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Gas Puff Imaging (GPI) Experiments Designed
to Measure 2-D Structure of Edge Turbulence

• Puff neutral gas near outer wall,

• View with fast camera fluctuating visible emission resulting from
electron impact excitation of that gas,

– Compare with 3-D nonlinear plasma simulation codes,

– Reduced theoretical turbulence models,

– And with turbulence measured by probes.

• NSTX GPI geometry optimizes data quality,

– But, 3-D arrangement complicates interpretation,

– ⇒ extend DEGAS 2 Monte Carlo neutral transport simulations to 3-D.



OUTLINE

1. Describe GPI experiments,

2. Construction of 3-D DEGAS 2 Simulations,

3. Benchmark code against experiment,

4. Estimate diagnostic resolution,

5. Use neutral density to infer 2-D plasma profiles from GPI images.
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Experimental Arrangement

• NSTX GPI gas puff generated by 30 holes in 30 cm tube ⊥ ~B,

– ⇒ sheet of neutral gas (ideal).

• Camera views 587.6 nm He I line in direction ⊥ to sheet & ‖ ~B.

• Assumes plasma turbulence extended along ~B,

– Shorter scale lengths ⊥ ~B,

– Supported by theory & observations.



Camera Records Fluctuating Emission
 for 28 Frames @10µs/frame



DEGAS 2 Simulation Geometry

• Begin with outline of hardware,

• 2-D plasma mesh defined using EFIT equilibrium,

• Fill remaining volume with triangles,

– ⇒ spatial resolution ∼ few mm.

• Divide into 3-D by φ = constant planes,

– Width 0.5◦ – 1◦ near manifold,

– Wider near edges, ±45◦ from manifold.
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• Gas source simulated in 3-D,

– Specification of 3-D structures currently limited to
toroidal solids of revolution,

– ⇒ manifold is rectangle rotated through 6◦ in φ,

– But, source points specified on diagonal line
matching actual manifold.

• Limit size by treating only R ' 1.1 → R ' 1.7 m
& Z ' −0.2 → Z ' 0.6 m.



GPI Camera Emulation

• Directly compute 81 × 161 pixel view of camera,

• Each pixel corresponds to chord integral through problem,

• Chords start at reentrant window,

• Second point is measured 3-D location of intersection with “target plane”.

• Replicate 0.4 cm camera resolution with chords having
halfwidth 0.16◦ at target plane.

• Full resolution images computed during post-processing with MPI.
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Plasma Data

• Single-time ne(Rmid), Te(Rmid) from Thomson scattering,

• Assume ni = ne(ψ), Ti = Te(ψ) only.

• Simulations are time-independent,

– Not considering time varying plasma here.



He Atomic Physics from Goto

• He collisional-radiative model from Goto
⇒ ionization & emission rates,

• Metastable 21S, 23S not transported,

– Will consider separately.

• Emission rate given by

S = n(11S)
n(33D)

n(11S)
A33D→23P ≡ n0F (ne, Te),

– where A33D → 23P = 7.1× 107 s−1.

• He + D+ elastic scattering data from Krstic & Schultz.



Compare With Experiment

• Two shots: 108311 (H-mode), 108322 (L-mode),

• Overlay experimental data,

– 3-D plasma used in DEGAS 2 does not correspond
to a particular GPI frame,

– ⇒ compare with “averaged” frame,

– Use median in time to reduce effects of blobs.

• Middle contour is half-maximum.
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Width Comparison

• Half-widths in simulation: 3 mm (108311) & 2 mm (108322),

• Observed: 1 – 2 mm (108311) & 2 – 3 mm (108322),

– Difficult to define,

– Examined individual frames as well as median.

• Agreement rough, but qualitatively better than with 2-D simulations.



Observed & Simulated
Cloud Orientations Differ

• Experimental & simulated contours angled 15◦,

– Simulated emission follows flux / plasma contours,

– Deviation between cloud & separatrix angle noted before.

• Quiescent GPI cloud angles vary 20◦ shot-to-shot!

• But, EFIT equilibria show flux surface changes of only 1 – 2◦!

– ⇒ again, emission not aligned with flux surfaces.

• GPI hardware not moved ⇒ can’t blame calibration.



• Possible explanations:

1. Plasma parameters varying on flux surfaces,

2. Magnetic equilibrium shapes different from EFIT.



Radial Resolution Estimate

• Previous radial resolution estimated 2± 1 cm based on toroidal cloud
width & degree of camera / field alignment,

– Effect of latter on poloidal resolution: 0.5 – 2 cm.

• For shots used here Ip & BT match values used in design of GPI
⇒ can’t examine misalignment,

• Check toroidal width with slices along camera view,

1. FWHM = 25 cm for 108322,

2. 20 cm for 108311,

3. Observed: 24 cm.



Estimate Resolution
with Tracer Perturbation

• Estimate effect of cloud width & field line curvature on resolution with
“tracer” perturbation:

– Choose one cell, 0.7 cm wide × 1 cm tall, from mesh,

– Define toroidal φ mesh using local ~B pitch so incremental
poloidal steps along 2-D mesh can follow field line on either side,

– Double ne everywhere along this path.

• Emission due to perturbation clear in camera-aligned slice,

• Relatively long ⇒ field-camera alignment is indeed good,

• Width ⊥ to viewing chord 1.6 cm → initial measure of radial resolution,

– But, effective resolution smaller since camera integrates along chords.
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Plot Perturbed - Unperturbed Emission

• Curved shape ↔ field line shape seen by camera,

• Negative values ↔ “shadowed” region.

• Radial half-width = 0.6 cm,

• Poloidal half-width = 1.2 cm,

– ⇒ same as size of initial cell!

– Toroidal extent of cloud does not significantly degrade radial resolution
(at least here).
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Effective Neutral Density

• Use GPI data + DEGAS 2 neutral density to get 2-D ne, Te,

– Use to test theories of blob motion,

– ne, Te→ Φ,

– ⇒ ~E × ~B & motion of blobs.

• GPI ⇒ S,

• DEGAS 2 ⇒ n0,

• F (ne, Te) known,

• ⇒ can invert if we know ne(Te).



First Effective Neutral Density

• Camera signal for pixel i:

I(i) =
∫
dl

4π
F (~x)n0(~x).

• → 2-D function of i,

• But, want as function of ~x.

• Only connection is target plane & ~xi,

– ⇒ best we can do is ne(~xi) and Te(~xi).

• Camera aligned with ~B & blobs constant on ~B⇒ F (~x) ∼ F (~xi) = constant,

I(i) ' F (~xi)
∫
dl

4π
n0(~x).



• Suggests using

n0,eff ≡
∫
dl

4π
n0(~x) ' I(i)/F (~xi).

• GPI data not calibrated ⇒ simulated image needs normalization,

– But, don’t have I corresponding to DEGAS 2 plasma,

– Assume we can get something that’s consistent (e.g., median),

– ⇒ compute

α ≡ Ie(i)/Is(i).

– α must be a constant or slightly varying with i.

• Could then invert frame k,

F (~xi; tk) =
1

α

Ie(i; tk)

n0,eff
.
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Second Effective Neutral Density

• But, above approximation off by ∼ few,

• To do better:

I(i) =
∫
l∈l0

dl

4π
F (~x)n0(~x) +

∫
l 6∈l0

dl

4π
F (~x)n0(~x),

where l0 = region near target plane.

• Assume first part dominates ⇒ try

〈F 〉(i) ≡
∫
l∈l0 dlF (~x)n0(~x)/4π∫

l∈l0 dln0(~x)/4π
.

• Corresponding effective neutral density:

n′0,eff ≡ I(i)/〈F 〉(i).



• For small l0, 〈F 〉 ' F (~xi),

– ⇒ can use above procedure to get ne(~xi) and Te(~xi),

– Better accounts for contributions away from target plane.
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Caveats

• l0 must cover several computational zones,

– Or, get noisy results,

– Hinder calculation of ne.

• But, if l0 too large 〈F 〉 6= F (~xi), & cannot associate
resulting ne with target plane.

• Note that n0,eff → n′0,eff when l0 →∞.

• In practice, however, simulation & observation differ too much,

– DEGAS 2 n0,eff must be shifted & rotated to line up emission clouds,

– In this case, n0,eff and n′0,eff work equally well.
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Procedure 

Theory 
• Intensity of light emission I is related to the neutral 

density n0, the plasma density and temperature ne and 
Te, and an atomic physics function F by  

  
I = n0 F(ne, Te) 

 
• If n0 is known and the 2D image of intensity I is 

measured by the GPI camera, then F can be inverted 
for ne and Te if we assume that Te = Te(ne). 

• Te = Te(ne) is justified for interchange turbulence 
when E × B turbulent motion passively convects ne 
and Te together. 

• The mapping F-1(I/ n0) to ne and Te is determined 
from the equilibrium frame using the Thompson (TS) 
data to calibrate I. 

• On the time and space scales of the turbulence we 
assume n0 = constant, i.e. calculate n0 for the 
equilibrium and use it for the turbulence 

• caveat: parallel plasma losses are neglected.  Applies 
for fast moving plasma blobs with τconvection < τ|| 

 
basic idea: measure I and map to ne and Te  

from a knowledge of n0 
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Equilibrium calibration 

Goal 
• Use the calculated neutral density (not absolutely 

calibrated), the TS data and an equilibrium GPI frame 
to construct the mappings I → ne,Te that will be used 
to interpret the turbulent GPI images. 

• Here equilibrium means quiescent background plasma 
on which intermittent blobs propagate. 

Neutral density 
• calculated from DEGAS-2 using TS profiles and 

geometry as input 
• shifted and rotated so that the calculated emission 

pattern aligns with the GPI emission image 
• fit to a separable function of pseudo-flux coordinates 

(x, y) = (radial, poloidal) 

Equilibrium 
• take the time median over the 28 frames of the GPI 

movie as the equilibrium GPI frame 
o median eliminates intermittent objects (blobs) 

from the equilibrium 
• use smooth fits to the TS data projected along field 

lines to construct the equilibrium ne(x),Te(x) profiles 
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Sample equilibrium reconstruction 
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Radial dependence of neutral profile n0(x) from DEGAS-2 
(arbitrary normalization). 
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Comparison of reconstructed profiles with TS data.  black 
dots: TS data; orange curve: reconstructed profiles using 
our procedure on the equilibrium frame.   

 
 
Reconstruction is not accurate into the core where both I 
and n0 become small. (i.e. one gets F = 0/0) 
 

n0 

ne 
Te 



Lodestar/PPPL NSTX collaboration   5 

Comparison of ne and Te for 
equilibrium and turbulent frames 

equilibrium frame 
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Image plane of the GPI camera . Reconstruction is poor 
to the lower left (I and n0 very small) 

turbulent (blobby) frame 
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comparison of cuts across the frame  
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equilibrium dashed, blobby solid 

 

notes 
• cuts normal to the flux surfaces (also see 2D images) 

suggest that the blob is not completely detached, and 
has somewhat of a radial streamer character 

• intensity appears completely detached because n0 
increases strongly to the right 

• the blob or radial streamer in this H-mode data (NSTX 
#108311) has a characteristic ne ~ 1013/cm3 and Te ~ 
25 eV. 

 
 

ongoing work 
• compare the properties of the blob (e.g. radial and 

poloidal velocity, shape and size, rotation and 
statistics) with theory 
o S.I. Krasheninnikov, Phys. Lett. A 283, 368 

(2001); D.A. D'Ippolito, J.R. Myra, S.I. 
Krasheninnikov, Phys. Plasmas 9, 222 (2002). 

 

ne Te 

I 



SUMMARY

• 3-D DEGAS 2 simulations of GPI reproduce experimental geometry in detail,

• Rough agreement between simulated & observed emission cloud widths,

• But, orientations differ by 15◦,

– No clear explanation,

– Could indicate plasma varying on flux surface
or problems computing equilibrium.

• Radial resolution not significantly degraded by toroidal extent of cloud.

• DEGAS 2 results provide basis for inferring time-dependent
2-D ne, Te from GPI data.
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