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Li predicted, demonstrated to improve fusion 

 Liquid metals could solve many wall issues 

– Can’t break/crack, erosion not issue so can be thinner 

– Substrate only has to handle heat & neutrons, not plasma 

– Can flow or evaporate to handle heat, remove tritium 

» Liquid lithium not addressed in this poster 

 Low Recycling due to chemical bonding of H/D 

– Improved density control 

– Improved energy confinement in TFTR, NSTX, CDX-U 

– Reduced edge thermal losses, gradients, turbulence? 

 Reduce impurities 

– Li relatively benign: Low-Z and low first ionization potential 

– Sputtering decreases with higher edge Ti for Ti > 200 eV 

– Getters other impurities from residual gases 

– Buries surface impurities (as solid) or dissolves (as liquid) 
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NSTX had very little core Li contamination 

 Core Li concentration <0.1% 
– Up to 1.3 kg of Li in vessel 

– Li sputtering yield >> C 

 C accumulation up to 10%  
– Got worse as Li suppressed 

ELMs & improved confinement 

 Determined that C impurity 
accumulates & pushes out Li 
via neoclassical transport 

– DLi would be 40-80% less w/o C 

– Prompt Li redeposition and low 
SOL penetration also important 

 Understanding based on 
careful profile measurements 
& modeling 

 TRANSP, NCLASS, & MIST 

 

 

Ref: F. Scotti, Nucl. Fusion. 53 (2013) 083001 

exp/100 

exp 

exp/2 

exp/10 



4 

Experience w/ Li on C in NSTX raised questions 

 Will Li levels stay low in all-metal machine? 
– NSTX <0.1% Li, but largely pushed out by C 

– Eventually NSTX-U & future devices -> all-metal walls (no bulk C) 

– What if much less C to push out Li? 

 Will Li really reduce impurities? 
– Sputtering and evaporation higher than other materials 

» Increases strongly with surface temperature 

– Li could potentially bring more impurities to surface by gettering, 
leaching from substrate, segregating to surface of static liquid 

– NSTX saw 3x more C in core after Li coatings (ELMs suppressed) 

– What happens w/ different impurity source? (Li on all-metal vs Li on C) 

 Neoclassical worked in NSTX, what about LTX? 
– Large, carbon, diverted, NBI heating & fueling vs small SS limiter ohmic 
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Use LTX to study Li & C transport in all-metal ST 

 Stainless steel PFC (no bulk C)  

– Can be entirely coated w/ Li 

 4 shells cover ~80% of surface 

– Heatable to ~350 °C  for liquid Li 

 

      

Operational Parameters 

Major Radius  R0=0.40 m 

Minor Radius a=0.26 m 

Toroidal Field BT=0.18 T 

Plasma Current Ip< 85 kA 

Plasma Duration t< 50 ms 

Shell is 1.5 mm stainless steel liner on 1 cm 
copper, for good thermal conductivity and 
lithium resistance. 
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 New lithium coating systems developed 

– Electron beam evaporation of lithium 
inventory in lower shell 

– Systems are cooled and discharges 
initiated in less than an hour 

» Or wait until next day 

 

 

 

 

 

 

Lithium pool is imaged 

in a molybdenum mirror 

during beam heating. 
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     Electron beam evaporation 

• Li drips from heated crucible, 

creating Li pool in lower shell 

• Electron gun targets (preheated) 

Li pool, evaporation in vacuum 
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55 reproducible discharges w/ solid Li coatings 

 New loop voltage 
programming to 
keep Ip ~ constant 

 Large gas puff 

– Study plasma w/o 
fueling 

– Boost spectroscopic 
signals 

 Smoothed median 
waveforms input to 
TRANSP 
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 15-20 J single pulse Ruby laser 

 11 views, iCCD spectrometer 

 Multiple shots averaged 

– TS time scanned, repeated 

– Spectra summed before fitting 

– Sum nearest neighbors (±1 ms) 

 pe constrains PSI-TRI magnetic 
equilibrium reconstructions 

– C. Hansen Thesis, U. Wash 2014 

 Smoothing spline fits  

– Interpolate to finer radial grid 

– Extrapolate to magnetic axis 

 ne normalized w/ 1 mm 
interferometer 

– Assumed to be flux function, 
mapped to LFS w/ equilibrium 

– Good match to reflectometer 

Te profiles flatten at edge after fueling ends 
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TS profiles measured throughout 15 ms “flattop” 

 Centrally peaked profiles 

 Te flattens, increases after fueling ends (t > 472 ms) 

– Hot, low density edge suggests low-recycling regime 

– See P3.45 “Flat temperature profiles and the implications of 
very high edge temperatures in LTX” by R. Majeski 

 Profiles input to TRANSP, used for impurity profiles 
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Impurity profiles from HAL visible spectrometer 

 13 toroidal views 
– High-throughput, Accurate-

wavelength, Lens-based (HAL) 

– Li III 450 nm, C III 465 nm,      
C IV 580 nm, O V 650 nm 

 Smoothing spline to 
log(Br) for inversion 

– Edge views vignetted, 
spectra overlap other lines 

– Brightness forced to drop at 
edge 

 TS profiles interpolated in 
time, averaged over 2.5 ms 
HAL frames for ADAS 
rates 
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Simple model used for unmeasured charge states 
 HAL does not measure all impurity charge states 

– Li3+ needs NBI, other high states in VUV, not visible 

– Low states emit near edge, hard to invert profiles 

 In core, extend peak measured density 

Fill in w/ next highest state (Li3+, C4+, O5+) 

 In edge, extend peak concentration 

– Fill in w/ next lowest state (Li+, C+, O3+) 

 Uncertainty weighted time interpolation & 
gaussian smoothing (σt=0.5 ms) of concentration 
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2-4 % Li, 0.6-2% C, 0.4-0.7% O, Zeff<1.2 
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Impurity collisions dominated by main ions 

 Impurity strengths α<0.2 through discharge, total<0.5 
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LTX contrasts with NSTX, where C dominated 

 Carbon impurity strength αC>2, Lithium αLi<0.02 



15 

MIST runs w/ NCLASS D & v don’t match data 

 NCLASS run using 
TRANSP output 

 D & v similar across 
species, D ~ 2 m2/s  

– Contrast to NSTX 

 Time-independent 
MIST simulations 
using NCLASS D & v 
do not match shapes 
of measured profiles 

– Show most impurities 
in high charge states 
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Varying D and v can match measured profiles 

 Non-linear fits vary 
MIST D & v to match 
measured charge state 
profiles 

– Many different D & v 
profiles can fit data 

– Need D>10-15 m2/s 

– v>0 (outward) in most 
fits, can have v=0 

» NCLASS: v<0 (inward) 

– Simple charge model 
plausible but neither 
confirmed/refuted 
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Summary & Conclusions 

 Impurity and electron profiles measured in LTX 

– Solid Li coatings on all-metal PFCs surround ~ entire plasma 

– Refurbished TS and new HAL spectrometer measurements 

– Te flattens w/ hot edge after fueling terminated 

– Simple model used to estimate unmeasured charge states 

» ~2-4% Li, 0.6-2% C, 0.4-0.7% O, Zeff<1.2 

» Li levels low, >>NSTX; C levels low w/o C PFCs, <<NSTX 

» O levels low despite solid Li coatings oxidizing to Li2O 

 Impurity transport assessed w/ TRANSP, NCLASS, MIST 

– All impurity transport dominated by collisions w/ main H ions 

– Impurity strength, NCLASS D & v similar across species 

– MIST time-independent simulations w/ NCLASS D & v do not 
match measured profiles, need D > 10-15 m2/s (>>DNC~ 2 m2/s ) 

» Contrast to NSTX, where C “pushed out” Li, DLi >> DC, 
impurity transport well described by neoclassical 
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Future Work 

 Enhance analysis to better account for unmeasured states 

– Use hard-to-invert low charge state measurements as constraints 

– Incorporate VUV spectrometers, filterscopes 

– Improve profiles; use reflectometer, Langmuir probes, HAL Ti 

– Time-dependent MIST (STRAHL?) simulations 

 Extend analysis to other experiments on LTX 

– Full/partial liquid Li walls, Li coatings w/ more surface impurities 

– Different programming of field coils, loop voltage, and fueling  

 Upgrades in LTX-β will enable improved transport studies 

– Neutral beam core fueling & heating, higher current & fields, 
longer discharges, between-shots Li coating 

– CHERS, improved spectroscopy views, upgraded & edge TS, 
profile bolometer, time-resolved VUV 


