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e Motivation: Increased understanding of transport can help
achieve successful fusion power

e Gyrokinetic simulations offer the possibility of predicti ng
turbulent-driven energy, momentum, and species transport ,
and fluctuations

e Question: Can gyrokinetic codes predict transport with suf -
ficient accuracy?

e This talk discusses GYRO simulations of the first pair of
JET plasmas with reflectometry measurements

1. = Approximate agreement with measured energy, mo-
mentum, and species flows

2. = Consistency with measured n. fluctuations and radial
correlations



Methods

e TRANSP to extract transport from measurements
e TRGYRO to generate GYRO inputs from TRANSP and NCLASS
e Linear GYRO runs
1.scan in kgps (up to about 1.0) for maximum growth rate
Y1in, @Nd mode frequency wy;n
e Nonlinear GYRO runs

1. kinetic electrons with trapping

2. two kinetic ion species (main ion and lumped impurities)
3. electron-ion collisions, but ignore ion-ion collisions

4. use electrostatic approximation

5. runs on Seaborg, Jacquard, Phoenix, Kestrel



Agreement with Energy and Angular Momentum Flows

e Can’'t quantify uncertainties in energy flow (especially wit
fundamental D-ICRH)
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e Comparable agreement for 68734 with By = 3.7T



Agreement with Electron energy and species Flows

Flow in MW

e TORIC ICRH package in TRANSP predicts centrally-deposited
direct el heating
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Simulated el fluctuations consistent with reflectometry

e GYRO integrates f .; to get n¢ in 3D and time
e \We use Bravenec’s postprocessor to get  ne(r,0, ¢ = 0,t)
e Compute Root-Mean-Square along outer mid-plane (6 = 0)
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Radial correlation consistent with reflectometry

e Correlation of ne(r1,t) and ne(ra,t)

e Ar defined where correlation decreases below 1/e

Correlation (Pearson Method)
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Relatively broad n. power spectra simulated by GYRO

e Fast Fourier transform  ne(r, t)
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e Baseline rotation rotation was subtracted out in GYRO



More peaked power spectra if E/ — 0.1E/,

e Fast Fourier transform  ne(r, t)
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e If baseline rotation is added in GYRO, comparison with re-
flectometry power spectra can indicate value of E’



Discussion and conclusions

e GYRO simulations of turbulence intwo low 3, plasmas are
In approximate agreement with measurements:

1. energy, angular momentum, and species flows compared
with TRANSP
2. electron density fluctuations compared with reflectome-

try
e But simulations depend sensitively on input profiles;

1. E, flow shear
2. q profile
3. temperature and densities and their gradients

e But uncertainties in measurements for comparison/validat lon

1. vp, contributionto  E,
2. heating profile
3. reflectometry



