# **Testing Gyrokinetic Turbulence Simulations**

R. Budny UW, Madison, Feb 28, 2008

- Accurate transport predictions are needed for successful future tokamaks
- Nonlinear gyrokinetic simulations can predict turbulent-driven energy, momentum, and species transport and fluctuations
- Comparisons of simulations with measurements help verify (and validate) the simulations
- This talk describes tests of simulations of JET and DIII-D plasmas using the GYRO and TGYRO gyrokinetic codes
- Encouraging agreements are achieved
- Lots of work is needed



R. Budnv.

#### • TRANSP

- analyzes plasmas for transport and maps plasma profiles

- TRGK  $\equiv$  TRANSP-postprocessor  $\equiv$  GYRO-preprocessor
  - generates inputs for GYRO/TGYRO

### • GYRO

- time evolution of potential and distribution functions of kinetic species
- -3 spatial and 2 phase space dimensions
- TGYRO
  - runs GYRO in feedback mode
- SCHRADO2
  - Full-wave 2D microwave scattering from density cut-off region



## **GYRO** simulations

- GYRO solves standard Gyrokinetic Eq's with continuum methods
- Nonlinear runs to saturation of ITG/TEM turbulence ( $k_{\theta}\rho_s$  < 1.0)
- Kinetic electrons and 2 kinetic ion species (bulk and combined impurities)
- Extended radial domain
- Most runs in the electrostatic approximation
- Achieved mixed success simulating radial flows of energy, species, and toroidal angular momentum in DIII-D, JET, and TFTR plasmas
- Examples of simulations of transport and density fluctuations  $ilde{n}_e$ 
  - JET L-mode with  $B_{TF}$ =3.4T,  $I_p$ =2MA,  $P_{NB}$ =5.9MW,  $P_{RF}$  < 2MW
  - DIII-D L-mode with  $B_{TF}$ =2.2T,  $I_p$ =1MA,  $P_{NB}$ =2.6-5.4MW (co-balanced)



- L-mode heated by NBI and fundamental D-ICRH
- $B_{TF}=3.4T$ ,  $I_p=2.0MA$ ,  $\kappa=1.6$ ,  $\delta=0.2$ ,
- $\bullet$   $P_{nbi}=5.9MW$ ,  $P_{ICRH}$  < 2 MW,  $f_{GW}=0.3$ ,  $eta_n=0.45$



### • Measured profiles mapped by TRANSP



• Simulate extended radial domain to allow turbulence room to saturate

• Domain width > >  $\rho_s$  (ion sound speed gyro-radius)



### Approximate agreement for ion energy and angular momentum flows

- TRANSP analysis for ion energy and angular momentum flows
- GYRO runs in 4 overlapping radial regions for more accuracy



- Note discrepancies near core
- Some of the measured transport is neoclassical

## Approximate agreement for electron energy and species flows

#### • TRANSP analysis for electron energy and species flows



#### • Note discrepancies near core

• Hard to quantify uncertainty in flow measurements



## Sensitivity of predicted $q_i$ , $\Gamma_{\phi}$ to assumed $E_r$ flow shear

- Hypersensitivity to variations in plasma profiles
- Varied  $E_r$  flow shearing and up/down 20 % to study sensitivity



#### • Improvements in core region



R. Budny,

Testing Gyrokinetic Turbulence Simulations, Feb 28, 2008

8

## Sensitivity of predicted $q_e$ and $\Gamma_e$ to assumed $E_r$ flow shear

#### • Variation in $E_r$ flow has less effect in electron channels



#### • Small improvement in core region



### • Compare mode spectra at different radii



- Simulations very close to marginal near core
- Implies strong sensitivity to drive and suppression terms (plasma gradients and  $E_r$  flow shear)



- Very recent development by Ron Waltz and Jeff Candy (GA)
- TGYRO  $\equiv$  controller that calls and runs GYRO
- Starts with nonlinear GYRO, then shifts to feedback mode to match measured  $q_i, q_e$ , and  $\Gamma_e$  profiles
- Adjusts  $abla(T_i)$ ,  $abla(T_e)$ , and  $abla(n_e)$  pivoting at norm radius



- Very preliminary results for DIII-D L-mode
- Match  $q_i, q_e$ , and  $\Gamma_e$  profiles from TRANSP



• Need to check convergence: box size, grids, etc

## TGYRO feedback: altered plasma profiles

### ullet Results for $T_i$ , $T_e$ , and $n_e$ to match measured $q_i$ , $q_e$ , and $\Gamma_e$



- ullet Good agreement achieved by pivoting  $T_i$ ,  $T_e$ , and  $n_e$  profiles
- Are TGYRO fitted  $T_i$ ,  $T_e$ , and  $n_e$  consistent with measurements?

PPPL PRINCETON PLASMA

## ullet Results for $T_i$ , $T_e$ , and $n_e$ gradients to match $q_i$ , $q_e$ , and $\Gamma_e$



- Gradients about right at pivit point (r/a=0.5)
- Large excursions from measurements away from pivit point



- Jeff Candy improving feedback over large domain
  - Split radial domain into regions for different methods: neoclassical, TGLF, or nonlinear GYRO
  - Plasma profiles input as boundary at edge of simulation domain
- Desired future improvements
  - feedback to match more measured profiles:  $\Gamma_{\phi}$
  - feedback adjustment of more profiles:  $v_{tor}$ ,  $E_r$ , impurity profiles



- Integrate electron distribution to get  $ilde{n}_e$  in 3D and time
  - Use postprocessor to get  $ilde{n}_e(r, heta,\phi=0,t)$
  - Compute Root-Mean-Square along outer mid-plane (heta=0)
- Tunable microwave reflectometers operating in X-mode ( $E\perp B_{TF}$ )
  - TFTR: 132-140 GHz
  - JET: 92-96 and 100-106 GHz
- Measurements to compare with simulations:
  - Density fluctuation  $ilde{n}_e(r)$  RMS levels
  - Radial correlations of  $ilde{n}_e(r) ilde{n}_e(r')$  and correlation length  $\lambda_r$
  - Power spectra: Fourier Transform of  $ilde{n}_e(t) \ ilde{n}_e(t')$



### • Compute Root-Mean-Square along line-of-sight



- Both simulation and measurement are less than about 0.2%
- ullet No measurements for regions of large  $ilde{n}$



### Radial correlations also consistent with reflectometry

- ullet Correlation of  $ilde{n}_e(r_1,t)$  and  $ilde{n}_e(r_2,t)$
- $\lambda_r$  defined by  $\Delta r$  where correlation decreases below 1/e
- Magnetic axes at 2.97m and outboard separatrix at 3.85m





### Similar levels of agreement in another JET L-mode

### ullet Similar to previous shot, but $B_{TF}$ : 3.4 ightarrow 3.8 T



ullet Note smaller  $\lambda_r$  at higher  $B_{TF}$ 



### Animation

### $\bullet$ Plan to place two 2D animations of $\tilde{n}_e$ at R=3.22 and 3.55m here



GYRO Simulation of  $\tilde{n}_e$  in Jet 68733

| $\mathbf{R} = 3.22 \ \mathbf{m}$            | R = 3.53 m                                |
|---------------------------------------------|-------------------------------------------|
| r/a = 0.26                                  | r/a = 0.60                                |
| $n_e = 2.58 \times 10^{19} / \text{m}^3$    | $n_e = 1.80 \times 10^{19} / \text{m}^3$  |
| $\mathrm{RMS}(\widetilde{n_e}/n_e) = 0.002$ | $\text{RMS}(\widetilde{n}_e/n_e) = 0.009$ |
| $\lambda_r = 1.0 \ cm$                      | $\lambda_r = 0.9 \text{ cm}$              |



### How to improve the measurements

- Use SCHRADO2 to calculate full wave scattering
- Horizontal launch of microwaves
- Interference with reflections from density cut off region





## Improved comparisons with fluctuation measurements

• Simulate measurements assuming 2D scattering from Gaussian fluctuations

– assume 
$$k_x$$
,  $\delta k_x \, k_y$ ,  $\delta k_y$ 



• Want to input GYRO simulations of  $ilde{n}_e(r)$  into SCHRADO3

## Summary

- Nonlinear GYRO simulations of transport and  $\tilde{n}_e$ over extended radial domains
- $\bullet$  Found approximate agreement between simulations and measurements of transport and  $\tilde{n}_e$
- Not yet strong validation of model:
  - 1. Uncertainties of measured profiles
  - 2. Hypersensitivity of simulations to profiles
- Preliminary TGYRO runs to feedback on measured  $q_i$ ,  $q_e$ , and  $\Gamma_e$



• Angular momentum simulations

- GYRO now simulates radial flow of parallel and perp angular momenta

- Reflectometry measurements
  - 3D reflections from GYRO-simulated fluctuations momenta
- Electromagnetic effects
  - ES easier, but EM effects expected, especially in core and in enhanced confinement
- Test ITER predictions
  - Predictions use models such as GLF23 need to be benchmarked

