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Gas Puff Imaging (GPI) Experiments Designed
to Measure 2-D Structure of Edge Turbulence

e Puff neutral gas near outer wall,

e View with fast camera fluctuating visible emission resulting from
electron impact excitation of that gas,
e Use sightline || B to see radial & poloidal structure.
— Compare with turbulence measured by probes,

— And with output from plasma turbulence codes.



Gas Puff Imaging Hardware Configuration in NSTX
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Camera Records Fluctuating Emission
for 28 Frames @10us/frame
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Examine Relationship Between Observed
Emission Patterns & Underlying Plasma
Turbulence

NSTX shot A~
#109033 /
210 us /!

Time

14
Maqueda & Zweben X. Q. Xu

0.86ms

0.32ms

0.92 1.0 1.08



Results Outline

Objective: model behavior of neutral gas that experiences
plasma fluctuations & gives rise to emission patterns.

1. Simulations of single time-slice plasma qualitatively similar
to time-average experimental results.

2. Relationship between plasma turbulence and emission patterns
consists of two components:

(a) ne, Te dependence of emission rate,

e Messy, but straightforward.

(b) Neutral density profile,

e Can pick up spatial structure from turbulence
= emission pattern & plasma turbulence k-spectra may differ.

e Effect decreases with smaller turbulence amplitude,

e May be of less concern for higher k.



DEGAS 2 Simulations

e 2-D, steady-state neutral transport,
— Plasma data input to code,
— Compute neutral density & line (D, or He 5877 A) emission,

— Get emission in poloidal plane ~ camera view.

e Use single time-slice ne(R) & Te(R),

e Or, add ad-hoc 2-D perturbation,

— Compare spatial structure of emission with perturbation.



Realistic, High Resolution Geometry
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1. Simulations of Single

Time-Slice Plasma

Qualitatively Similar to

Time-Average Experimental Results
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Simulated NSTX 5877A Profiles
Narrower Than Observed
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e Simulated H-mode (108316)
intensity & peak radius adjusted
to match,

- L-mode profile modified in
same way.

e Many possible explanations for
width differences,

- Including 3-D effects,
- & Simulation of camera views.



Initial 3-D DEGAS 2
Simulation of NSTX
Shot 108322
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Initial 3-D Simulation

e Toroidally resolved gas puff, neutral density & 5877 A emission.

e = FWHM emission cloud 28 cm,
— Maqueda (HTPD 2002): 24 cm from view across torus,

— Toroidal extent of cloud limits GPI radial resolution.

e Additional improvements needed to 3-D simulation:
1. Gas manifold tilted 1 B,

2. Simulate camera view.



2.(a) Relationship Between

Plasma Turbulence

& Emission Patterns:

ne, 1e Dependence of Emission Rate



Scaling of Emission Rate for He 5877A
Varies Across Profile
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2.(b) Relationship Between

Plasma Turbulence

& Emission Patterns:

Neutral Density Profile



Impact of Plasma Perturbations on Neutral Density

e Ideally, n; is uniform & unaffected by plasma turbulence,
— = emission depends mostly on f;(ne, Te).
e But, ne, Te fluctuations can modify neutral flow via ionization,
dissociation, charge exchange,
— Transfers structure of plasma turbulence onto neutral density.

— = local n; depends on plasma “seen” en route by neutrals.



Applied kz = 3 cm-1 Perturbation in C-Mod
Simulation & Normalized D, Response
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Applied kz = 6 cm-1 Perturbation in C-Mod
Simulation & Normalized D, Response
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Perturbed Neutral Density Affects Visible Image & Spatial
Spectrum

e Principally compare GPI experiments &
turbulence simulations using wavenumber spectra,

— l.e., relative frequency of structures of various sizes.
— Experiments: FFT of vertical slices through 2-D images,

— Codes: slices through 2-D plasma profiles.

e Perturbations to n; manifested in two ways:
Shadowing =- decrease of oy “behind” ne, Te peaks,

Smearing The inverse effect, n; increase behind plasma minima,
can combine with shadowing to “smear” out structures.
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Normalized Values

At Inner Radii, Smearing Apparent in
Profiles & Spectra
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Normalized Values

Smearing Not Discernable in Higher kz Runs
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Shadow Fraction Fs Quantifies Impact on 2-D Images

e I’ = normalized difference between perturbed D, profile
and Do computed with the unperturbed n ;,

FSZ

>_(nj — ”j)fg"] /> nifs,
J J
— Primes indicate peturbed quantities.
e I indicates extent to which effects of plasma perturbation
on n; have impacted S,
— Structure is complicated & difficult to explain,

— Instead, summarize Fs images for current runs as histogram data.



Shadowing / Smearing Decreases with Size of Perturbation
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CONCLUSIONS

1. Simulations of single time-slice plasma qualitatively similar
to time-average experimental results.

2. Relationship between plasma turbulence and emission patterns:

(a) ne, Te dependence of emission rate messy, but straightforward.

(b) Neutral density can pick up spatial structure from turbulence
= emission pattern & plasma turbulence k-spectra may differ,

e Effect decreases with smaller turbulence amplitude,

e May be of less concern for higher k.



