Plasma – Surface Interactions in a Monte Carlo Neutral Transport Code

What’s Not in the Model

D. P. Stotler
Princeton Plasma Physics Lab
Outline

- Motivation
- Background
- Some Existing Integrated Models
- What Are We Missing?
- Conclusions
What Do We Need to Develop a Predictive Simulation Capability?

- That’s a long list!
- But, PSI models have not received as much attention as other areas.
- Yet, have wide agreement that core plasma performance sensitive to “wall conditions” ↔ recycling.

- Best discharges obtained with “conditioned walls”,
 - E.g., via discharge cleaning, B or Li coatings,
 - TFTR Li, pellets & DOLLOP, is an extreme example.
Incomplete PSI Model Hinders Other Physics Work

- Particle balance analysis more complicated than power balance,
 - Instead of a “check” on analysis, particle balance used to infer wall sources & sinks!
 - In a code, power balance more complicated.
- Diagnostic interpretation uses emission rates to infer particle fluxes,
 - But, the relation between them depends on H / H₂ fraction,
 - & on neutral kinetic distribution, e.g., energy & rotational / vibrational excitation of H₂.
 - PSI model impacts all of these.
Model Currently Used in DEGAS 2 is Relatively Simple

- DEGAS 2 work has focused on H-related physics,
 - Sputtering, erosion, redeposition & other impurity processes well covered by others here.
- Backscattering ↔ reflection [Eckstein 1991],
 - In general described by \(P(E_{\text{in}}, \theta_{\text{in}}; v, \alpha, \phi) \).
 - Codes like TRIM have been used to generate such data,
 - Stored in “Bateman” format.
 - But, much simpler models also used,
 - E.g., \(R_n(E_{\text{in}})f(\theta_{\text{in}}) \), \(R_E(E_{\text{in}})f(\theta_{\text{in}}) \) in DEGAS’s refl.dat; used with outgoing cosine distribution.
- Absorption
 - Specified as a fraction of incident flux,
 - “Recycling coefficient” can vary in space.
- Desorption
 - In steady state, everything else!
 - Thermal energy distribution \((T_{\text{wall}}) \),
 - Cosine or Maxwell flux angular distribution.
Can We Do Better Now?

A predictive modeling capability will require more detail,
- Particularly to simulate ITER,
 - Longer pulse, higher heat & particle fluxes.

But, don’t think we want an MD model of every atom in vacuum vessel!
- Can we summarize material state with a modest number of added parameters?
- Probably need some sort of reduced model based on that set since high dimension tables difficult to generate, store, & search.
There Have Already Been Attempts to Do Just This! Integrated Models

1. [Hillis 2001] used coupled EIRENE – WDIFFUSE to analyze JET D → H exchange experiments.
2. [Mioduszewski 2001] examined space & time dependent recycling by combining model for D trapping with DEGAS-computed fluxes.
3. [Warrier 2004] combined empirical formulas for several PSI processes into single suite of subroutines & added 1-D heat diffusion equation to allow T_{wall} to be evaluated consistently.
What Else Are We Missing?

1. Low E_{in} Limit of Reflection
2. Recycling Kinetics
3. Sheath Physics
4. Changes in Material State
5. Liquid Surfaces
6. Synergistic Effects
7. Diagnostics & Experimental Data
1. What is Low E_{in} Limit of Reflection?

- [Eckstein 1991] points out that some BCA simulations yield, incorrectly, $R_n \rightarrow 1$ at low E_{in},
 - Rather, R_n should decrease for $E_{in} \lesssim 3$ E_{sbe}.
- But, [Vietzke 2002] argues that incident energy unlikely to be completely absorbed by phonons & that R_n should $\rightarrow 1$ below 1 eV,
 - Shows supporting experimental data.
- Which is it???

- [Vietzke 2002] describes three H₂ desorption processes,
 1. Thermal: cosine at T_{wall}
 2. Prompt desorption following recombination of adsorbed H: cosine at 4 T_{wall}, some vibrational excitation,
 3. Recombination of incoming & adsorbed H: incoming energy goes into H₂ translational, vibrational, rotational energy.

- [Brezinsek 2002] demonstrated T_{wall} dependence of H / H₂ fraction in recycled flux,
 - Also: evidence for vibrationally excited H₂ coming from surface.

- What about charge state distribution?
 - Not all neutral [Ehrenberg 1996], [Meyer]!
3. Sheath Physics Determines Ion Impact

Energy & Angle

- DEGAS 2 model is relatively simple,
- Canonical references: [Stangeby 1986], [Chodura 1986].
- More detailed models exist,
 - Particle Trajectories [Cohen 1998],
 - Sheath structure in highly inclined field [Chodura 1986], [Riemann 1994].
- Secondary electron effects?
 - Straightforward to include [Stangeby 1986],
 - Determined by material properties,
 - More detailed discussion: [Schou 1996].
4. What Phenomena Impact the Material State?

- Wall conditioning: “bake-out” or “discharge cleaning” ⇒ reduced H concentration,
 - E.g., [Causey 2002], [Hillis 2001], [Ehrenberg 1996]
- Coatings intended to absorb H & lower impurity influx,
 - Most common now: B, Be, and Li,
 - E.g., [Causey 2002]
- Changes in surface structure (“roughness”) or phase due to erosion, redeposition, irradiation,
 - E.g., [Federici 2001]
 - Even more complicated in presence of > 1 PFC material, as in ITER.
Some Examples: Changes in Absorption

- [Ohya 2001], [Golubeva 2003], (probably many others) examined impact of C & W layers on reflection & trapping,
 - [Ohya 2001] also considered dynamic effects.
- Modifications of trapping character by energetic He ion irradiation, e.g. [Nagata 2003],
- [Atsumi 2003] considered impact of neutron irradiation on H retention & diffusion in C,
 - Experimental data & proposed model.
5. Do Liquid Surfaces Need to Be Modeled Differently?

- Variety of configurations:
 - Thin films or coatings,
 - Thick (> 1000 Å) surfaces (e.g., CDX-U),
 - Flowing liquid.
- [Bastasz 2001] covers some relevant issues:
 - Slightly different E_{sbe} has small impact on sputtering,
 - But, near surface density stratification could have significant effect,
 - Evaporation must be considered,
 - Trapping, diffusion of H, He are of great interest,
 - See also [Causey 2002].
 - Conclude from this that a liquid surface model will be qualitatively different!
6. Are There Synergistic Effects?

- Some processes are known to depend strongly on surface temperature,
 - E.g., evaporation, chemical sputtering,
 - Need to model temperature evolution ⇒ self-consistent solution with incident heat flux,
 - If system actively cooled, need to model it!
 - Even further complicated by presence of flakes or other local modifications of thermal conductivity.

- Dependency on particle flux?
 - E.g., chemical sputtering.

- Impact on kinetic details?
 - E.g., incoming fluxes might alter outgoing H₂ vibrational & rotational distribution [Vietzke 2002].

- But, have plenty of work to do before fully investigating these effects!
7. Sophisticated Codes Require Sophisticated Experiments & Measurements

- See discussion in [Federici 2001],
- Dedicated laboratory facilities, e.g.,
 - PISCES-B [Doerner 2003],
 - MIRF [Meyer 2005],
 - U. Wisconsin [Whyte].
- Incident flux measurements in tokamaks,
 - Hydrocarbon deposition, e.g., [Skinner 2005].
- Also, more detailed spectroscopy,
 - E.g., [Brezinsek 2002] measured H / H\textsubscript{2} fraction, T\textsubscript{rot}, T\textsubscript{vib}.
Conclusions

• Plenty of room for improvement!

• Some of the above can be included straightforwardly:
 – Better sheath model,
 – More detailed recycling kinetics.

• Plan on handling spatially & temporally varying material state,

• Hard part is determining a set of parameters that adequately characterizes that state & a reduced model based on it.