (choose Help ➤ Contents in the Merging

window to access online help).

Setting Difference Options

Choose Options ➤ Diff Options to customize merging to ignore certain kinds of

differences between files. You can set merging to ignore trailing or embedded white

space and to ignore differences in case.

For more information, see the online help (choose Help ➤ Contents in the Merging

window to access online help).

Merging Automatically
Merging can resolve differences automatically, based on the following rules:

■ If a line has not changed in all three files, it is placed in the output file.

■ If a line has changed in one of the descendants, the changed line is placed in the

output file. A change could be the addition or removal of an entire line or an

alteration to some part of a line.

■ If identical changes have been made to a line in both descendants, the changed

line is placed in the output file.

■ If a line has been edited in both descendant files so that it is different in all three

files, no line is placed in the output file. You must decide how to resolve the

difference, by either choosing a line from a descendant or by editing the merged

file by hand.

When merging automatically resolves a difference, it changes the icons to outline

font. Merging lets you examine automatically resolved differences to be sure that it

has made the correct choices.

You can disable Auto Merge by choosing Options ➤ Auto Merge. When automatic

merging is disabled, the output file contains only the lines that are identical in all

three files. You must then resolve the differences.

If you do not specify an ancestor file, merging has no reference to which to compare

a difference between the two input files. Consequently, merging cannot determine

which line in a difference is likely to represent the desired change. The result of an
Chapter 7 Merging Source Files 59

auto merge with no ancestor is the same as disabling automatic merging: Merging

constructs a merged file using only lines that are identical in both input files. You

must resolve the differences.

Saving the Output File
Save the output file by clicking the Save button or choosing File ➤ Save. The name of

the output file is the name you specify in the Output File text box.

To change the name of the output file while saving, choose Save As and fill in the

new file and directory names in the Save As dialog window.

Setting Merging Options
Use the Options menu in the Merging window to set various merging options. The

menu items enable you to:

■ Create a merged version of the files automatically

■ Control whether files scroll separately or by corresponding lines

■ Control if line numbers or line ends are displayed

■ Customize tab stops

■ Set how white space and case differences are handled

For more information, see the online help (choose Help ➤ Contents in the Merging

window to access online help).
60 Introduction to Sun WorkShop • July 2001

APPENDIX A

Sun WorkShop and Text Editor
Resources

This appendix describes the resources that you can set and gives you the

information you need to change the settings. This appendix has the following

sections:

■ Changes to Resource Settings

■ Editable Sun WorkShop Resources

■ Editable Text Editor Resources

Changes to Resource Settings
The Sun WorkShop integrated programming environment uses two resource files:

■ WORKSHOPcontains the resource settings for Sun WorkShop windows, including

the Browsing and Debugging windows.

■ ESERVEcontains text editor resource settings.

Each resource file has two variations: one for CDE (Common Desktop Environment)

and one for non-CDE environments. The CDE version does not define generalized

color and font resources for Motif elements; it allows the CDE Style Manager to

control these elements.

Both the WORKSHOPand ESERVEfiles contain comments that indicate what a group

of resources pertains to. For example, the following group of resources controls the

colors used in the text editors for highlighting:

! Resources for highlight colors used by WORKSHOP in the editors

WORKSHOP.curPCColor: #8BD98B
WORKSHOP.visitPCColor: #EDC9FF
WORKSHOP.breakptColor: #FF9696
61

See the workshop (1) man page for more information about the resource files.

To change the default value of a resource, do the following:

1. Depending upon the resources you want to change, create a file called WORKSHOP
or ESERVEin your home directory (or the directory specified in your
XFILESEARCHPATHor XAPPLRESDIRenvironment variable).

2. Go to the directory where the installed resource file is located.

The resource files are located in the Sun WorkShop installation directory on your

system or network:

/opt/SUNWspro/WS6/lib/locale/ lang/app-defaults/CDE

/opt/SunWspro/WS6/lib/locale/ lang/app-defaults/non-CDE

lang is your current locale (for example, C or ja).

Note – If your Sun WorkShop software is not installed in the /opt directory, ask

your system administrator for the equivalent path on your system.

3. In the installed WORKSHOPor ESERVEresource file, copy the resources and default
values that you want to change.

4. Paste the resources and default values into the file you created in your home
directory.

5. Change the resource values per the instructions in this appendix.

6. Save the file.

7. Start (or exit and restart) the Sun WorkShop integrated programming
environment.

Editable Sun WorkShop Resources
You can change the following Sun WorkShop resources in the WORKSHOPresource

file (for instructions, see “Changes to Resource Settings” on page 61):

■ “Highlight Colors in Editor Windows” on page 63

■ “Data Graph Window Colors” on page 64

■ “Call Graph and Class Graph Window Colors” on page 64

■ “Audible Warnings” on page 65

■ “Debugging Buttons” on page 65

■ “Dbx Commands and Program I/O Window Output Lines” on page 65

■ “Project make Command” on page 66
62 Introduction to Sun WorkShop • July 2001

■ “Browser Used to Display Web Updates” on page 66

■ “Character Fonts in Hyperlink Windows” on page 66

■ “Hyperlink Resources” on page 67

■ “Automatic Text Wrapping” on page 68

■ “Vertical Scrollbars” on page 68

■ “Motif-Specific Resources” on page 69

■ “Window Foreground and Background Colors” on page 70

■ “Scrollbar Background and Toggle Button Colors” on page 71

Resources that affect components in the core Sun WorkShop integrated

programming environment do not affect Sun WorkShop TeamWare components or

any component started from the Tools menu in the main window.

Note – If you modify the default colors to use a non-specified color, you might

cause the Sun WorkShop integrated programming environment to fill up the color

map.

Highlight Colors in Editor Windows

The resources listed in TABLE A-1 control the colors used to highlight functions,

breakpoints, query matches, and build errors in source code displayed in the text

editor windows (for an example of highlighting, see FIGURE 4-1).

TABLE A-1 Editor Highlight Color Resources

Resource Name Description Default Value

WORKSHOP.curPCColor Current function #8BD98B

WORKSHOP.visitPCColor Visited function #EDC9FF

WORKSHOP.breakptColor Breakpoint #FF9696

WORKSHOP.disabledBreakptColor Disabled breakpoint #BDBDBD

WORKSHOP.matchColor Pattern or symbol match #99CFFF

WORKSHOP.errorColor Current build error #FFCC40
Appendix A Sun WorkShop and Text Editor Resources 63

Data Graph Window Colors

The resources listed in TABLE A-2 control the colors used in the graph types in the

Data Graph window of the debugger (see Debugging a Program With dbx).

Call Graph and Class Graph Window Colors

The resources listed in TABLE A-3 control the colors of the nodes, the lines (or arrows)

connecting the nodes, and background color of the graph pane in the Call Graph

window (see FIGURE 5-4) and the Class Graph window (see FIGURE 5-5).

TABLE A-2 Data Graph Window Color Resources

Resource Name Description Default Value

WORKSHOP.dgLineColor Color for Line graph type #OOOOFF

WORKSHOP.dgFillColor Color for Fill graph type #FDF5E6

WORKSHOP.dgMeshColor Color for Mesh graph type #OOOOFF

TABLE A-3 Class Graph and Call Graph Window Resources

Resource Name Description Default Value

WORKSHOP*labelNodeBackground Background color of each

node

#EFEFEF

WORKSHOP*viewBackground Graph pane background

(Default uses X's Old Lace)

#FDF5E6

Node Properties When Unhighlighted

WORKSHOP*arcForeground Arrow between nodes #000000

WORKSHOP*nodeForegroundColor Node border #000000

WORKSHOP*labelNodeForeground Node text #000000

Node Properties When Highlighted

WORKSHOP*arcHighlightColor Arrow between nodes #FF0000

WORKSHOP*nodeHighlightColor Node border #FF0000
64 Introduction to Sun WorkShop • July 2001

Audible Warnings

The resource listed in TABLE A-4 enables you to turn on and turn off audible warning

beeps. The possible values are -XmBell and -XmNONE.

Debugging Buttons

The resource listed in TABLE A-5 enables you to set the delay in milliseconds before

debugging and text editor buttons are disabled when dbx starts. This disabling

prevents button flashes when you are stepping through code. If you are running the

Sun WorkShop tools on a slow system or over an ISDN line, you might want to

increase this delay.

Dbx Commands and Program I/O Window

Output Lines

The resource listed in TABLE A-6 sets the number of lines of output to save in the Dbx

Commands window and the Program Input/Output window.

TABLE A-4 Audible Warning Resources

Resource Name Description Default Value

WORKSHOP*audibleWarning Turns audible beeps on and off XmBell

TABLE A-5 Debugger Button Disable Delay Resource

Resource Name Description Default Value

WORKSHOP.ButtonDisableDelay Delays disabling of debugging

and text editor buttons when dbx
starts

250

TABLE A-6 Dbx Commands and Program I/O Windows Output Line Resource

Resource Default Value

WORKSHOP*dtTerm.saveLines 1000
Appendix A Sun WorkShop and Text Editor Resources 65

Project make Command

The resource listed in TABLE A-7 sets the make command used to build projects. It

must accept the -f flag as well as the target and macros operands. For example, you

can write your own wrapper around make that filters out certain warnings and

passes the flags on to make. See the dmake(1) and make(1) man pages for more

information.

Browser Used to Display Web Updates

The resource listed in TABLE A-8 enables you to change the default path for the

browser used to display the Sun WorkShop Web updates page (to access the Web

updates page, choose Help ➤ Web Updates from any Sun WorkShop window).

Character Fonts in Hyperlink Windows

Many Sun WorkShop windows use hyperlinks to connect to other windows to

facilitate the display of related information. For example, clicking on a build error in

the Building window causes an editor window to display the source code file that

contains the error. Certain resources serve as flags indicating that non-ASCII

characters written to a hyperlink display are to be interpreted as multibyte

characters. The multibyte characters are displayed in the font indicated by the

resource. The resources should be set only in locales in which there is to be a

multibyte interpretation of non-ASCII characters.

TABLE A-7 Project make Command Resource

Resource Default Value

WORKSHOP.ProjectMakeCommand dmake -m serial

TABLE A-8 Web Updates Browser Resource

Resource Description Default Value

WORKSHOP.browser Path to browser used to display Web updates netscape
66 Introduction to Sun WorkShop • July 2001

The names of the resources as they would appear if set in the WORKSHOPresource file

are:

Each WC(wide-character) font resource corresponds to a non-WCfont resource. If the

WCfont resource is set, WCfont dimensions determine the line spacing and baseline

of text elements written in both the WCfont and corresponding non-WCfont. The

purpose is to produce consistent spacing of a line where ASCII and multibyte

characters are mixed. The WCfont dimensions are also used for formatting a line

written only in the non-WCfonts.

Where WCfont resources are set for hyperlink displays of multibyte characters and

you change a WCfont resource, the size and spacing of WCfonts should be

proportional to the size and spacing of non-WCfonts. To get proportional formatting

you might need to modify the resources for non-WCfonts.

Hyperlink Resources

The resources listed in TABLE A-9 set the font type, weight, and angle used in

hyperlinks in Sun WorkShop windows and dialog boxes (English version). For

examples of hyperlinks in Sun WorkShop windows, see FIGURE 3-3, which shows

build error links in the Building window.

WORKSHOP*HTML*WCfont:
WORKSHOP*HTML*boldWCFont:
WORKSHOP*HTML*plainWCFont:
WORKSHOP*HTML*plainboldWCFont:
WORKSHOP*HTML*Font:
WORKSHOP*HTML*boldFont:
WORKSHOP*HTML*plainFont:
WORKSHOP*HTML*plainboldFont:

TABLE A-9 English (C) Locale Hyperlink Font Resources

Resource Name Default Value

WORKSHOP*HTML*BoldFont -*-lucida-bold-r-normal-*-12-*-*-*-*-*-iso8859-1

WORKSHOP*HTML*PlainFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-iso8859-1

WORKSHOP*HTML*PlainboldFont-*-lucidatypewriter-bold-r-normal-*-12-*-*-*-*-*-iso8859-1
Appendix A Sun WorkShop and Text Editor Resources 67

TABLE A-10 lists hyperlink wide-character (WC) font resources for locales with multi-

byte characters. If set, non-ASCII characters written to HTML displays are

interpreted as multibyte characters and displayed with font indicated by the

resource.

Automatic Text Wrapping

The resource listed in TABLE A-11 lets you set text to automatically wrap or start a

new line in a Sun WorkShop window. The default value is True , which means that

text automatically wraps when it meets a window border.

Vertical Scrollbars

The resource listed in TABLE A-12 enables you to turn vertical scrollbars off or on.

TABLE A-10 Japanese (ja) Locale Hyperlink Font Resources

Resource Name Default Value

WORKSHOP*HTML*boldWCFont -jis-fixed-medium-r-normal--16-150-75-75-c-160-*-0

WORKSHOP*HTML*plainWCFont -jis-fixed-medium-r-normal--16-150-75-75-c-160-*-0

WORKSHOP*HTML*plainboldWCFont -jis-fixed-medium-r-normal--16-150-75-75-c-160-*-0

TABLE A-11 Automatic Text Wrapping Resource

Resource Name Default Value

WORKSHOP*HTML*wrapPreformatText True

TABLE A-12 Vertical Scrollbar Resource

Resource Name Default Value

WORKSHOP*HTML*verticalScrollbarAlways True
68 Introduction to Sun WorkShop • July 2001

Motif-Specific Resources

TABLE A-13 through TABLE A-17 list resources that are specific to Motif environments

only and are not used by CDE.

In your resource file, uncomment the resources listed in TABLE A-14 to change the

fonts in a specific Sun WorkShop window.

This resource listed in TABLE A-15 is applicable to text in a tabular format, such as

tables.

TABLE A-13 Motif (non-CDE) Windowing Systems Font Resources

Resource Name Description Default Value

WORKSHOP.labelFontList Label font -*-lucida-medium-r-normal-*-12-*-*-*-*-*-*-*

WORKSHOP.buttonFontList Button font -*-lucida-medium-r-normal-*-12-*-*-*-*-*-*-*

WORKSHOP.textFontList List font -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-*-*

TABLE A-14 Window Font Resources

Resource Name Default Value

WORKSHOP*ipeDbxCommandWindow*userFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-iso8859-1

WORKSHOP*ipeProgramIOShell*userFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-iso8859-1

WORKSHOP*threadsList*fontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-iso8859-1

WORKSHOP*handlerList*fontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-iso8859-1

WORKSHOP*processList*fontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-iso8859-1

TABLE A-15 Tabular Windows Font Resource

Resource Name Default Value

WORKSHOP.DataMonospacedFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-*-*
Appendix A Sun WorkShop and Text Editor Resources 69

Window Foreground and Background Colors

TABLE A-16 lists the resources that control the foreground and background colors

used in most Sun WorkShop windows.

TABLE A-16 Windows, Dialog Boxes, Menus, and Buttons Color Resources

Resource Name Description Default Value

WORKSHOP*foreground Foreground color of windows (text

such as labels)

#000000

WORKSHOP*XmTextField*background Background color of text boxes #FFFFFF

WORKSHOP*XmText*background Text color #FFFFFF

WORKSHOP*threadsList.background Background color of Threads pane #FFFFFF

WORKSHOP*ipeDbxCommandWindow*dtTerm.background Background color of Dbx

Commands window

#FFFFFF

WORKSHOP*ipeProgramIOShell*dtTerm.background Background color of Program

Input/Output window

#FFFFFF

WORKSHOP*XmDrawingArea.background Background color of Stack pane,

Data Display, and so forth

#FFFFFF

WORKSHOP*background Background color of Sun WorkShop

windows

#DEDEDE

WORKSHOP*XmPushButton*background Background color of buttons #DEDEDE

WORKSHOP*XmMenuShell*background Background color of menus #DEDEDE

WORKSHOP*XmList*background Background color of lists, such as

the Match list in the Browsing

window

#DEDEDE

WORKSHOP*topShadowColor Color of shadows at top and left

edges of buttons and text boxes

#FFFFFF
70 Introduction to Sun WorkShop • July 2001

Scrollbar Background and Toggle Button Colors

TABLE A-17 lists the resources for the colors of the scrollbar background (trough), and

the colors in toggle buttons to indicate toggle on or off.

Editable Text Editor Resources
You can change the following Sun WorkShop resources in the ESERVEresource file

(for instructions, see “Changes to Resource Settings” on page 61):

■ “Text Editor Default Path Names” on page 72

■ “Blinking Pointer” on page 72

■ “Fonts for Text Editor Motif Environments” on page 73

■ “Text Editor Window Colors” on page 73

■ “Scrolling List Background Color” on page 73

■ “Writable Text Area Background Color” on page 74

■ “Balloon Expression Evaluator Popup Dimensions” on page 74

■ “Text Editor Audible Warnings” on page 74

TABLE A-17 Trough and Toggle Buttons Color Resources

Resource Name Description Default Value

WORKSHOP*HTML*troughColor Background color for scrollbars #DEDEDE

WORKSHOP*XmToggleButton.selectColor Color for check boxes when selected #FF9696

WORKSHOP*XmToggleButton.fillOnSelect Fill check box when selected true

WORKSHOP*XmToggleButtonGadget.selectColor Color for radio buttons when selected #FF9696

WORKSHOP*XmToggleButtonGadget.fillOnSelect Fill radio button when selected true
Appendix A Sun WorkShop and Text Editor Resources 71

Text Editor Default Path Names

The resources listed in TABLE A-18 are used by the edit server to start the text editor

of your choice. If a fully qualified path is specified, it is executed.

The values for these resources can either be fully qualified paths or the base name of

the command (for instance, myfavoriteemacs).

If a base name is used then it is invoked from the PATHenvironment variable.

Blinking Pointer

TABLE A-19 lists the resource to change the pointer in text editor windows to a non-

blinking pointer. Default setting is for a blinking pointer. Set to 0 for a non-blinking

pointer.

TABLE A-18 Text Editor Default Path Resources

Resource Name Default Value

ESERVE*defaultGnuEmacsPath emacs

ESERVE*defaultXEmacsPath xemacs

ESERVE*defaultNEditPath nedit

ESERVE*defaultGVimPath gvim

TABLE A-19 Blinking Pointer Resource

Resource Name Default Value

ESERVE*DtTerm.blinkRate 250
72 Introduction to Sun WorkShop • July 2001

Fonts for Text Editor Motif Environments

TABLE A-20 lists font resources for the text editor windows that are specific to Motif

environments only and are not used by CDE.

Text Editor Window Colors

TABLE A-21 lists the resource for foreground and background colors in the text editor

windows.

Scrolling List Background Color

TABLE A-22 lists the resource for the background color for scrolling lists available

from a text editor.

TABLE A-20 Motif (non-CDE) Windowing Systems Editor Window Font Resources

Resource Name Default Value

ESERVE.labelFontList -*-lucida-medium-r-normal-*-12-*-*-*-*-*-*-*

ESERVE.buttonFontList -*-lucida-medium-r-normal-*-12-*-*-*-*-*-*-*

ESERVE.textFontList -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-*-*

ESERVE*dtTerm*userFont -*-lucidatypewriter-medium-r-normal-*-12-*-*-*-*-*-*-*

TABLE A-21 Editor Windows, Dialog Boxes, Menus, and Buttons Color Resources

Resource Name Description Default Value

ESERVE*foreground Foreground color of windows

(text such as labels)

black

ESERVE*background Background color of windows #dededededede

ESERVE*XmPushButton*background Background color of buttons #dededededede

ESERVE*XmMenuShell*background Background color of menus #dededededede

TABLE A-22 Scrolling List Background Color Resource

Resource Name Description Default Value

ESERVE*XmList*background Background color of scrolling lists #dededededede
Appendix A Sun WorkShop and Text Editor Resources 73

Writable Text Area Background Color

TABLE A-23 lists colors for areas in the text editor windows containing text, other than

menus and buttons (not applicable to Emacs and XEmacs).

Balloon Expression Evaluator Popup Dimensions

The resource listed in TABLE A-24 sets the maximum dimensions for the balloon

expression evaluator popup that instantly shows you the current value of the

expression at which your cursor is pointing in your editor. Width is measured in

characters, and height is measured in lines.

Text Editor Audible Warnings

The resource listed in TABLE A-25 enables you to turn off audible warning beeps in

the text editor windows. The possible values are -XmBell and -XmNONE.

TABLE A-23 Writable Text Area Background Color Resources

Resource Name Default Value

ESERVE*XmTextField*background white

ESERVE*XmText*background white

ESERVE*dtTerm*background white

ESERVE*readwriteBackground white

TABLE A-24 Balloon Expression Evaluator Popup Dimensions Resources

Resource Name Default Value

ESERVE.balloonWidth 60

ESERVE.balloonHeight 20

TABLE A-25 Text Editor Audible Warning Resource

Resource Name Description Default Value

ESERVE*audibleWarning Turns audible beeps on and off XmBell
74 Introduction to Sun WorkShop • July 2001

APPENDIX B

The make Utility and Makefiles

You can use the make utility and makefiles to help automate building of an

application with the Sun WorkShop integrated programming environment. This

appendix provides some basic information about the make utility, makefiles, and

makefile macros. It also refers you to dialog boxes that allow you to set makefile

options and to add, delete, and override makefile macros. To build your programs

without writing your own makefile, see “Building a Program” on page 22 and

“Building With Default Values” on page 23.

The make utility applies intelligence to the task of program compilation and linking.

Typically, a large application might exist as a set of source files and INCLUDE files,

which require linking with a number of libraries. Modifying any one or more of the

source files requires recompilation of that part of the program and relinking. You can

automate this process by specifying the interdependencies between files that make

up the application along with the commands needed to recompile and relink each

piece. With these specifications in a file of directives, make insures that only the files

that need recompiling are recompiled and that relinking uses the options and

libraries you want.

For more information, there are commercially published books on how to use make
as a program development tool, including Managing Projects with make, by Oram

and Talbott, from O’Reilly & Associates.

The Makefile
A file called makefile tells the make utility in a structured manner which source

and object files depend on other files. It also defines the commands required to

compile and link the files.
75

Each file to build, or step to perform, is called a target. Each entry in a makefile is a

rule expressing a target object’s dependencies and the commands needed to build or

make that object. The structure of a rule in the makefile is:

For the dependencies, each entry starts with a line that names the target file,

followed by all the files the target depends on. For the build commands, each entry

has one or more subsequent lines that specify the Bourne shell commands that will

build the target file for this entry. Each of these command lines must be indented by

a tab character.

Fortran 77 Example

You have a program consisting of the following source files and a makefile:

■ makefile

■ commonblock
■ computepts.f
■ pattern.f
■ startupcore.f

Both pattern.f and computepts.f have an INCLUDEof commonblock , and you

wish to compile each .f file and link the three relocatable files, along with a series of

libraries, into a program called pattern .

The makefile contains the following lines.

CODE EXAMPLE B-1 Fortran 77 Makefile

The first line of this makefile indicates that making pattern depends on

pattern.o , computepts.o , and startupcore.o . The next line and its

continuations give the command for making pattern from the relocatable.o files

and libraries.

target: dependencies-list
TAB build-commands

pattern: pattern.o computepts.o startupcore.o
 f77 pattern.o computepts.o startupcore.o –lcore77 \
 –lcore –lsunwindow –lpixrect –o pattern
pattern.o: pattern.f commonblock
 f77 –c –u pattern.f
computepts.o: computepts.f commonblock
 f77 –c –u computepts.f
startupcore.o: startupcore.f
 f77 –c –u startupcore.f
76 Introduction to Sun WorkShop • July 2001

C++ Example

You have a program consisting of the following source files and a makefile:

■ manythreads.cc
■ Makefilemany.cc
■ thr.cc
■ misc.h
■ defines.h

The target files are:

■ many
■ manythreads
■ thrI

The makefile contains the following lines.

CODE EXAMPLE B-2 C++ Makefile

The first line of this makefile groups a set of targets with the label all. The

succeeding lines give the commands for making the three targets, each of which has

a dependency on one of the source files.

The make Utility
To start the make utility, type the following at a command line:

You can add a number of options to the make command for your application using

the Build Options dialog box (see “Specifying Build Options” on page 23).

all: many manythreads thrI
many: many.cc

CC -o many many.cc -g -D_REENTRANT -lm -lnsl -lsocket -lthread
thrI: thr.cc

CC -o thrI thr.cc -g -D_REENTRANT -lm -lnsl -lsocket -lthread
manythreads: manythreads.cc

CC -o manythreads -g -D_REENTRANT manythreads.cc -lnsl \
 -lsocket -lthread

% make
Appendix B The make Utility and Makefiles 77

The make utility looks for a file named makefile or Makefile in the current

directory and takes its instructions from that file.

The make utility:

1. Reads makefile to determine all the target files it must process, the files they

depend on, and the commands needed to build them

2. Finds the date and time each file was last changed

3. Rebuilds any target file that is older than any of the files it depends on, using the

commands from makefile for that target

To make writing a makefile easier, the make utility has default rules that it uses

depending on the suffix of a target file. Recognizing the .f suffix, make uses the f77
compiler, passing as arguments any flags specified by the FFLAGSmacro, the -c
flag, and the name of the source file to be compiled.

CODE EXAMPLE B-3 demonstrates this rule twice.

CODE EXAMPLE B-3 make Default Suffix Rule

make uses default rules to compile computepts.f and startupcore.f . Similarly,

the suffix rules for .f95 files invoke the f95 compiler.

Macros
The make utility’s macro facility allows simple parameterless string substitutions.

For example, the list of relocatable files that make up the target program pattern
can be expressed as a single macro string, making it easier to change. See also the

make(1S) man page for information about make macros.

OBJ = pattern.o computepts.o startupcore.o
FFLAGS=–u
pattern: $(OBJ)
 f77 $(OBJ) –lcore77 –lcore –lsunwindow \
 –lpixrect –o pattern
pattern.o: pattern.f commonblock
 f77 $(FFLAGS) –c pattern.f
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f
78 Introduction to Sun WorkShop • July 2001

A macro string definition has the form:

Use of a macro string is indicated by $(NAME) , which is replaced by make with the

actual value of the macro string named.

This example adds a macro definition naming all the object files to the beginning of

makefile :

Now the macro can be used in both the list of dependencies as well as on the f77
link command for target pattern in makefile :

For macro strings with single-letter names, the parentheses can be omitted.

You can use the Make Macros dialog box to add macros to or delete macros from the

Macros list in your Sun WorkShop target and reassign values for makefile macros in

the list. For more information, see “Using Makefile Macros” on page 24.

The initial values of makefile macros can be overridden with command-line options

to make. For example, you have the following line at the top of makefile :

You also have the compile-line of computepts.f :

You have the final link:

% make NAME=string

OBJ=pattern.o computepts.o startupcore.o

pattern: $(OBJ)
 f77 $(OBJ) –lcore77 –lcore –lsunwindow \
 –lpixrect –o pattern

FFLAGS=–u

f77 $(FFLAGS) –c computepts.f

f77 $(FFLAGS) $(OBJ) –lcore77 –lcore –lsunwindow \
lpixrect –o pattern
Appendix B The make Utility and Makefiles 79

A make command without arguments uses the value of FFLAGSset above. However,

this can be overridden from the command line:

The definition of the FFLAGSmacro on the make command line overrides the

makefile initialization, and both the -O flag and the -u flag are passed to f77 .

FFLAGS=can also be used on the command line to reset the macro so that it has no

effect.

% make "FFLAGS=–u –O"
80 Introduction to Sun WorkShop • July 2001

APPENDIX C

The dmake Utility

This appendix describes the way the distributed make (dmake) utility distributes

builds over several hosts to build programs concurrently over a number of

workstations or multiple CPUs. See also the dmake(1) man page.

Basic Concepts
Distributed make (dmake) is a superset of the make utility and allows you to

concurrently distribute the process of building large projects, consisting of many

programs, over a number of workstations and, in the case of multiprocessor systems,

over multiple CPUs.

You execute dmake on a dmake host and distribute jobs to build servers. You can

also distribute jobs to the dmake host, in which case it is also considered to be a

build server. The dmake utility distributes jobs based on makefile targets that dmake
determines (based on your makefiles) can be built concurrently. From the dmake
host you can control which build servers are used and how many dmake jobs are

allotted to each build server. The number of dmake jobs that can run on a given

build server can also be limited on that server.

The distribution of dmake jobs is controlled in two ways:

1. A dmake user on a dmake host can specify the machines to use as build servers

and the number of jobs to distribute to each build server.

2. The owner of a build server (a user who can alter the /etc/opt/SPROdmake/
dmake.conf build server configuration file) can control the maximum total

number of dmake jobs that can be distributed to that build server.
81

Note – If you access dmake from the Building window, see the online help for

information about specifying your build servers and jobs. If you access dmake from

the command line, see the dmake(1) man page.

To understand dmake, you should know about:

■ The dmake host

■ The build server

The dmake Host

The dmake host is defined as the machine on which the dmake command is initially

issued. The dmake utility searches for a runtime configuration file to determine

where to distribute jobs. Generally, this file must be in your home directory on the

dmake host and is named .dmakerc . The dmake utility searches for the runtime

configuration file in these locations and in the following order:

1. The path name you specify on the command line using the -c option

2. The path name you specify using the DMAKE_RCFILEmakefile macro

3. The path name you specify using the DMAKE_RCFILEenvironment variable

4. $(HOME)/.dmakerc

If a runtime configuration file is not found, the dmake utility distributes two jobs to

the dmake host.

The runtime configuration file allows you to specify a list of build servers and the

number of jobs you want distributed to each build server. CODE EXAMPLE C-1 is an

example of a .dmakerc file.

CODE EXAMPLE C-1 .dmakerc File

The entries falcon , hawk, eagle , heron , and avocet are listed build servers. You

can specify the number of jobs you want distributed to each build server. The default

number of jobs is two. Any line that begins with the # character is interpreted as a

My machine. This entry causes dmake to distribute to it.
falcon { jobs = 1 }
hawk
eagle { jobs = 3 }
Manager’s machine. She’s usually at meetings
heron { jobs = 4 }
avocet
82 Introduction to Sun WorkShop • July 2001

comment. In the example above, the list of build servers includes falcon which is

also the dmake host. The dmake host can also be specified as a build server. If you do

not include it in the runtime configuration file, no dmake jobs are distributed to it.

You can also construct groups of build servers in the runtime configuration file. The

dmake utility provides you with the flexibility of easily switching between different

groups of build servers as circumstances warrant. For instance, you may define

groups of build servers for builds under different operating systems, or you may

define groups of build servers that have special software installed on them.

CODE EXAMPLE C-2 shows a .dmakerc file that contains groups of build servers.

CODE EXAMPLE C-2 .dmakerc File With Groups of Build Servers

Formal groups are specified by the group keyword and lists of their members are

delimited by braces ({}). Build servers that are members of groups are specified by

the optional host keyword. Groups can be members of other groups. Individual

build servers can be listed in runtime configuration files that also contain groups of

build servers; in this case, dmake treats these build servers as members of the

unnamed group.

earth { jobs = 2 }
mars { jobs = 3 }

group lab1 {
host falcon{ jobs = 3 }
host hawk
host eagle { jobs = 3 }

}

group lab2 {
host heron
host avocet{ jobs = 3 }
host stilt { jobs = 2 }

}

group labs {
group lab1
group lab2

}

group sunos5.x {
group labs
host jupiter
host venus{ jobs = 2 }
host pluto { jobs = 3 }

}

Appendix C The dmake Utility 83

In order of precedence, the dmake utility distributes jobs to the following:

1. The formal group specified on the command-line as an argument to the --g
option

2. The formal group specified by the DMAKE_GROUPmakefile macro

3. The formal group specified by the DMAKE_GROUPenvironment variable

4. The first group specified in the runtime configuration file

The dmake utility allows you to specify a different execution path for each build

server. By default dmake looks for the dmake support binaries on the build server in

the same logical path as on the dmake host. You can specify alternate paths for build

servers as a host attribute in the .dmakerc file. For example:

CODE EXAMPLE C-3 .dmakerc File With Alternate Paths for Build Servers

You can use double quotation marks to enclose the names of groups and hosts in the

.dmakerc file. This allows you more flexibility in the characters that you can use in

group names. Digits are allowed, as well as alphabetic characters. Names that start

with digits should be enclosed in double quotes. For example:

CODE EXAMPLE C-4 .dmakerc File With Special Characters

The Build Server

Each build server that is to participate in a distributed build must have a file called

/etc/opt/SPROdmake/dmake.conf . This file is the build server configuration file

and specifies the maximum total number of dmake jobs that can be distributed to

that particular build server by all dmake users. In addition, it might specify the nice
priority under which all dmake jobs should run.

Note – If the /etc/opt/SPROdmake/dmake.conf file does not exist on a build

server, no dmake jobs will be allowed to run on that server.

group lab1 {
host falcon{ jobs = 10 , path = "/set/dist/sparc-S2/bin" }
host hawk{ path = "/opt/SUNWspro/bin" }

}

group "123_lab" {
host "456_hawk"{ path = "/opt/SUNWspro/bin" }

}

84 Introduction to Sun WorkShop • July 2001

CODE EXAMPLE C-5 is an example of an /etc/opt/SPROdmake/dmake.conf file.

This file sets the maximum number of dmake jobs permitted to run on a build server

(from all dmake users) to be eight (8).

CODE EXAMPLE C-5 dmake.conf File

You can use a machine as a build server if it meets the following requirements:

■ From the dmake host (the machine you are using), you must be able to use rsh
without being prompted for a password to remotely execute commands on the

build server. See the rsh (1) man page. For example:

■ The bin directory in which the dmake software is installed must be accessible

from the build server. It is common practice to have all build servers share a

common dmake installation directory. See the share (1M) and mount (1M) man

pages.

■ By default, dmake assumes that the logical path to the dmake executables on the

build server is the same as on the dmake host. You can override this assumption

by specifying a path name as an attribute of the host entry in the runtime

configuration file. For example:

■ The source hierarchy you are building must be accessible from the build server

and mounted under the same name.

max_jobs: 8
nice_prio: 5

% rsh build-server which dmake
/opt/SUNWspro/bin/dmake

group sparc-cluster {
 host wren { jobs = 10 , path = “/export/SUNWspro/bin”}
 host stimpy { path = “/opt/SUNWspro/bin” }
Appendix C The dmake Utility 85

Impact of the dmake Utility on Makefiles
To run a distributed make, use the executable file dmake in place of the standard

make utility. You should understand the Solaris make utility before you use dmake.

If you need to read more about the make utility, see the Programming Utilities Guide
(available on the http://docs.sun.com Web site) and the make(1) man page. If

you use the make utility, the transition to dmake requires little or no alteration.

The methods and examples shown in this section present the kinds of problems that

lend themselves to being solved with dmake. This section does not suggest that any

one approach or example is the best.

As procedures become more complicated, so do the makefiles that implement them.

The examples in this section illustrate common code-development predicaments and

some straightforward methods to simplify them using dmake.

If you use a makefile template from the outset of your project, custom makefiles that

evolve from the makefile templates will be more familiar, easier to understand,

easier to integrate, easier to maintain, and easier to reuse.

Concurrent Building of Targets

Large software projects typically consist of multiple independent modules that can

be built concurrently. The dmake utility supports concurrent processing of targets on

multiple machines over a network. This concurrency can markedly reduce the time

required to build a large project.

When given a target to build, dmake checks the dependencies associated with that

target, and builds those that are out of date. Building those dependencies may, in

turn, entail building some of their dependencies. When distributing jobs, dmake
starts every target that it can. As these targets complete, dmake starts other targets.

Nested invocations of dmake are not run concurrently by default, but this can be

changed (see “Parallelism” on page 90 for more information).

Since dmake builds multiple targets concurrently, the output of each build is

produced simultaneously. To avoid intermixing the output of various commands,

dmake collects output from each build separately. The dmake utility displays the

commands before they are executed. If an executed command generates any output,

warnings, or errors, dmake displays the entire output for that command. Since

commands started later might finish earlier, this output might be displayed in an

unexpected order.
86 Introduction to Sun WorkShop • July 2001

Limitations on Makefiles

Concurrent building of multiple targets places some restrictions on makefiles.

Makefiles that depend on the implicit ordering of dependencies might fail when

built concurrently. Targets in makefiles that modify the same files may fail if those

files are modified concurrently by two different targets. Some examples of possible

problems are discussed in this section.

Dependency Lists

When building targets concurrently, it is important that dependency lists be

accurate. For example, if two executables use the same object file but only one

specifies the dependency, then the build may cause errors when done concurrently.

For example, consider the following makefile fragment:

When built serially, the target aux.o is built as a dependent of prog1 and is up-to-

date for the build of prog2 . If built in parallel, the link of prog2 can begin before

aux.o is built and is therefore incorrect. The .KEEP_STATE feature of make detects

some dependencies, but not the one shown above.

Explicit Ordering of Dependency Lists

Other examples of implicit ordering dependencies are more difficult to fix. For

example, if all of the headers for a system must be constructed before anything else

is built, then everything must be dependent on this construction. This causes the

makefile to be more complex and increases the potential for error when new targets

are added to the makefile. The user can specify the special target .WAIT in a

makefile to indicate this implicit ordering of dependents. When dmake encounters

the .WAIT target in a dependency list, it finishes processing all prior dependents

before proceeding with the following dependents. More than one .WAIT target can

be used in a dependency list. The following example shows how to use .WAIT to

indicate that the headers must be constructed before anything else.

all: prog1 prog2
prog1: prog1.o aux.o

$(LINK.c) prog1.o aux.o -o prog1
prog2: prog2.o

$(LINK.c) prog2.o aux.o -o prog2

all: hdrs .WAIT libs functions
Appendix C The dmake Utility 87

You can add an empty rule for the .WAIT target to the makefile so that the makefile

is compatible with the make utility.

Concurrent File Modification

You must make sure that targets built concurrently do not attempt to modify the

same files at the same time. This can happen in a variety of ways. If a new suffix rule

is defined that must use a temporary file, the temporary file name must be different

for each target. You can accomplish this by using the dynamic macros $@or $* . For

example, a .c.o rule that performs some modification of the .c file before

compiling it might be defined as:

Concurrent Library Update

Another potential concurrency problem is the default rule for creating libraries that

also modifies a fixed file, that is, the library. The inappropriate .c.a rule causes

dmake to build each object file and then archive that object file. When dmake
archives two object files in parallel, the concurrent updates will corrupt the archive

file.

A better method is to build each object file and then archive all the object files after

completion of the builds. An appropriate suffix rule and the corresponding library

rule are:

.c.o:
 awk -f modify.awk $*.c > $*.mod.c
 $(COMPILE.c) $*.mod.c -o $*.o
 $(RM) $*.mod.c

.c.a:
 $(COMPILE.c) -o $% $<
 $(AR) $(ARFLAGS) $@ $%
 $(RM) $%

.c.a:
 $(COMPILE.c) -o $% $<

lib.a: lib.a($(OBJECTS))
 $(AR) $(ARFLAGS) $(OBJECTS)
 $(RM) $(OBJECTS)
88 Introduction to Sun WorkShop • July 2001

Multiple Targets

Another form of concurrent file update occurs when the same rule is defined for

multiple targets. An example is a yacc(1) program that builds both a program and

a header for use with lex(1) . When a rule builds several target files, it is important

to specify them as a group using the + notation. This is especially so in the case of a

parallel build.

This rule is actually equivalent to the two rules:

The serial version of make builds the first rule to produce y.tab.c and then

determines that y.tab.h is up-to-date and need not be built. When building in

parallel, dmake checks y.tab.h before yacc has finished building y.tab.c and

notices that y.tab.h does need to be built, it then starts another yacc in parallel

with the first one. Since both yacc invocations are writing to the same files

(y.tab.c and y.tab.h), these files are apt to be corrupted and incorrect. The

correct rule uses the + construct to indicate that both targets are built simultaneously

by the same rule. For example:

y.tab.c y.tab.h: parser.y
 $(YACC.y) parser.y

y.tab.c: parser.y
$(YACC.y) parser.y

y.tab.h: parser.y
$(YACC.y) parser.y

y.tab.c + y.tab.h: parser.y
$(YACC.y) parser.y
Appendix C The dmake Utility 89

Parallelism

Sometimes file collisions cannot be avoided in a makefile. An example is xstr(1) ,

which extracts strings from a C program to implement shared strings. The xstr
command writes the modified C program to the fixed file x.c and appends the

strings to the fixed file xs.c . Since xstr must be run over each C file, the following

new .c.o rule is commonly defined:

The dmake utility cannot concurrently build targets using this rule since the build of

each target writes to the same x.c and xs.c files. Nor is it possible to change the

files used. You can use the special target .NO_PARALLEL: to tell dmake not to build

these targets concurrently. For example, if the objects being built using the .c.o rule

were defined by the OBJECTSmacro, the following entry would force dmake to

build those targets serially:

If most of the objects must be built serially, it is easier and safer to force all objects to

default to serial processing by including the .NO_PARALLEL: target without any

dependents. Any targets that can be built in parallel can be listed as dependencies of

the .PARALLEL: target:

When dmake encounters a target that invokes another dmake command, it builds

that target serially, rather than concurrently. This prevents problems where two

different dmake invocations attempt to build the same targets in the same directory.

Such a problem might occur when two different programs are built concurrently,

and each must access the same library. The only way for each dmake invocation to

be sure that the library is up-to-date is for each to invoke dmake recursively to build

that library. The dmake utility recognizes a nested invocation only when the

$(MAKE) macro is used in the command line.

If you nest commands that you know will not collide, you can force them to be done

in parallel by using the .PARALLEL: construct.

.c.o:
$(CC) $(CPPFLAGS) -E $*.c | xstr -c -
$(CC) $(CFLAGS) $(TARGET_ARCH) -c x.c
mv x.o $*.o

.NO_PARALLEL: $(OBJECTS)

.NO_PARALLEL:

.PARALLEL: $(LIB_OBJECT)
90 Introduction to Sun WorkShop • July 2001

When a makefile contains many nested commands that run concurrently, the load-

balancing algorithm may force too many builds to be assigned to the local machine.

This may cause high loads and possibly other problems, such as running out of

swap space. If such problems occur, allow the nested commands to run serially.
Appendix C The dmake Utility 91

92 Introduction to Sun WorkShop • July 2001

APPENDIX D

Source Browsing With sbquery ,
sb_init , and sbtags

This appendix:

■ Describes sbquery , one of the command-line utilities for browsing source code

■ Tells you how to work with source files where database information is stored in

multiple directories

■ Describes the sbtags command, which provides a quick and convenient method

for collecting browsing information from source files

The information in this chapter pertains mainly to the use of the command line to

complete tasks also available from within the Sun WorkShop integrated

programming environment. For more conceptual information on using source

browsing, see Chapter 5 and the Browsing Source Code section of the online help

(you can access the online help through the Help menu in any Sun WorkShop

window).

The sbquery Utility
The sbquery utility provides you with a command-line browsing environment that

you can access from terminals and from workstations emulating terminals. By

default, sbquery searches for symbols in the database in the current working

directory. If you want to browse a database stored in another directory, see “The

sb_init File and Commands” on page 97.

To issue a query from the command line, type sbquery , followed by any command-

line options and their arguments, followed by the symbol you want to search for:

% sbquery [options] symbols
93

sbquery displays a list of matches that includes the file in which the symbol

appears, the line number, the function containing the symbol, and the source line

containing the symbol.

Options

To obtain a list of the sbquery command-line options, type sbquery at the shell

prompt. TABLE D-1 lists and describes the options (see also the sbquery (1) man

page).

TABLE D-1 sbquery Options

Arguments Description

-pattern symbol Queries on symbol, which may contain special

characters, including a leading dash (-). This option

allows you to query on a symbol that looks like a

command-line option. For instance, you can query on

the symbol -help , and sbquery distinguishes it from

the regular option -help .

-break_lock Breaks the lock on a locked database. This argument

might be needed if the update of the index file is

aborted. The next time you issue a query you might

get a message telling you that the database is locked.

After using this option, your database may be in an

inconsistent state. To ensure consistency, remove the

database directory and recompile your program.

-files_only Lists only the files where the symbols you are

searching for appear.

-help Displays a synopsis of the sbquery command.

Equivalent to typing sbquery with no options and no

symbol.

-help_focus Displays a list of the focus options available for

querying only specific program types in a directory.

Use focus options (see TABLE D-3) to issue a query

limited to specific units of code such as programs or

functions.

-help_filter language Displays a list of the languages for which filter options

are available for -help_filter . Displays a list of the

filter options for the language for -help_filter
language. Use filter options (see TABLE D-2) to search

for symbols based on how they are used in a program.
94 Introduction to Sun WorkShop • July 2001

Two types of options are available to help you narrow your search: filter options

described in TABLE D-2 and focus options described in TABLE D-3.

max_memory size Sets the approximate amount of memory in megabytes

that should be allocated before sbquery uses

temporary files when building the index file.

-no_case Makes the query case-insensitive.

-no_source Displays only the file name and line number

associated with each match and not the source line

containing the match.

-no_update Does not rebuild the index file when you issue a query

following compilation. If you do not include this

option and issue a query following compilation or

recompilation, then the database updates and

processes your query.

-o file Sends query output to file.

-show_db_dirs Lists all database directories scanned when you issue

a query. The list includes the following:

the database directory in the current working

directory and all other database directories specified

by the import or export commands in your

sb_init file.

-symbols_only Displays a list of all symbols that match the patterns

in your search pattern. This is useful when you use

wildcards in a query.

-version Displays the current version number.

-sh_pattern Uses shell-style expressions when issuing a query that

includes wildcards. This wildcard setting is the

default; include this option if you are doing other

pattern matching on the same command line.

See the sh (1) man page for more information about

shell-style pattern matching.

-reg_expr Uses regular expressions when issuing a query that

includes wildcards. If you do not include this option,

shell-style patterns are assumed.

-literal Uses only literal strings and does not use any

wildcard expressions for the query. This is useful

when you want to search for a string that contains

meta characters from other wildcard schemes.

TABLE D-1 sbquery Options (Continued)

Arguments Description
Appendix D Source Browsing With sbquery , sb_init , and sbtags 95

The filter options are used to search for symbols based on how they are used in a

program. For example, you could limit your search to declarations of variables.

The focus options listed in TABLE D-3 limit your search to specific classes of code,

such as particular programs, functions, or libraries.

Note – If you include two or more focus options, a match is returned if it is found

with any of the supplied focus options.

% sbquery -help_filter language

TABLE D-2 Filter Language Options

Filter Option Description

ansi_c C

sun_as Assembly language

sun_c_plus_plus C++

sun_f77 Fortran 77

% sbquery focus-option symbol

TABLE D-3 Focus Options

Focus Option Description

-in_program program Limits query to matches in program.

-in_directory directory Limits query to matches in directory.

-in_source_file source-file Limits query to matches in source-file.

-in_function function Limits query to matches in function.

-in_class class Limits query to matches in class.

-in_template template Limits query to matches in template.

-in_language language Limits query to matches in language.
96 Introduction to Sun WorkShop • July 2001

Environment Variables

Environment variables provide information that affects the operation of sbquery
(and source browsing in the Sun WorkShop integrated programming environment).

The sb_init File and Commands
This section describes how to work with source files where database information is

stored in multiple directories. As a default, the database is built in the current

working directory and searches that database when you issue a query.

The text file sb_init is used by Sun WorkShop source browsing mode, the

compilers, and sbtags to obtain control information about the source browsing

database structure. Use sb_init if you want to work with source files whose

database information is stored in multiple directories.

The sb_init file should be placed in the SunWS_config directory, which should be

placed in the directory from which source browsing, the compilers, and sbtags are

run. These tools look in the current working directory for the sb_init file.

The default is to look in the current working directory for the sb_init file. To

instruct the Sun WorkShop integrated programming environment and the compiler

to search for the sb_init file in another directory, set the environment variable

SUNPRO_SB_INIT_FILE_NAMEto absolute-pathname/sb_init .

TABLE D-4 Environment Variables

Variable Description

HOME The name of your login directory.

PWD The full path name of the current directory.

SUNPRO_SB_ATTEMPTS_MAX The maximum number of times the index builder

tries to access a locked database.

SUNPRO_SB_EX_FILE_NAME The absolute path name of the

sun_source_browser.ex file.

SUNPRO_SB_INIT_FILE_NAME The absolute path name of the sb_init file. For

more information on sb_init , see “The sb_init File

and Commands” on page 97.
Appendix D Source Browsing With sbquery , sb_init , and sbtags 97

To use an sb_init command, add the command to the sb_init file. The sb_init
file is limited to the following commands:

import

This command allows the Sun WorkShop source browsing mode to read databases in

directories other than the current working directory. Use of the import command

enables you to retain separate databases for separate directories.

For example, you may want to set up administrative boundaries so that

programmers working on Project A cannot write into directories for Project B and

vice versa. In that case, Project A and Project B each need to maintain their own

databases, both of which can then be read but not written by programmers working

on the other project.

export

This command causes the compilers and sbtags to write database component files

associated with source files to directories other than the current working directory

used by the Sun WorkShop source browsing mode and the compiler.

TABLE D-5 sb_init Commands

Comand Description

import Reads databases in directories other than the current working

directory.

export Writes database component files associated with specified source

files to directories other than the current working directory of the

compiler. This command also acts as an import command.

replacepath Specifies how to modify paths to file names found in the database,

allowing you to move a database.

automount-prefix Enables you to browse source files on a machine other than the one

on which you compiled your program.

cleanup-delay Limits the time elapsed between rebuilding the index and the

associated database garbage collection.

% import pathname

% export prefix into path
98 Introduction to Sun WorkShop • July 2001

Whenever the compiler processes a source file whose absolute path starts with prefix,

the resulting browser database (.bd) file is stored in path.

The export command contains an implied import command of path, so that

exported database components are automatically read by the Sun WorkShop source

browsing mode.

The export command enables you to save disk space by placing database files

associated with identical files, such as #include files from /usr/include , in a

single database, while still retaining distinct databases for individual projects.

If your sb_init files include multiple export commands, then you must arrange

them from the most specific to the least specific. The compiler scans export
commands in the same order that it encounters them in the sb_init file.

replacepath

This command specifies how to modify path names in the source browsing database.

In general, from-prefix corresponds to the automounter mount point (the path name

where the automounter actually mounts the file system); to-prefix corresponds to the

automounter trigger point (the path name known and used by the developer).

There is considerable flexibility in how an automounter is used; the method can vary

from host to host.

Path replacement rules are matched in the order that they are found, and matching

stops after a replacement is done.

The default replacepath command is used to strip away automounter artifacts:

When used for this purpose, the command should be given with the mount point as

the first argument and the trigger point as the second argument.

% replacepath from-prefix to-prefix

% replacepath /tmp_mnt
Appendix D Source Browsing With sbquery , sb_init , and sbtags 99

automount-prefix

The automount-prefix command enables you to browse on a machine other than

the one on which you compiled your program. This command is identical to the

replacepath command except that automount-prefix path translations occur at

compile time and are written into the database.

The automount-prefix command defines which automounter prefixes to remove

from the source names stored in the database. The directory under which the

automounter mounts the file systems is the mount-point; the trigger-point is the prefix

you use to access the exported file system. The default is / .

If the path in the database fails, the path translations from both commands (that is,

automount-prefix and replacepath) are used to search for source files while

browsing.

At first glance, searching both paths may not seem possible; the browser database

that is created when you run the compiler contains the absolute path for each source

file. If the absolute path is not uniform across machines, then Sun WorkShop will not

be able to display the source files when it responds to a query.

To get around this problem, you can do one of the following:

■ Ensure that all source files are mounted at the same mount point on all machines.

■ Compile your programs in an automounted path. A reference to such a path

causes the automounter to automatically mount a file system from another

machine.

There is a default automount-prefix command that is used to strip away

automounter artifacts:

The default rule is generated only if no automount-prefix commands are

specified.

For more information on using the automounter, see the automount (1M) man page.

cleanup-delay

This command limits the time elapsed between rebuilding the index and the

associated database garbage collection. The compilers automatically invoke

sbcleanup if the limit is exceeded. The default value is 12 hours.

% automount-prefix mount-point trigger-point

% automount-prefix / tmp-mnt /
100 Introduction to Sun WorkShop • July 2001

The sbtags Utility
The sbtags command provides a method for collecting browsing information from

source files, enabling you to collect minimal browsing information for programs that

do not compile completely. See also the sbtags (1) man page.

The sbtags command collects a subset of the information available through

compilation. The reduced information restricts some browsing functionality. A

database generated by sbtags enables you to perform queries on functions and

variables and to display the function call graph.

A tags database:

■ Cannot issue queries about local variables

■ Cannot browse classes

■ Cannot graph class relationships

■ Has limited ability to issue complex queries

■ Has limited ability to focus queries

■ Has less reliability than compiled information

Once a file has been changed, it often need not be scanned again to incorporate

changes into the database.

An sbtags database is based on a lexical analysis of the source file. Though it does

not always correctly identify all the language constructs, it will operate on files that

will not compile and is faster than recompilation.

sbtags recognizes definitions for types and functions. It also collects information on

function calls. No other information is collected (in particular, other semantic

information for complex queries is not collected).

The functionality of sbtags is similar to ctags and etags , except for the Call

Grapher information. You may mix direct queries to the database for definitions and

graphing with pattern-matching queries.

With an sbtags generated database:

■ Class Browser and Class Graph features are not available.

■ The database does not contain information on all symbols and strings. It contains

information on functions, classes, types, and calls to functions.

■ Time is saved since the sbtags program runs faster than the compiler.

■ The database size is much smaller than the size of your source code.

■ The database content is not guaranteed to be semantically correct because the

sbtags program performs only simple syntactic and semantic analysis and may

sometimes be in error.
Appendix D Source Browsing With sbquery , sb_init , and sbtags 101

■ A database is generated even if the source code cannot be compiled because the

code is incomplete or semantically incorrect.

To generate a browsing database using sbtags , type the following at a command

line:

file is the file for which you want to generate the database. See the sbtags (1) man

page for more information.

% sbtags file
102 Introduction to Sun WorkShop • July 2001

Glossary

build command The command that starts the make utility, which reads the makefile and builds

the make targets.

build directory The directory from which the build process is started and also the default

directory for the makefile.

data display A feature of the debugging service that allows you to watch the changes in the

value of an expression during program execution.

data history A feature of the debugging service that allows you to evaluate expressions and

change the value of a variable while debugging a program.

debugging session A program with an associated debug process. You can debug many programs

at the same time using the session manager.

debug mode A debugging state that allows you to debug your program using the full

functionality of the debugging service. See also quick mode.

distributed make
(dmake) A version of the make utility that organizes the build into multiple tasks and

distributes those tasks to multiple CPUs and workstations.

makefile A file that contains entries that tell the make utility in a structured manner

which source and object files depend on other files. It also defines the

commands required to compile and link the files.

make target An object that the make utility knows how to build from the directions (rules)

contained in the makefile.

menu picklist A list of recently used files, targets, programs, projects, or experiments located

on Sun WorkShop menus, allowing easy access to your most recently accessed

items.

pattern search mode A mode in the Browsing window that allows you to search source code for any

text string, including text embedded within comments. See also source
browsing mode.

picklist See menu picklist.
Glossary 103

project A list of files and compiler, debugger, and build-related options used to build

an executable, a static library/archive, a shared library, a Fortran application, a

complex application, or a user makefile application.

quick mode A debugging state that allows you to run a program normally but with

debugging ready in the background to save the program in case your program

terminates abnormally. See also debug mode.

run parameters The program arguments, the directory in which the program is run, and any

environment variables passed to your program while your program is being

debugged.

source browsing
mode A mode in the Browsing window that allows you to find all occurrences of any

program-defined symbol in your code by searching in a database that is

generated when Sun WorkShop compiles your source files with a source

browsing option (-xsb). See also pattern search mode.

target An object that can be built.
104 Introduction to Sun WorkShop • July 2001

Index
A
Active Sessions dialog box 37

address-space data 52

ancestor file 55

archiving libraries 88

automatic merging 59

B
balloon expression evaluator 33

breakpoint, On Access 33

breakpoints 32

Breakpoints window 32, 35

browser 10

browser database 43

browsing

an automounted path 100

classes 47

closing 49

exiting 49

on a different machine than compiling 100

relationship to graphing 44

browsing database 43

breaking lock on 94

exporting 98

importing 98

modifying path names in 99

Browsing window

pattern search mode 40

source browsing mode 42

build

command 19

directory 19

environment variables 24

errors 25

options 23, 77

servers 81

Build Options dialog box 23

building

an entire project 22

project targets 15, 22

with default values 23

with your own values 23

Building window 21

C
Call Graph window 45

call stack

examining 35

moving down one level in 35

moving up one level in 35

popping 35

popping to current frame 35

removing multiple frames from 35

removing stopped in function from 35

Callers-Callees window 54

Class Browser window 48

class browsing 47

Class Graph window 46

clock-based profiling 52, 54
Index 105

closing

browsing 49

building 26

Debugging window 38

code

stepping through 31

tracing 35

collecting performance data 52

compiler-generated browser database 43

compilers 8

compilers, accessing 3

compiling in an automounted path 100

concurrent file modification 88

configuration file, runtime 82

D
Data Display tab 32, 33

Data Display window 32

Data History tab 32

data values, monitoring 33

dbx commands 27

Dbx Commands window 27, 35

debug mode 28

debugging 9

child process 37

defaults 31

in debug mode 28

in quick mode 28

multiple programs side by side 37

multiple sessions 36

multithreaded programs 36

options 31

preparing for 28

session, customizing 31

setting breakpoints 32

starting 28

Debugging Options dialog box 31

Debugging window 27

closing 38

Data Display tab 33

Data History tab 32

Sessions tab 37

Stack pane 35

Threads tab 36

default editor 17

default editor, setting 17

Define New Target dialog box 22

dependency lists 87

dialog boxes

Active Sessions 37

Build Options 23

Debugging Options 31

Define New Target 22

Edit Target 22

Environment Variables 24

Make Macros 24, 79

Text Editor Options 17

Welcome to Sun WorkShop 14

difference

defined 57

next 57

options 59

previous 57

remaining 57

resolved 57

differences

between text files 57

moving between 58

resolving automatically 59

distributed build 23

distributed make 81

dmake

basic concepts 81

command 90

host 81

impact on makefiles 86

jobs, controlling 81

nested invocations of 90

dmake.conf file 24, 84

.dmakerc file 82

documentation index 4

documentation, accessing 4

E
Edit Target dialog box 22

Editable 71

editor

default 17

options 17
106 Introduction to Sun WorkShop • July 2001

editors 7, 17

environment variables 29

build 24

for sbquery 97

HOME 97

PWD 97

SUNPRO_SB_ATTEMPTS_MAX 97

SUNPRO_SB_EX_FILE_NAME 97

SUNPRO_SB_INIT_FILE_NAME 97, 97

Environment Variables dialog box 24

evaluating expressions 32

event, defined 35

exiting

browsing 49

building 26

debugging 38

experiment file 51

export command (sb_init file) 98

expression evaluation, instantly 33

expressions, evaluating 32

F
file

.dmakerc 82

ancestor 55

collision 90

dmake.conf 24, 84

merging output 60

runtime configuration 23

sb_init 97

files

loading into Merging 55

merging 55

function

stepping into 31

stepping out of 32

stepping over 31

stopped in 35

function call, graphing 45

G
-g option 28

-g0 option 28

graphical user interfaces, designing 11

graphing

function call 45

relationship to browsing 45

subroutine call 45

H
hollow font 58

HOME environment variable 97

I
icons, Merging window 57

import command (sb_init file) 98

L
library update, concurrent 88

limitations on makefiles 87

loading files into Merging 55

LockLint 10

M
macros

dynamic 88

makefile 78

main window 16

Make Macros dialog box 24, 79

make target, defined 20, 76

make utility 19, 75

makefile

C++ example 77

creating 22

defined 20, 75

file collisions in 90

Fortran 77 example 76

impact of dmake utility on 86

limitations 87

restrictions 87

rules, defined 76
Index 107

makefile macro 78

defined 24

overriding 79

man pages, accessing 2

MANPATH environment variable, setting 4

merging options 60

merging source files 55

Merging window icons 57

monitoring data values 33

moving between differences 58

multiple debugging sessions 36

multiple targets 89

multithreaded programs, debugging 36

N
next difference, defined 57

.NO_PARALLEL dmake target 90

O
option

-g 28

-g0 28

options

debugging 31

project 18

startup 17

text editor 17

outline font 58

P
.PARALLEL dmake target 90

parallelism, restricting 90

PATH environment variable, setting 3

pattern search

in multiple directories 41

special characters 41

pattern search mode 39

Performance Analyzer 51

performance data, collecting 52

performance-profiling tools 51

previous difference, defined 57

program arguments 29

project

defined 13

options 18

wizard 14

project file information, sharing 15

projects

creating 14

editing 16

PWD environment variable 97

Q
quick mode, debugging 28

R
remaining difference, defined 57

resolved difference, defined 57

resolving differences automatically 59

resource file

ESERVE 61

WORKSHOP 61

resources

changing 62

editable 62

Sun WorkShop windows 45, 46, 61

text editor 61

restricting parallelism 90

restrictions on makefiles 87

run parameters

program arguments 29

run directory 29

runtime checking 34

S
Sampling Analyzer 51

Sampling Collector 51

saving merging output 60

sb_init file 97

sb_init file commands

automount-prefix 98, 100
108 Introduction to Sun WorkShop • July 2001

cleanup-delay 98, 100

export 98

import 98

replacepath 98, 99

sbquery
displaying symbols only 95

displaying version number 95

environment variables 97

filter language options 96

focus options 96

no rebuilding of index file 95

options 94

sending output to a file 95

setting maximum memory 95

source browsing with 93

using regular expressions in 95

using shell-style expressions in 95

sbtags command 101

Sessions tab 37

setting

breakpoints 32

default editor 17

difference options 59

merging options 60

window colors and fonts 16, 17

sharing project file information 15

shell prompts 2

Solaris versions supported 2

source browsing 10

from multiple machines 100

in multiple directories 44

special characters 43

uncompiled programs 101

with sbquery 93

source browsing databases 43

breaking lock on 94

compiler-generated 43

exporting 98

importing 98

modifying path names in 99

tags-generated 43

source browsing mode 42

source code management tools 11

special characters

in pattern search 41

in source browsing 43

Stack pane 35

starting Sun WorkShop 13

startup options 17

stepping

forward one source line 31

into function 31

out of function 32

over function 31

through code 31

stopped in function 35

subroutine call, graphing 45

Sun WorkShop TeamWare 11

Sun WorkShop tools, accessing 18

SUNPRO_SB_ATTEMPTS_MAX environment

variable 97

SUNPRO_SB_EX_FILE_NAME environment

variables 97

SUNPRO_SB_INIT_FILE_NAME environment

variable 97

T
tabs

Data Display 32, 33

Data History 32

Sessions 37

Threads 36

tags database 43

defined 101

limitations 101

restrictions 101

target

building multiple concurrently 86, 87

complex project 20

multiple 89

Sun WorkShop 19

user makefile 20

Text Editor Options dialog box 17

text editor, default 17

text editors 7, 17

Threads tab 36

thread-synchronization wait tracing 54

tools 18

tracing code 35

typographic conventions 1
Index 109

U
unlocking browsing database 94

user makefile

project 23

target 20

V
Visual GUI-building tool 11

W
.WAIT dmake target 87

Welcome to Sun WorkShop dialog box 14

windows

Breakpoint 32

Breakpoints 35

Building 21

Call Graph 45

Callers-Callees 54

Class Browser 48

Class Graph 46

Data Display 32

Dbx Commands 27

Debugging 27

main 16
110 Introduction to Sun WorkShop • July 2001

	Introduction to Sun WorkShop
	Contents
	Figures
	Tables
	Code Examples
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun WorkShop Development Tools and Man Pages
	Accessing Sun WorkShop Compilers and Tools
	To Determine If You Need to Set Your PATH Environment Variable
	To Set Your PATH Environment Variable to Enable Access to Sun WorkShop Compilers and Tools

	Accessing Sun WorkShop Man Pages
	To Determine If You Need to Set Your MANPATH Environment Variable
	To Set Your MANPATH Environment Variable to Enable Access to Sun WorkShop Man Pages

	Accessing Sun WorkShop Documentation
	Accessing Related Documentation
	Ordering Sun Documentation
	Sending Your Comments

	About the Sun WorkShop Integrated Programming Environment
	Integrated Text Editors
	Compilers
	Integrated Debugging
	Source Code Browsing
	Performance, Source Code Management, and GUI-Building Tools
	Multithreaded Development Tools
	Sun WorkShop TeamWare
	Sun WorkShop Visual

	Getting Started
	Working With Projects
	Creating a Project
	Building Project Targets
	Editing a Project

	Using the Main Window
	Choosing a Text Editor and Text Editor Options
	Setting Startup and Project Options
	Startup Options
	Project Options

	Accessing Sun WorkShop Tools

	Building Programs
	Working With Targets
	Sun WorkShop Target
	User Makefile Target

	Using the Building Window
	Building a Program
	Building With Default Values
	Specifying Your Own Build Values
	Specifying Build Options
	Using Makefile Macros
	Using Environment Variables

	Identifying Build Errors
	Exiting Building

	Debugging a Program
	Preparing for Debugging
	Starting Debugging
	Customizing the Debugging Window
	Stepping Through Your Code
	Setting Breakpoints
	Examining Values and Data
	Monitoring Data Values
	Collecting Performance Data
	Detecting Runtime Errors
	Tracing Code
	Examining the Call Stack
	Debugging Multithreaded Programs
	Debugging Processes Simultaneously
	Managing Sessions
	Debugging a Child Process

	Exiting Debugging

	Browsing Source Code
	Using Pattern Search Mode
	Pattern Search Special Characters
	Multiple Directory Searches

	Using Source Browsing Mode
	Source Browsing Databases
	Source Browsing Special Characters
	Multiple Directory Browsing

	Relating Browsing and Graphing
	Graphing Functions
	Graphing Classes
	Browsing Classes
	Exiting Browsing

	Analyzing Program Performance
	Collecting Performance Data
	Analyzing Performance Data
	Examining Function and Load-Object Metrics
	Examining Caller and Callee Metrics
	Displaying Annotated Source and Disassembly Code

	Merging Source Files
	Loading Files into Merging
	Working With Differences
	Reading Merging Icons
	Two Input Files
	Three Input Files

	Moving Between Differences
	Resolving Differences
	Setting Difference Options

	Merging Automatically
	Saving the Output File
	Setting Merging Options

	Sun WorkShop and Text Editor Resources
	Changes to Resource Settings
	Editable Sun WorkShop Resources
	Highlight Colors in Editor Windows
	Data Graph Window Colors
	Call Graph and Class Graph Window Colors
	Audible Warnings
	Debugging Buttons
	Dbx Commands and Program I/O Window Output Lines
	Project make Command
	Browser Used to Display Web Updates
	Character Fonts in Hyperlink Windows
	Hyperlink Resources
	Automatic Text Wrapping
	Vertical Scrollbars
	Motif-Specific Resources
	Window Foreground and Background Colors
	Scrollbar Background and Toggle Button Colors

	Editable Text Editor Resources
	Text Editor Default Path Names
	Blinking Pointer
	Fonts for Text Editor Motif Environments
	Text Editor Window Colors
	Scrolling List Background Color
	Writable Text Area Background Color
	Balloon Expression Evaluator Popup Dimensions
	Text Editor Audible Warnings

	The make Utility and Makefiles
	The Makefile
	Fortran 77 Example
	C++ Example

	The make Utility
	Macros

	The dmake Utility
	Basic Concepts
	The dmake Host
	The Build Server

	Impact of the dmake Utility on Makefiles
	Concurrent Building of Targets
	Limitations on Makefiles
	Dependency Lists
	Explicit Ordering of Dependency Lists
	Concurrent File Modification
	Concurrent Library Update
	Multiple Targets

	Parallelism

	Source Browsing With sbquery, sb_init, and sbtags
	The sbquery Utility
	Options
	Environment Variables

	The sb_init File and Commands
	import
	export
	replacepath
	automount-prefix
	cleanup-delay

	The sbtags Utility

	Glossary
	Index

