

Supported by

Office of

Science

Varying the pre-discharge lithium wall coatings to alter the characteristics of the ELM-free H-mode pedestal in NSTX

Evolution of ELM-free discharges with time & Li

- ELM-free discharges evolve with time
	- •Impurities & density accumulate
	- •How do surface conditions evolve?
- \bullet ELM-free discharges evolve with Li
	- • 2008 Li scan + just analyzed 2009 data to fill in gaps
- • Evolution of many different characteristics
	- •Recyling: D_{α} , edge neutral pressure
	- \bullet Global: average density, stored energy, normalized beta
	- •Transport and confinement
	- •Pedestal structure

ELM-free H-mode discharges evolve with time

- Longer discharges
- \bullet Lower NBI to avoid β stability limit
- Slower **growth of electron density**
- Same stored energy w/ less heating
	- Improved confinement
- H-factor 40% higher
- Same P_{rad} but keeps growing after 0.5 s
	- **Impurity buildup w/o ELMs**
- ELM-free, reduced

Pedestal variations small despite global temporal evolution

Low-recycling conditions with lithium coatings lastthroughout NSTX discharges

- \bullet Peak D $_{\alpha}$ outer divertor does $_{\alpha}$ emission at not increase toward the end of the discharge
	- – $-$ And in fact often decreases
	- – Without lithium, recycling increases throughout shot
	- **Hart Committee** Inferred PFC particle recycling coefficient (R_p) is ~ constant

5

SOLPS modeling indicates recycling coefficient remains low throughout low-δ **discharge**

- • Measurements show little change during shot
	- Points/dashed lines are measurements
	- SOI n T Paakl SOL n
flux D $\mathsf{SOL}\ \mathsf{n}_\mathrm{e},\ \mathsf{T}_\mathrm{e}\ \mathsf{Peak}$ heat flux, D_α all ~constant
- • Constraints in modeling*:
	- Fitted n, T profiles
	- Peak q_{div} (T_esep)
	- Peak D $_{\alpha}$ (R_p)
- • **Inferred Rp remains low**
	- **0.89, 0.90, 0.87**– **Without Li: Rp=0.98**
- ⇒ Li pumping appears to
⊃ persist over these persist over these pulse lengths (~ 1s)

NSTX *J Canik, JNM 415, S409 (2011)

PSI 2012 P3-009 Evolution of ELM-free pedestal Boyle 24 May 2012

Plasma characteristics change (mostly improve) nearly continuously with increasing lithium evaporation

- • Global characteristics change
	- **Hart Committee** Recycling: D_{α} $_{\alpha}$ emission declines
	- **Hart Committee** Edge neutral pressure decreases
	- –Line average density at fixed time declines
	- –Peak W_{MHD}, $β_N$ $_{\textrm{\tiny{N}}}$ increase at constant P_{NB}
	- **Hart Committee** Confinement (H-factor) increases
- \bullet Pedestal characteristics change
	- **Hart Committee** Density & pressure pedestals get wider and shift away from separatrix
	- **Hart Committee** Peak density gradient reduced
	- **Hart Committee Committee** Temperature and pressure increase at pedestal top
	- –Density and pressure decrease at edge
	- –Ion temperature and rotation increase

• **Evolution with lithium continues after ELM suppression**

Dα **decreases and lower divertor Li-I increases with increasing lithium evaporation**

Maingi NF 2012

Global plasma performance improves nearly continuously with increasing lithium

- Neutral pressure from fast ion gauge evaluated at fixed time (t=0.3 sec)
- Line-average density from Thomson $n_{\rm a}$ ^{TS} evaluated at fixed time $(t=0.4 \text{ sec})$
- W_{MHD} , β_N , and H_{97L} (global $\tau_{\sf E}$, not thermal) $\;$ evaluated at time of peak W_{MHD}
	- P_{NBI} varies: 4 MW for ELMy, 1.2-3 MW ELM-free
- 2009 data fills gap nicely

PSI 2012 P3-009 Evolution of ELM-free pedestal Boyle 24 May 2012

9

Density & pressure widths increase with lithium

Density & pressure gradient peaks move farther from separatrix with lithium

Density gradient peak gets smaller with lithium

Temperature and pressure increase with lithium at pedestal top,Density and pressure decrease with lithium at edge

Ion temperature and rotation increase with lithium

What limits pedestal growth &sets relationship between width and height ?

ELM-free pedestal evolves with Li, ~steady w/ time

- ELM-free discharges evolve w/ time
	- **Hart Committee** Impurities, Average density increasing
	- **Hart Committee** Might expect pedestal to evolve with time because of above, plus:
		- Fluence on Li degrading surface
			- No significant saturation observed in these discharges
		- Natural growth of transport barrier with time
			- Normally limited by peeling-ballooning limit (ELMs), none here
	- **Hart Committee Committee** $-$ Pedestal relatively steady with time
- \bullet ELM-free discharges evolve w/ increasing Li
	- **Hart Committee Committee** Indicators of recycling decrease continuously with Li
	- –Confinement increases
	- –Pedestal structure evolves w/ Li
- \bullet What limits pedestal evolution?
	- –Not sure, but it seems to be controlled by the quantity of Li!

16

Thank you

NSTX lithium wall coatings induce ELM-free H-mode

- Longer discharges
- Lower NBI to avoid β stability limit
- Slower **growth of electron density**
- Same stored energy w/ less heating
	- Improved confinement
- H-factor 40% higher
- Same P_{rad} but keeps growing after 0.5 s
	- Higher P_{rad} /P_{heat}
- **Impurity buildup** w/o ELMs
- ELM-free, reduced divertor recycling

NSTX lithium wall coatings induce ELM-free H-mode

- Longer discharges
- Lower NBI to avoid β stability limit
- Slower **growth of electron density**
- Same stored energy w/ less heating
	- Improved confinement
- H-factor 40% higher
- Same P_{rad} but keeps growing after 0.5 s
	- Higher P_{rad} /P_{heat}
	- **Impurity buildup** w/o ELMs
- Partly ELM-free, reduced recycling
- ELM-free, reduced divertor recycling

Boyle PPCF 2011

NSTX lithium wall coatings induce ELM-free H-mode

-
- Lower NBI to avoid β stability limit
- Slower growth of electron density
- Same stored energy w/ less heating
	- Improved confinement
- H-factor 40% higher
- Same P_{rad} but keeps growing after 0.5 s
- Higher P_{rad} /P_{heat}
- Impurity buildup w/o ELMs
- **Maingi PRL 2009** ELM-free, reduced divertor recycling

Pedestal variations small despite global temporal evolution

NSTX

Ion profiles change more

CD NSTX

PSI 2012 P3-009 Evolution of ELM-free pedestal Boyle 24 May 2012 ²²

Ion profiles change more

Divertor recycling and far edge cross-field transport quantified with data-constrained SOLPS modeling

- • SOLPS (B2-EIRENE: 2D fluid $plasma + MC$ neutrals) used to model NSTX experimental data
	- •Iterative Method
	- ← Neutrals, impurities contributions
	- \checkmark Recycling changes due to lithium

Increasing lithium gradually suppresses ELMs

- \bullet Not quite monotonic – ELMs returned after off-normal events
- \bullet All discharges in 2009 scans were ELM free with ~500 mg Li

Boyle PPCF 2011

As lithium evaporation increases, transport barrier widens,pedestal-top χ**ereduced**

Global and electron confinement, τ **_E** and τ _{Ee}, increase with **lithium evaporation, due mainly to reduction of** χ**eat edge**

•**Evaluated with TRANSP at time of peak stored energy, W_{MHD}**

Maingi PRL 2011

In ELM-free discharges, Li has modified edge density profile

- •ELM-free n_e and p_e pedestals are wider, $\bm{{\mathsf{p}}}_\text{e}$ pedestals higher
- • ELMy profiles similar w/ or w/o Li
- • T_e clamped for ψ_{N} > 0.95 **N**
- P_i shows less •change

Boyle PPCF 2011

• ELMy and ELM-free pressure gradient peaks same size, but ELM-free wider and shifted inward

Modified Tanh fits used to characterize pedestal structure

- \bullet Compare pedestal parameters from all the discharges in the scan
- TS and CHERS data from varying windows within 320-620 ms
- \bullet Larger dataset than in 2011 PPCF paper
	- –Includes 2009 data
	- **Hart Committee** Fit more 2008 profiles using upgraded pyTools
	- **Hart Committee** Now with error bars

Boyle PPCF 2011

Peeling-ballooning modes believed to cause ELMs

- Stability determined by edge current and pressure gradient
- \bullet Crossing stability boundary causes current driven peeling modes or pressure driven ballooning modes.
- \bullet In this experiment, peak gradient magnitudes are **not** key parameter for ELM stability
- \bullet Location of the stability boundary depends on location of peak gradients
	- –Farther from separatrix is stabilizing

Typical Stability Diagram

Pressure gradient

30

Distance from peeling stability boundary increases with Li

- ELITE calculations show NSTX discharges are closest to peeling stability boundary
- \bullet ELMy discharges are right at boundary
- Stabilization occurs when boundary moves up and left
- \bullet Reduced gradients from 95-100% -> reduced current -> reduced instability drive

Boyle PPCF 2011

Pressure pedestal increases with lithium

Gradients increase with lithium at pedestal top,ne, pe, ptot gradients decrease with lithium at edge

Density profile modification due to lithium pumping isthe key in changing edge stability

Rotation in ELM-free discharges dependent on beam power

Backup Backups

Discharge evolutions?

NSTX

LiTER deposition has toroidal and poloidal variation

- **30cm distance from LiTER to surface**
- **in NSTX, x-axis should be multiplied by 10x**
- **For ROSP~0.8m, deposition 1/3 less than max.**

What causes this nearly continuous dependence of recycling, transport, and stability on increasing lithium?

- • **Nominal evaporation was ~ 150nm at the outer strikepoint at ~0.8m at the lowest 110mg rate**
	- **Toroidal variation gives ~ 60nm minimum deposition**
	- -**Maximum deposition ~ 9x higher, or 500-1400nm! (900 mg)**
- • **Surprising because implantation (pumping) depth expected to be < 10 nm**
	- **Brooks (JNM 2005) computed an implantation depth of 100 nm for 0.5 keV < Ei < 2 keV**
	- **Krstic (ISLA 2011) computed an implantation depth of 1 nm for Ei < 30 eV**
	- **Simple extrapolation for 150-200 eV (about 5*Tediv) yields implantation depth < 10 nm**
	- **These are all 'ideal' calculations - actual surface chemistry of reactive lithium may alter these results**

A few hypotheses

- **Lithium intercalating into bulk graphite pores?**
	- **No evidence of this from post-mortem tile analysis by Wampler; lithium confined to first µm of surface**
- **Lithium evaporation highly asymmetric?**
	- **In-situ quartz deposition monitors seem to confirm modeling by Zakharov: toroidal variation at most a factor of two, radial distribution is Gaussian with a 230 spread**
- **Lithium pumping complex - surface chemistry?**
	- **In-situ MAPP from JP Allain, and off-site measurements**
- \bullet **Non-divertor PFCs critical in this? (longer time scales)**
- \bullet **Electric fields or other effects increase ion impact energy, and thus implantation depth (J. Harris)**
	- $-$ How to test this?

What causes this nearly continuous dependence of recycling, transport, and stability on increasing lithium?

Deuteron implantation depth $<$ 10 nm from simple calcs.

- T_e^{div} < 30 eV, E_i < 5 T_e^{div} , used PC version of TRIM

- Stopping distance computed for Li compounds on graphite
- Minimum evaporation (\sim 100 mg): nominal film thickness \sim 30nm at the outer strike point at the lowest rate, i.e. at least 3x higher than the implantation depth
	- Toroidal average actually \sim 80 nm minimum, i.e. $> 8x$ higher
- Maximum evaporation (~900mg): nominal film thickness \sim 9x higher than minimum, i.e. 27x greater than implantation depth!
- These are all 'ideal' calculations surface chemistry of reactive ۰ lithium could alter these results

Boyle PPCF 2011

Te and P^e profile peaking factors decrease with increasing lithium

- • n_e profile peaking factor first increases as ELM frequency goes down, and then decreases as ELMs disappear and profile becomes hollow
- • T_e and P_e profile peaking factors decrease ~ continuously, good for MHD stability

Maingi PRL 2011

ELM evolution with shot number

Quiescent phases increase with increasing lithium coating

Density profile modification due to lithium pumping isthe key in changing edge stability

 $\textcolor{blue}{\mathbb{D}}$ NSTX

Density and pressure pedestals wider in ELM-free plasmas

- • $\mathsf{n}_{\mathsf{e}},\, \mathsf{p}_{\mathsf{e}},\, \mathsf{p}_{\mathsf{tot}}$ pedestal widths correlated with Li
- \bullet T_{e} width does not _e pedestal
.... separate ELMy from ELM-free and is not correlated with Li

Li deposited since previous discharge [mg]

Peak density and pressure gradients farther from separatrixin ELM-free plasmas

- • $\mathsf{n}_{\mathsf{e}},\, \mathsf{p}_{\mathsf{e}},\, \mathsf{p}_{\mathsf{tot}}$ symmetry points correlated with Li
- \bullet T_{e} point does not $_{\rm e}$ symmetry separate ELMy from ELM-free and is not correlated with Li

Li deposited since previous discharge [mg]

Peak gradients magnitudes do not separateELMy from ELM-free

 \bullet Peak gradient magnitudes may be correlated with Li

Li deposited since previous discharge [mg]

ELM Frequency plots

Widening of pedestal widths also correlates with movement of the peak gradient locations farther from separatrix

Edge profile & stability analysis procedure

- • EFIT equilibrium reconstruction code run at Thomson scattering (TS) profile times for flux (ψ_M) mapping
- • Profile fitting with multiple time slices
	- ELMy profiles from last 20-70% of ELM cycle selected
	- ELM-free profiles used in 100-200 msec windows
- \bullet Free boundary kinetic EFITs run to match pressure & current profiles
	- Edge bootstrap current computed from Sauter neoclassical model
		- No direct measurement \longrightarrow biggest uncertainty
	- Stability evaluated with PEST code
- \bullet Fixed boundary kinetic EFITs run with variations of edge pressure gradient and edge current
	- Stability boundary evaluated with ELITE code

54

EFITs require setting outboard Te mapping of Thomson scattering profiles_e at separatrix for flux
......

Multiple TS profiles combined for better edge resolution

- ELM free shots combined over ~100 ms window
- ELMy shots combined using ELM syncing $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ only use data from end of ELM cycle
- CHERS, magnetics data also combined

Kinetic EFITs reconstruct equilibria using additional constraints

- Constrained by measured P, J profiles
	- Bootstrap current calculated from neo-classical model

$$
J_{BS} \!\propto\! \nabla n, \nabla T
$$

Different types of ELM cycles can be envisioned

- ELMs triggered by peeling-ballooning modes, ELM size correlates to depth of most unstable mode and to location in parameter space
- Pressure rises up on transport time scale between ELMs, current rises to steady state value more slowly
- Predict changeover in ELM behavior when $J_{\text{ped}}< J_{\text{peel}} \Rightarrow$ strong density and shape dependence

Future Work

- \bullet Calculate stability while varying model profiles
- Why are the ELMs not stabilized by diamagnetic drift, as in higher \bullet aspect ratio tokamaks?
	- –Low growth rates: $\gamma_{lin}/\omega_A \geq 1\%$ unstable experimentally
	- Should he stabilized by Should be stabilized by diamagnetic drift: $\gamma_{lin}/(\omega^*/2) \leq 5-10\%$
- Why do ELMs go away the way they do i.e. with increasing periods of quiescence?
	- – Details of density/pressure profile modification may be beyond present ability to measure experimentally
		- Additional Thomson channels installed in upgrade
		- Better edge resolution could make multiple TS times unnecessary
	- How do profiles and stability evolve through ELM cycle?

