
Testing Gyrokinetic Turbulence Simulations
R. Budny

UW, Madison, Feb 28, 2008

• Accurate transport predictions are needed for successful future tokamaks

• Nonlinear gyrokinetic simulations can predict turbulent-driven

energy, momentum, and species transport and fluctuations

• Comparisons of simulations with measurements

help verify (and validate) the simulations

• This talk describes tests of simulations of JET and DIII-D plasmas

using the GYRO and TGYRO gyrokinetic codes

• Encouraging agreements are achieved

• Lots of work is needed
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Tools

• TRANSP

– analyzes plasmas for transport and maps plasma profiles

• TRGK ≡ TRANSP-postprocessor ≡ GYRO-preprocessor

– generates inputs for GYRO/TGYRO

• GYRO

– time evolution of potential and distribution functions of kinetic species

– 3 spatial and 2 phase space dimensions

• TGYRO

– runs GYRO in feedback mode

• SCHRADO2

– Full-wave 2D microwave scattering from density cut-off region
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GYRO simulations

• GYRO solves standard Gyrokinetic Eq’s with continuum methods

• Nonlinear runs to saturation of ITG/TEM turbulence (kθρs < 1.0)

• Kinetic electrons and 2 kinetic ion species (bulk and combined impurities)

• Extended radial domain

• Most runs in the electrostatic approximation

• Achieved mixed success simulating radial flows of energy, species,

and toroidal angular momentum in DIII-D, JET, and TFTR plasmas

• Examples of simulations of transport and density fluctuations ñe

– JET L-mode with BTF =3.4T, Ip=2MA, PNB=5.9MW, PRF < 2MW

– DIII-D L-mode with BTF =2.2T, Ip=1MA, PNB=2.6-5.4MW (co-balanced)
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Example of JET shot

• L-mode heated by NBI and fundamental D-ICRH

• BTF = 3.4T , Ip = 2.0MA, κ = 1.6, δ = 0.2,

• Pnbi = 5.9MW , PICRH < 2 MW, fGW = 0.3, βn = 0.45
GYRO simulation time
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Example of GYRO inputs

• Measured profiles mapped by TRANSP
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• Simulate extended radial domain to allow turbulence room to saturate

• Domain width > > ρs (ion sound speed gyro-radius)
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Approximate agreement for ion energy and angular momentum flows

• TRANSP analysis for ion energy and angular momentum flows

• GYRO runs in 4 overlapping radial regions for more accuracy
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• Some of the measured transport is neoclassical



Approximate agreement for electron energy and species flows

• TRANSP analysis for electron energy and species flows

0.2 0.3 0.70.60.5

0

0.4

1

2
Flo

w 
[M

W]

r / a

Electron Energy Flow

jet
_6

87
33

B0
6_

08
K_

10
K_

11
K_

12
K_

13
K_

14
K_

15
K_

16
K_

ele
c_

en
erg

y_
sp

ec
ies

_fl
ow

TRANSP analysis

GYRO simulations

0

0.1

0.2

Flo
w 

[M
W 

/ k
eV

] Electron Species Flow TRANSP analysis

GYRO simulations

Outboard major radius [m]
3.63.53.43.33.2 3.7

q
e

Γ
e

• Note discrepancies near core

• Hard to quantify uncertainty in flow measurements
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Sensitivity of predicted qi, Γφ to assumed Er flow shear

• Hypersensitivity to variations in plasma profiles

• Varied Er flow shearing and up/down 20 % to study sensitivity
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• Improvements in core region
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Sensitivity of predicted qe and Γe to assumed Er flow shear

• Variation in Er flow has less effect in electron channels
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• Small improvement in core region
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Why are simulated flows low in interior, high outside?

• Compare mode spectra at different radii
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• Simulations very close to marginal near core

• Implies strong sensitivity to drive and suppression terms

(plasma gradients and Er flow shear)
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TGYRO simulations

• Very recent development by Ron Waltz and Jeff Candy (GA)

• TGYRO ≡ controller that calls and runs GYRO

• Starts with nonlinear GYRO, then shifts to feedback mode

to match measured qi, qe, and Γe profiles

• Adjusts ∇(Ti), ∇(Te), and ∇(ne) pivoting

at norm radius
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TGYRO feedback to match transport

• Very preliminary results for DIII-D L-mode

• Match qi, qe, and Γe profiles from TRANSP
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• Need to check convergence: box size, grids, etc
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TGYRO feedback: altered plasma profiles

• Results for Ti, Te, and ne to match measured qi, qe, and Γe

• Good agreement achieved by pivoting Ti, Te, and ne profiles

• Are TGYRO fitted Ti, Te, and ne consistent with measurements?
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TGYRO feedback: altered plasma gradients

• Results for Ti, Te, and ne gradients to match qi, qe, and Γe

• Gradients about right at pivit point (r/a=0.5)

• Large excursions from measurements away from pivit point
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TGYRO improvements

• Jeff Candy improving feedback over large domain

– Split radial domain into regions for different methods:

neoclassical, TGLF, or nonlinear GYRO

– Plasma profiles input as boundary at edge of simulation domain

• Desired future improvements

– feedback to match more measured profiles: Γφ

– feedback adjustment of more profiles: vtor, Er, impurity profiles
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Fluctuation measurements help validate GYRO

• Integrate electron distribution to get ñe in 3D and time

– Use postprocessor to get ñe(r, θ, φ = 0, t)

– Compute Root-Mean-Square along outer mid-plane (θ = 0)

• Tunable microwave reflectometers operating in X-mode (E ⊥ BTF )

– TFTR: 132-140 GHz

– JET: 92-96 and 100-106 GHz

• Measurements to compare with simulations:

– Density fluctuation ñe(r) RMS levels

– Radial correlations of ñe(r)ñe(r
′) and correlation length λr

– Power spectra: Fourier Transform of ñe(t) ñe(t
′)
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Simulated ñe consistent with reflectometry

• Compute Root-Mean-Square along line-of-sight
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• Both simulation and measurement are less than about 0.2%

• No measurements for regions of large ñ
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Radial correlations also consistent with reflectometry

• Correlation of ñe(r1, t) and ñe(r2, t)

• λr defined by ∆r where correlation decreases below 1/e

• Magnetic axes at 2.97m and outboard separatrix at 3.85m
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Similar levels of agreement in another JET L-mode

• Similar to previous shot, but BTF : 3.4 → 3.8 T

1 / e = 0.37

Radial correlation function (Pearson method)

Reflectometry measurements
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• Note smaller λr at higher BTF
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Animation

• Plan to place two 2D animations of ñe at R=3.22 and 3.55m here

= 0.9
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How to improve the measurements

• Use SCHRADO2 to calculate full wave scattering

• Horizontal launch of microwaves

• Interference with reflections from density cut off region
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Improved comparisons with fluctuation measurements

• Simulate measurements assuming 2D scattering from Gaussian fluctuations

– assume kx, δkx ky, δky
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• Want to input GYRO simulations of ñe(r) into SCHRADO3
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Summary

• Nonlinear GYRO simulations of transport and ñe

over extended radial domains

• Found approximate agreement between simulations and measurements

of transport and ñe

• Not yet strong validation of model:

1. Uncertainties of measured profiles

2. Hypersensitivity of simulations to profiles

• Preliminary TGYRO runs to feedback on measured qi, qe, and Γe

R. Budny, Testing Gyrokinetic Turbulence Simulations, Feb 28, 2008
PRINCETON PLASMA

PHYSICS LABORATORY

PPPL 23



Interesting topics needing work

• Angular momentum simulations

– GYRO now simulates radial flow of parallel and perp angular momenta

• Reflectometry measurements

– 3D reflections from GYRO-simulated fluctuations momenta

• Electromagnetic effects

– ES easier, but EM effects expected, especially in core and in enhanced

confinement

• Test ITER predictions

– Predictions use models such as GLF23 need to be benchmarked
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