Three-Dimensional Simulation of Neutral Pressure Measurement Experiments on NSTX and Alcator C-Mod

D. P. Stotler, H. W. Kugel, B. LaBombard1, R. Maingi2, R. Raman3, and V. A. Soukhanovskii4,

Princeton Plasma Physics Laboratory
Princeton University
Princeton NJ 08543

1MIT Plasma Science and Fusion Center, Cambridge MA 02139
2Oak Ridge National Laboratory, Oak Ridge TN 37831
3University of Washington, Seattle, WA 98195
4Lawrence Livermore National Laboratory, Livermore, CA 94550

Note: This poster is available on the Web at:
http://w3.pppl.gov/degas2/
Introduction

- NSTX considering options for 2006 particle control milestone, e.g.,
 - Cryopump,
 - Flowing liquid lithium module,
 - Lithium coatings.

- Validate 3-D DEGAS 2 Monte Carlo neutral transport simulation capability in preparation for evaluation of options.

- Progress to date:
 1. Simulate gas flow through a pipe,
 - Compare with expected conductance over range of Knudsen numbers.
 2. Benchmark against measurements of C-Mod gas conductances.
 3. Begin assembly of corresponding 3-D model of NSTX.
Summary

1. Pipe flow benchmark successful for molecular & transition regime,
 - Simulation of viscous flow limited by computational resources.

2. 3-D DEGAS 2 simulated C-Mod conductances match measured values to within factor of two.
 - Remaining differences may be due to details not simulated,
 - And / or inadequate spatial resolution.

3. Fully detailed 3-D simulations of molecular & transition regime gas flows in tokamaks possible,
 - In some case, practical with massively parallel computers.
Use Two Chamber Model To Relate Physical Quantities

\[U_{12} \equiv \frac{Q_{12}}{(p_1 - p_2)}. \]

- Solve equations with constant \(U_{12} \), initial \(p_1, p_2 \), and \(Q_2 = 0 \),
 - For \(t \gg \frac{V_1 V_2}{U_{12}(V_1 + V_2)} \), \(p_1 - p_2 = \frac{1}{U_{12}} \frac{V_2 Q_1}{V_1 + V_2} \).

- If \(Q_2 \) due to pump of speed \(S \), \(Q_2 = S p_2 \), have steady state solution
 \[p_1 = Q_1 \left(\frac{1}{S} + \frac{1}{U_{12}} \right); p_2 = \frac{Q_1}{S}. \]
D₂ - D₂ Collisions Only - No Plasma

- Only treating D₂ - D₂ elastic scattering,
 - Iterative, BGK treatment with \(\vec{v} \)-independent \(\langle \sigma v \rangle \),
 - Set \(\langle \sigma v \rangle = kT/\eta \) using measured viscosities \(\eta \).

- Molecules striking walls absorbed / desorbed with 100% recycling,

- Sample desorbed molecules with 300 K Maxwell flux distribution.

- Gas source also 300 K, Gaussian in energy, cosine in angle.
Use Simple Pipe Flow Case to Validate DEGAS 2 Physics & Illustrate Conductance Changes with Flow Regime

• Flow regime characterized by Knudsen number $K = \frac{\lambda}{d}$,

 – $K \gtrsim 1 \Rightarrow$ “molecular flow” regime, $U_{12} \propto p^0$,

 – $K \lesssim 0.01 \Rightarrow$ “viscous flow” or “continuum” regime, $U_{12} \propto p^1$,

 * Subdivided into “viscous laminar” ($\mathcal{R} < 1200$) & “turbulent”.

 – In between: “transition” regime.
Consider flow through 0.205 m long, 0.1 m square pipe,

- Molecular flow: \(U_{mf} = A \frac{v}{4} W \),

- Long pipe viscous flow governed by Poiseuille equation:
 \[
 U_{vf} = \frac{1}{12\eta} \frac{a^2 b^2}{L} \bar{p} Y.
 \]
 * Use \(U \) definition and \(p_2 = Q_1/S \) to get \(U_{vf}(Q_1) \).

 * For these simulations, correction for finite pipe length \(\lesssim 15\% \).

- Knudsen gave an empirical fit for transition conductance,
 * But, not directly applicable here,

 * Instead, plot shows smooth curve connecting limiting expressions.
Comparison of Simulated & Predicted Pipe Conductances

Multiple points at a Q_1 show U_{12} increasing with spatial resolution

(a) Conductance

(b) Knudsen Number

Viscous Flow
Molecular Flow
Simulation
Transition

Viscous
Molecular
Velocity Shear Across Pipe Center in Q₁ = 0.4 Simulation

\[\rightarrow = 81 \text{ m/s} \]
Code Works Well for Molecular Flow / into Transition Regime; Denser Flows More Difficult

- Low Q_1 results agree with U_{mf} to within 2%.

- Have viscous flow for $Q_1 > 40$ Pa-m3/s.

- Points at $Q_1 = 0.4$ have 16, 64, and 256 zones spanning pipe cross section,
 - Impacts U because need to resolve flow shear across pipe,
 - Finer resolution runs do not differ significantly \Rightarrow adequate resolution.

- Appears to affect $Q_1 = 4.$ case even more strongly,
 - Points shown have 64 and 256 zones, neither is adequate.
C-Mod Conductance Measurements Provide Good Validation Data

- Install gas capillaries & pressure gauges to measure flow out of “open” and “closed” divertor ports,
 - “Closed”: main flow through slot under outer divertor,
 - “Open”: divertor plate / tiles removed for diagnostic access.
- Puff gas into gas box,
 - Calibrate Q_1 from dp_2/dt in main chamber & known torus volume,
 - Measure p_1 at bottom of pumping port,
 - Take p_2 in main chamber,
 - \Rightarrow compute U_{12}.
- Note that conductances hold steady as pressures rise.
Plan View of C-Mod Lower Divertor
DEGAS 2 Polygons Overlaid on C-Mod Closed Port Cross Section

- Top Pumping Port
- Gas Plate
- Poloidal Gap
- Gas Box / Mounting Hardware
- Gas Source
- Bottom Pumping Port
Experimentally Pressures Rise Linearly
Conductances Hold Steady
Use Pie Slice Model to Describe Toroidal Variation of C-Mod Hardware

- Represents modest extension of existing 2-D geometry setup tools.

- Principal toroidal variation:
 - Vertical pumping ports: 6° wide, to $Z = \pm 1.9$ m,
 - Divertor mounting hardware: 6° wide solid on either side of ports,
 - Vacuum elsewhere: gas box.
 - Outer divertor plate / tiles: solid except 6° gaps at “open” ports & 3 mm gaps at “closed” ports.

- Also have 0, 2, or 4 mm gap at top of gas box.

- 10% sink at top of upper ports ⇒ steady state simulations.
Visualization of Open Port Simulated Neutral Pressure

Visualization by S. A. Klasky
Visualization of Closed Port Simulated Neutral Pressure

Visualization by S. A. Klasky
Compare Simulated & Measured Pressures & Conductances

<table>
<thead>
<tr>
<th>Run</th>
<th>p_1 (Pa)</th>
<th>p_2 (Pa)</th>
<th>Q_1 (Pa·m3/s)</th>
<th>U_{12} (m3/s)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>1.46</td>
<td>1.22</td>
<td>1.86</td>
<td>7.8</td>
<td>16%</td>
</tr>
<tr>
<td>Open - expt.</td>
<td>1.46</td>
<td>1.05</td>
<td>1.86</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>Closed (base)</td>
<td>3.7</td>
<td>1.29</td>
<td>1.99</td>
<td>0.83</td>
<td>8.6%</td>
</tr>
<tr>
<td>Closed - expt.</td>
<td>3.7</td>
<td>2.04</td>
<td>1.99</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>2 mm pol. gap</td>
<td>3.9</td>
<td>1.30</td>
<td>1.99</td>
<td>0.76</td>
<td>3.9%</td>
</tr>
<tr>
<td>Reduce source</td>
<td>0.26</td>
<td>0.085</td>
<td>0.124</td>
<td>0.71</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

(“Experimental” p_2 values computed from measured U_{12}, Q_1, and simulation p_1.)
Discussion of C-Mod Benchmark

- Fully detailed 3-D simulations of molecular and transition regime gas flows in tokamaks possible,

- Practical given inexpensive CPUs: baseline closed port case took 41 hours on 30 1.7 GHz AMD Athlon processors,
 - $\leq 10^5$ flights, 56,659 zones.

- Simulated “open” & “closed” conductances agree with measurements to within factor of 2.

- Consider remaining differences,
 - One too high, one too low \Rightarrow still missing important details in geometry & experimental arrangement?
 - Pipe flow results suggest examining spatial resolution in gaps.
Neutral pressures surprisingly insensitive to plasma density,

Begin examining 3-D gas conductance pathways in search of explanations.

This work will feed into cryopump design effort.

Have laid out on paper approximate 3-D component configuration,

- Need more suitable engineering drawings!

Have done initial axisymmetric simulation,

Currently building 3-D DEGAS 2 geometry.
NSTX Vacuum Vessel
Full of 3-D Gas Pathways
DG File for DEGAS 2
Simulation of NSTX
Neutral Pressures in Axisymmetric NSTX Simulation

[Graph showing neutral pressures in an axisymmetric NSTX simulation, with color-coded pressure maps for D and D2 pressures.]