Testing Gyrokinetic Turbulence Simulations

R. Budny UW, Madison, Feb 28, 2008

- Accurate transport predictions are needed for successful future tokamaks
- Nonlinear gyrokinetic simulations can predict turbulent-driven energy, momentum, and species transport and fluctuations
- Comparisons of simulations with measurements help verify (and validate) the simulations
- This talk describes tests of simulations of JET and DIII-D plasmas using the GYRO and TGYRO gyrokinetic codes

1

- Encouraging agreements are achieved
- **•** Lots of work is needed

• TRANSP

– analyzes plasmas for transport and maps plasma profiles

- TRGK [≡] TRANSP-postprocessor [≡] GYRO-preprocessor
	- generates inputs for GYRO/TGYRO

• GYRO

- time evolution of potential and distribution functions of kinetic species
- $-$ 3 spatial and 2 phase space dimensions
- TGYRO
	- runs GYRO in feedback mode
- SCHRADO2
	- Full-wave 2D microwave scattering from density cut-off region

GYRO simulations

- GYRO solves standard Gyrokinetic Eq's with continuum methods
- Nonlinear runs to saturation of ITG/TEM turbulence $(k_{\theta} \rho_s < 1.0)$
- Kinetic electrons and 2 kinetic ion species (bulk and combined impurities)
- Extended radial domain
- Most runs in the electrostatic approximation
- Achieved mixed success simulating radial flows of energy, species, and toroidal angular momentum in DIII-D, JET, and TFTR plasmas
- Examples of simulations of transport and density fluctuations \tilde{n}_e
	- $-$ JET L-mode with B_{TF} =3.4T, I_p =2MA, P_{NF} =5.9MW, P_{RF} < 2MW
	- DIII-D L-mode with $B_{T F}$ =2.2T, I_p =1MA, $P_{N B}$ =2.6-5.4MW (co-balanced)

- L-mode heated by NBI and fundamental D-ICRH
- $B_{TF} = 3.4T$, $I_p = 2.0MA$, $\kappa = 1.6$, $\delta = 0.2$,
- $P_{nbi} = 5.9MW$, P_{ICRH} < 2 MW, $f_{GW} = 0.3$, $\beta_n = 0.45$

• Measured profiles mapped by TRANSP

• Simulate extended radial domain to allow turbulence room to saturate

• Domain width $>$ > ρ_s (ion sound speed gyro-radius)

Approximate agreement for ion energy and angular momentum flows

- TRANSP analysis for ion energy and angular momentum flows
- GYRO runs in 4 overlapping radial regions for more accuracy

- Note discrepancies near core
- Some of the measured transport is neoclassical

Approximate agreement for electron energy and species flows

• TRANSP analysis for electron energy and species flows

- Note discrepancies near core
- Hard to quantify uncertainty in flow measurements

Sensitivity of predicted q_i , Γ_{ϕ} to assumed E_r flow shear

- Hypersensitivity to variations in plasma profiles
- Varied E_r flow shearing and up/down 20 % to study sensitivity

• Improvements in core region

Sensitivity of predicted q_e and Γ_e to assumed E_r flow shear

\bullet Variation in E_r flow has less effect in electron channels

• Small improvement in core region

• Compare mode spectra at different radii

- Simulations very close to marginal near core
- Implies strong sensitivity to drive and suppression terms (plasma gradients and $\bar{E_r}$ flow shear)

- Very recent development by Ron Waltz and Jeff Candy (GA)
- \bullet TGYRO \equiv controller that calls and runs GYRO
- Starts with nonlinear GYRO, then shifts to feedback mode to match measured q_i , q_e , and Γ_e profiles
- Adjusts $\nabla(T_i)$, $\nabla(T_e)$, and $\nabla(n_e)$ pivoting at norm radius

- Very preliminary results for DIII-D L-mode
- \bullet Match $\boldsymbol{q_i},\,\boldsymbol{q_e},$ and $\boldsymbol{\Gamma_e}$ profiles from TRANSP

• Need to check convergence: box size, grids, etc

TGYRO feedback: altered plasma profiles

\bullet Results for T_i , T_e , and n_e to match measured q_i , q_e , and Γ_e

- \bullet Good agreement achieved by pivoting T_i , T_e , and n_e profiles
- \bullet Are TGYRO fitted $T_i,$ T_e , and n_e consistent with measurements?

\bullet Results for T_i , T_e , and n_e gradients to match q_i , q_e , and Γ_e

- Gradients about right at pivit point (r/a=0.5)
- Large excursions from measurements away from pivit point
- Jeff Candy improving feedback over large domain
	- Split radial domain into regions for different methods: neoclassical, TGLF, or nonlinear GYRO
	- Plasma profiles input as boundary at edge of simulation domain
- Desired future improvements
	- feedback to match more measured profiles: $\Gamma_{\bm{\phi}}$
	- feedback adjustment of more profiles: v_{tor} , E_r , impurity profiles

- \bullet Integrate electron distribution to get \tilde{n}_e in 3D and time
	- $-$ Use postprocessor to get $\tilde{n}_e(r,\theta,\phi=0,t)$
	- $-$ Compute Root-Mean-Square along outer mid-plane ($\theta=0$)
- \bullet Tunable microwave reflectometers operating in X-mode ($E \perp B_{TF}$)
	- $-$ TFTR: 132-140 GHz
	- JET: 92-96 and 100-106 GHz
- Measurements to compare with simulations:
	- $-$ Density fluctuation $\tilde{n}_e(r)$ RMS levels
	- $-$ Radial correlations of $\tilde{n}_e(r) \tilde{n}_e(r')$ and correlation length λ_r
	- $-$ Power spectra: Fourier Transform of $\tilde{n}_e(t) \: \tilde{n}_e(t')$

• Compute Root-Mean-Square along line-of-sight

- Both simulation and measurement are less than about 0.2%
- No measurements for regions of large \tilde{n}

Radial correlations also consistent with reflectometry

- \bullet Correlation of $\tilde{n}_e(r_1,t)$ and $\tilde{n}_e(r_2,t)$
- \bullet λ_r defined by Δr where correlation decreases below 1/e
- Magnetic axes at 2.97m and outboard separatrix at 3.85m

Similar levels of agreement in another JET L-mode

\bullet Similar to previous shot, but $\overline{B_{TF}}$: 3.4 \rightarrow 3.8 T

Radial correlation function (Pearson method) 1.0 $r = 3.53$ 3.41 $Time = 11.19 s$ 0.5 $/ e = 0.37$ jet_68734B04_02P_1_el_correl_out correl_out 0.0 3.77 3.65 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 Δ r [cm] = $\mathsf{r_{_1}}$ - $\mathsf{r_{_2}}$ jet_68734B04_02P_ 3 HILLIN $\mathsf{B}_{\mathsf{TF}}\;$ = 3.8 T $\;$ Reflectometry measurements $\;$ GYRO simulation λ , [cm] 2 $\overline{}$ 1 0 3.3 3.3 3.5 3.6 3.7 Outboard major radius [m]

 \bullet Note smaller λ_r at higher B_{TF}

Animation

• Plan to place two 2D animations of \tilde{n}_e at R=3.22 and 3.55m here

GYRO Simulation of \widetilde{n}_e in Jet 68733

How to improve the measurements

- Use SCHRADO2 to calculate full wave scattering
- Horizontal launch of microwaves
- Interference with reflections from density cut off region

Improved comparisons with fluctuation measurements

• Simulate measurements assuming 2D scattering from Gaussian fluctuations

$$
- \mathop{\mathrm{assume}} k_x, \delta k_x \, k_y, \delta k_y
$$

 \bullet Want to input GYRO simulations of $\tilde{n}_e(r)$ into SCHRADO3

Summary

- Nonlinear GYRO simulations of transport and \tilde{n}_e over extended radial domains
- Found approximate agreement between simulations and measurements of transport and \tilde{n}_e
- Not yet strong validation of model:
	- 1. Uncertainties of measured profiles
	- 2. Hypersensitivity of simulations to profiles
- Preliminary TGYRO runs to feedback on measured q_i , q_e , and Γ_e

• Angular momentum simulations

– GYRO now simulates radial flow of parallel and perp angular momenta

- Reflectometry measurements
	- 3D reflections from GYRO-simulated fluctuations momenta
- Electromagnetic effects
	- ES easier, but EM effects expected, especially in core and in enhanced confinement
- **Test ITER predictions**
	- Predictions use models such as GLF23 need to be benchmarked

