Testing Gyrokinetic Turbulence Simulations
R. Budny
UW, Madison, Feb 28, 2008

® Accurate transport predictions are needed for successful future tokamaks

® Nonlinear gyrokinetic simulations can predict turbulent-driven
energy, momentum, and species transport and fluctuations

® Comparisons of simulations with measurements
help verify (and validate) the simulations

® This talk describes tests of simulations of JET and DIlI-D plasmas
using the GYRO and TGYRO gyrokinetic codes

® Encouraging agreements are achieved

® Lots of work is needed
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Tools

® TRANSP

— analyzes plasmas for transport and maps plasma profiles
® TRGK = TRANSP-postprocessor = GYRO-preprocessor
— generates inputs for GYRO/TGYRO

® GYRO

— time evolution of potential and distribution functions of kinetic species
— 3 spatial and 2 phase space dimensions

® TGYRO
— runs GYRO in feedback mode

® SCHRADO?2

— Full-wave 2D microwave scattering from density cut-off region
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GYRO simulations

® GYRO solves standard Gyrokinetic Eg’s with continuum methods

® Nonlinear runs to saturation of ITG/TEM turbulence (kgps < 1.0)

® Kinetic electrons and 2 kinetic ion species (bulk and combined impurities)
® Extended radial domain

® Most runs in the electrostatic approximation

® Achieved mixed success simulating radial flows of energy, species,
and toroidal angular momentum in DIII-D, JET, and TFTR plasmas

e Examples of simulations of transport and density fluctuations 71¢

— JET L-mode with By p=3.4T, I,=2MA, Py B=5.9MW, Prp < 2MW
— DIII-D L-mode with B =2.2T, I,=1MA, Py B=2.6-5.4AMW (co-balanced)
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Example of JET shot

® L-mode heated by NBI and fundamental D-ICRH
e Brp = 3.4T, Ip = 2.0MA, kK =1.6,0 = 0.2,
o Py, =5.9MW, Prcreg <2MW, few = 0.3, B, = 0.45

JET 68733 l_ GYRO simulation time
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Example of GYRO inputs

® Measured profiles mapped by TRANSP

GYRO input profiles
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® Simulate extended radial domain to allow turbulence room to saturate

® Domain width > > pg (ion sound speed gyro-radius)
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Approximate agreement for ion energy and angular momentum flows

® TRANSP analysis for ion energy and angular momentum flows

® GYRO runs in 4 overlapping radial regions for more accuracy
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® Note discrepancies near core

® Some of the measured transport is neoclassical



Approximate agreement for electron energy and species flows

® TRANSP analysis for electron energy and species flows
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® Note discrepancies near core

® Hard to quantify uncertainty in flow measurements
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Sensitivity of predicted g;, I', to assumed E;- flow shear

® Hypersensitivity to variations in plasma profiles

e Varied F;- flow shearing and up/down 20 % to study sensitivity
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® Improvements in core region
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Sensitivity of predicted g, and I'¢ to assumed FE,. flow shear

e Variation in E, flow has less effect in electron channels
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® Small improvement in core region
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Why are simulated flows low in interior, high outside?

® Compare mode spectra at different radii

Bulk ion energy diffusion Impurity ion energy diffusion Electron energy diffusion
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® Simulations very close to marginal near core

® Implies strong sensitivity to drive and suppression terms
(plasma gradients and FE/,- flow shear)
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TGYRO simulations

® \ery recent development by Ron Waltz and Jeff Candy (GA)
® TGYRO = controller that calls and runs GYRO

@ Starts with nonlinear GYRO, then shifts to feedback mode
to match measured q;, ge, and I'¢ profiles

e Adjusts V(T3;), V(Te), and V (n¢) pivoting
at norm radius
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TGYRO feedback to match transport

® \ery preliminary results for DIII-D L-mode

® Match q;, ge, and I'¢ profiles from TRANSP

lon power flow

Electron power flow
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® Need to check convergence: box size, grids, etc
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TGYRO feedback: altered plasma profiles

® Results for T7;, Te, and 1 to match measured g;, ge, and I'e

lon temperature Electron temperature Electron density
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® Good agreement achieved by pivoting 17, T, and ne profiles

® Are TGYRO fitted 1I7;, T, and e consistent with measurements?
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TGYRO feedback: altered plasma gradients

® Results for T7;, T, and ne gradients to match q;, ge, and I'e

lon temperature gradient

Electron temperature gradient

® Gradients about right at pivit point (r/a=0.5)
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® Large excursions from measurements away from pivit point
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TGYRO improvements

e Jeff Candy improving feedback over large domain

— Split radial domain into regions for different methods:
neoclassical, TGLF, or nonlinear GYRO

— Plasma profiles input as boundary at edge of simulation domain
® Desired future improvements

— feedback to match more measured profiles: I‘¢

— feedback adjustment of more profiles: v¢os, E4, impurity profiles

vvvvvvvvvvvvvvv
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Fluctuation measurements help validate GYRO

® Integrate electron distribution to get 72 in 3D and time
— Use postprocessor to get e (7, 0, ¢ = 0, t)
— Compute Root-Mean-Square along outer mid-plane (0 = 0)
® Tunable microwave reflectometers operating in X-mode (£ L B p)
— TFTR: 132-140 GHz
— JET: 92-96 and 100-106 GHz
® Measurements to compare with simulations:

— Density fluctuation 12¢ (7)) RMS levels
— Radial correlations of 71 (7)Tie (7) and correlation length Ay
— Power spectra: Fourier Transform of 72 (&) 72 (')
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Simulated n, consistent with reflectometry

® Compute Root-Mean-Square along line-of-sight
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® Both simulation and measurement are less than about 0.2%

® No measurements for regions of large 1
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Radial correlations also consistent with reflectometry

e Correlation of e (71, t) and ne (72, t)
e )\, defined by Ar where correlation decreases below 1/e

® Magnetic axes at 2.97m and outboard separatrix at 3.85m
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Similar levels of agreement in another JET L-mode

® Similar to previous shot, but By p: 3.4 — 38T

Radial correlation function (Pearson method)
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® Note smaller Ay at higher B
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Animation

® Plan to place two 2D animations of ne at R=3.22 and 3.55m here

GYRO Simulation of fe in Jet 68733

R=3.22m R=3.53m
r/a=0.26 r/a=0.60
n,=2.58 x10'%/ m3 n,=1.80 x10°/ ms3
RMS(z, /n,) = 0.002 RMS(z,/n,) = 0.009
A =1.0cm A:r=0.9 cm
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How to improve the measurements

® Use SCHRADO?2 to calculate full wave scattering
® Horizontal launch of microwaves

® Interference with reflections from density cut off region

0.40

R (1)
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Improved comparisons with fluctuation measurements

® Simulate measurements assuming 2D scattering from Gaussian fluctuations

—assume ky, 0k ky, 0ky

R=3.25 [m]
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@ Want to input GYRO simulations of 7.¢(7) into SCHRADO3
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Summary

® Nonlinear GYRO simulations of transport and 71¢
over extended radial domains

® Found approximate agreement between simulations and measurements
of transport and 7e

® Not yet strong validation of model:

1. Uncertainties of measured profiles

2. Hypersensitivity of simulations to profiles

® Preliminary TGYRO runs to feedback on measured g;, ge, and I'e
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Interesting topics needing work

® Angular momentum simulations

— GYRO now simulates radial flow of parallel and perp angular momenta

® Reflectometry measurements

— 3D reflections from GYRO-simulated fluctuations momenta

® Electromagnetic effects

— ES easier, but EM effects expected, especially in core and in enhanced
confinement

® Test ITER predictions

— Predictions use models such as GLF23 need to be benchmarked
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