Neutral Transport Simulations of Gas Puff Imaging Experiments on NSTX

D. P. Stotler, D. A. D’Ippolito1, B. LeBlanc, R. J. Maqueda2, J. R. Myra1, S. A. Sabbagh3, and S. J. Zweben

Princeton Plasma Physics Laboratory
Princeton University, Princeton NJ 08543

1Lodestar Research Corporation, Boulder CO 80301
2Los Alamos National Laboratory, Los Alamos NM 87545
3Columbia University, New York NY 10027

45th Annual Meeting of Division of Plasma Physics
American Physical Society
October 27 – 31, 2003
Albuquerque, New Mexico
Gas Puff Imaging (GPI) Experiments Designed to Measure 2-D Structure of Edge Turbulence

- Puff neutral gas near outer wall,

- View with fast camera fluctuating visible emission resulting from electron impact excitation of that gas,
 - Compare with 3-D nonlinear plasma simulation codes,
 - Reduced theoretical turbulence models,
 - And with turbulence measured by probes.

- NSTX GPI geometry optimizes data quality,
 - But, 3-D arrangement complicates interpretation,
 - \(\Rightarrow\) extend DEGAS 2 Monte Carlo neutral transport simulations to 3-D.
1. Describe GPI experiments,

2. Construction of 3-D DEGAS 2 Simulations,

3. Benchmark code against experiment,

4. Estimate diagnostic resolution,

5. Use neutral density to infer 2-D plasma profiles from GPI images.
1. Description of GPI Experiments

See also poster LP1.006,
“2-D Imaging of Edge Turbulence in NSTX and Alcator C-Mod”, Lowrance et al.
Gas Puff Imaging Hardware Configuration in NSTX

- Gas Puff Imaging (GPI)
- Area: 16x32 cm
- He gas manifold
- Viewport

Diagram showing the GPI area and its configuration in NSTX.
Camera Records Fluctuating 587.6 nm He I Emission for 28 Frames @10μs/frame
"Target Plane" Defined by Manifold & Center Stack; Location Determined by Measuring Arm
Quantify Cloud Orientation By Fitting Ellipses; Compare to Flux Surfaces Mapped to Target Plane
2. Construction of 3-D DEGAS 2 Simulations
Begin with outline of hardware,

2-D plasma mesh defined using EFIT equilibrium,

Fill remaining volume with triangles, spatial resolution \sim few mm.

Divide into 3-D by $\phi = \text{constant}$ planes,

- Gas source simulated in 3-D.

Single-time $n_e(R_{\text{mid}}), T_e(R_{\text{mid}})$ from Thomson scattering,

- Assume $n_i = n_e(\psi), T_i = T_e(\psi)$ only.

Simulations are time-independent.
Realistic, High Resolution Geometry
NSTX Shot 108321, 187 ms

- flux surface mesh
- He 587.6 nm emission
- gas manifold
- "vacuum" triangles
Spatial Relationships of Physical Objects Clarified by Visualization of 3-D DEGAS 2 Data

- 587.6 nm emission cloud
- neutral He density isosurface
- He density contour outlines simulated manifold
- field-line-following n_e perturbation
- n_e contours on $Z = \text{const.}$ & $Y = \text{const.}$ planes
- corners of camera view

AVS/Express Visualization by S. Klasky & D. Stotler
GPI Camera Emulation

- Directly compute 81×161 pixel view of camera,

- Each pixel corresponds to chord integral through problem,

- Chords start at viewport,

- Second point is measured 3-D location of intersection with “target plane”.

- Replicate 0.4 cm camera resolution with chords having halfwidth 0.16° at target plane.

- Full resolution images computed during post-processing with MPI.
3. Benchmark Code Against Experiment
Compare 3-D DEGAS 2 Camera Images With Experiment

- 3-D plasma used in DEGAS 2 does not correspond to a particular GPI frame ⇒ compare with “averaged” frame,
 - Use median in time to reduce effect of blobs.

- Experimental & simulated contours angled 15°,
 - Simulated emission follows flux / plasma contours,
 - Deviation between cloud & separatrix angles noted before.

- Look for systematic variations in experimental emission cloud orientation,
 - Get flux surface angles from EFIT $\nabla \psi_p$, mapped to camera coordinates.
 - Fit ellipses to 50%, 75%, and 90% emission regions.
Observed & Simulated Cloud Orientations Differ

Shot 108311
H-mode

Shot 108322
L-mode

Emission Rate (photons / m² s st)
Flux Surface Angles Steady During '02 Campaign, But Emission Angles Vary
Variation of Emission Cloud Orientation Not Understood

- Systematic changes in angles after run breaks,
 - Optics were removed & replaced each time,
 - ⇒ Discrepancy with DEGAS 2 could be due to misalignment of optical fixture or bumping of mirror.

- Calibration was done after last campaign
 ⇒ probably why last group lines up best with flux surfaces.

- There may be yet other explanations!

- Should do DEGAS 2 simulation of shot from last group.
4. Estimate Diagnostic Resolution
Background Information

- Previous radial resolution estimate 2 ± 1 cm based on toroidal cloud width & degree of camera / field alignment,
 - Effect of latter on poloidal resolution: $0.5 - 2$ cm.

- For shots used here I_p & B_T match values used in design of GPI
 \Rightarrow can’t examine misalignment,

- Check toroidal width with slices along camera view,
 1. FWHM = 25 cm for 108322,
 2. 20 cm for 108311,
 3. Observed: 24 cm.
Estimate Resolution with Tracer Perturbation

- Double n_e everywhere along field line passing through a chosen cell.
 - Estimate effect of cloud width & field line curvature.

- Relatively long emission perturbation path in camera-aligned slice
 ⇒ field line-camera alignment is indeed good,

- Δ (emission) image shows shape of field line as seen by camera, as well as shadowing effect,
 - Radial & poloidal half-widths are same as size of initial cell!
 - ⇒ Toroidal extent of cloud does not significantly degrade radial resolution (at least here).
Camera-Aligned Slice Through 3-D Data Shows Emission Due to Perturbation

Camera-aligned slice through 3-D data shows emission due to perturbation. The graph displays emission rate (photons/m³ s) along the horizontal and longitudinal directions. The emission rates range from 3.4x10²⁰ to 6.7x10²¹ photons/m³ s. The diagram highlights the camera-aligned slice, target plane, manifold, and corners of the camera view.
Perturbed - Unperturbed Camera Image
Highlights Effect of n_e Perturbation
5. Use Neutral Density to Infer 2-D Plasma Profiles from GPI Images

See also poster LP1.070, “Theory and Experimental Analysis of Blobs in the NSTX Boundary Plasma”, Myra et al.
GPI Data + DEGAS 2 Neutral Density
⇒ 2-D n_e, T_e

- Use to test theories of blob motion.
 - $n_e, T_e \rightarrow$ potential, Φ,
 - $\Rightarrow \vec{E} \times \vec{B}$ & motion of blobs.

- GPI gives $I = n_0 F(n_e, T_e)$,
 - DEGAS 2 $\Rightarrow n_0$,
 - $F(n_e, T_e)$ known,
 - \Rightarrow can invert if we know $n_e(T_e)$.
Need to Map 3-D DEGAS 2 Neutral Density to 2-D Camera Coordinates

- Camera signal for pixel i:

$$I(i) = \int \frac{dl}{4\pi} F(\vec{x}) n_0(\vec{x}).$$

- \vec{x} and image coordinates i connected by target plane, \vec{x}_i,

 - Inversion will yield $n_e(\vec{x}_i)$ and $T_e(\vec{x}_i)$.

- Camera aligned with \vec{B} & blobs constant on $\vec{B} \Rightarrow F(\vec{x}) \sim F(\vec{x}_i) = \text{constant},$

$$I(i) \sim F(\vec{x}_i) \int \frac{dl}{4\pi} n_0(\vec{x}).$$

- Suggests using

$$n_{0,\text{eff}} \equiv \int \frac{dl}{4\pi} n_0(\vec{x}) \simeq I(i)/F(\vec{x}_i).$$
Effective Neutral Density in Camera Coordinates

Effective Neutral Density in Camera Coordinates

- n$_{0,\text{eff}}$ (m$^{-2}$ s$^{-1}$)
- Vertical Pixel
- Horizontal Pixel

- 0.0
- 1.2x1017
- 2.4x1017

- 0
- 40
- 80

- 0
- 80
- 160
Practical Applications of Effective Neutral Density

- Above approach is approximate, off by factor of a few,
 - Have slightly different, more accurate approach.

- But, existing simulations differ too much from observations,
 - DEGAS 2 $n_{0,\text{eff}}$ must be shifted & rotated to line up emission clouds,
 - In this case, the two approaches work equally well.
 - See poster by Myra et al., LP1.070 for example applications.
SUMMARY

• 3-D DEGAS 2 simulations of GPI reproduce experimental geometry in detail,

• Orientations differ by 15°,
 – Appears to be due to GPI optical alignment problem with shots early in 2002 campaign.

• Radial resolution not significantly degraded by toroidal extent of cloud.

• DEGAS 2 results provide basis for inferring time-dependent 2-D n_e, T_e from GPI data.

Note: This poster is available on the Web at:
http://w3.pppl.gov/degas2/
REFERENCES

 - NSTX GPI description.

 - Detailed analysis of NSTX GPI results.

 - Basic DEGAS 2 description.

 - DEGAS 2 simulations of C-Mod GPI.

- S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001)
 - Basic theory of blobs.
 - Theory of blob motion.

 - Ditto.

 - He collisional-radiative model.

 - Neutral-ion elastic scattering data.

 - Discussion of C-Mod GPI, including DEGAS 2 results.