Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod

D. P. Stotler, B. LaBombard1, J. L. Terry1, and S. J. Zweben

Princeton Plasma Physics Laboratory
Princeton University
Princeton, NJ 08543

1MIT Plasma Science and Fusion Center
Cambridge, MA 02139

Note: This poster is available on the Web at:
http://w3.pppl.gov/degas2/
INTRODUCTION

• Tokamak edge ideal for comprehensive study of turbulence,
 – Accessible with probes
 ⇒ directly measure n_e, T_e, and other properties.
 – Relatively low T_e facilitates use of atomic physics as basis for diagnostics.
 – Potential payoff great because edge sets boundary conditions for core transport,
 * E.g., internal transport barriers, H-mode pedestal.

• Gas Puff Imaging (GPI) experiments designed to measure 2-D structure of edge turbulence,
 – Compare with 3-D nonlinear simulations.
 – And with turbulence measured by probes,
 – Puff neutral gas (e.g., D$_2$) near outer wall,
 * View with fast, high res. camera light from electron impact excitation of gas,
 * Use sightline $\parallel \vec{B}$ to see radial & poloidal structure,

• Explore relation between images & plasma fluctuations with DEGAS 2 neutral transport code,
 – Straightforward because puff does not perturb plasma,
 – Emitted light brighter than background,
 – Material surface interactions should not be important.

• Experimental presentation: O-02 J. L. Terry et al.
Fig. 1 - Zweben APS ‘01
Fig. 2 - Zweben / APS ‘01
DESCRIPTION OF DEGAS 2 SIMULATIONS

• Alcator C-Mod Geometry:
 – Start with outline of vacuum vessel,
 † Including gas puff nozzle & surrounding structures.
 – EFIT equilibrium for time of interest ⇒
 † 2-D plasma mesh set up using DG & Carre,
 † Bunch surfaces & grid points to get resolution
 3 mm or smaller in region of interest.
 – Divide puff region into ∼ 3 mm triangles
 using Triangle.

• Simulations 2-D axisymmetric for now,
 – Output is averaged over toroidal angle.
 – ⇒ poloidal plane variation of photon emission rates.
 – Plan to add toroidal resolution ⇒
 † Can directly simulate fast camera views,
 † Quantitative comparison of image intensity,
 † Evaluate toroidal spatial averaging.
DEGAS 2 Geometry for C-Mod Shot 1010622
• Simulations assume steady-state.

 – Compare time scales:

 ∗ Autocorrelation time for turbulence
 = 10 – 20 \(\mu \)s,

 ∗ Time for 3 eV D to travel across cloud
 = 1 \(\mu \)s (2 cm),

 ∗ Timescale for emission of D\(\alpha \) photon
 = 1/A\(3\rightarrow2 \) = 0.02 \(\mu \)s,

 ∗ Note that camera exposure times
 = 2 \(\mu \)s (60 frame/s) or
 4 \(\mu \)s (5 \times 10^6 frames / s),

 ∗ \(\Rightarrow \) assumption of stationary plasma OK.
• Physics:

 – D_2, D_2^+ dissociation, including

 * $e + D_2 \rightarrow e + D(1s) + D(1s)$
 * $e + D_2 \rightarrow e + D(1s) + D^*(n = 3)$
 * $e + D_2 \rightarrow 2e + D_2^+$
 * $e + D_2 \rightarrow 2e + D(1s) + D^+$
 * $e + D_2^+ \rightarrow 2e + 2D^+$
 * $e + D_2^+ \rightarrow e + D(1s) + D^+$
 * $e + D_2^+ \rightarrow e + D^+ + D^*(n = 3)$
 * $e + D_2^+ \rightarrow D(1s) + D^*(n = 3)$

 – $D + D^+$ elastic scattering (i.e., charge exchange),

 – $D_2 + D^+$ elastic scattering,

 – $e + D$ ionization,

 * “Multi-step”, i.e., collisional-radiative model.

 – Neutral-neutral collisions not included,

 * May not be negligible,
 * Need realistic neutral density to treat,
 * Can only be computed in 3-D.
- Emission rate \((m^{-3} s^{-1})\) written as:

\[
S_{D\alpha} = \sum_{j=D,D_2,D_2^+} n_j f_j(n_e, T_e),
\]

* Where \(n_j = \) ground state atom & molecule density,

\[
f_D = \frac{n_D(n = 3)}{n_D(n = 1)} A_{3\rightarrow 2},
\]

* \([n_D(n = 3)/n_D(n = 1)](n_e, T_e)\) from CR model,

* Largely determines \(n_e, T_e\) dependence of \(f_D\).

\[
f_{D_2}, f_{D_2^+} = n_e \sum_k \langle \sigma v \rangle_k(T_e),
\]

* \(k = \) reactions leading to \(n = 3\).

- All puffs are 300 K with cosine distribution,

* Examined sensitivity in preliminary runs,

* Run with \((\cos \theta)^4\) distribution,

* One with 150 K puff.
• Plasma profiles:
 – All are taken from measured data mapped to midplane,
 – Assume constant on a flux surface,
 * In triangulated region, estimate $\rho = \text{distance between zone center \& nearest flux surface mesh zone}$.
 – Assume $n_i = n_e$, $T_i = T_e$.
Scanning Probe Data from C-Mod
Shot 1010622006, 700 ms

Electron Temperature (eV)

Electron Density \((m^{-3})\)

R (m)

0.88 0.89 0.9 0.91 0.92 0.93

0.88 0.89 0.9 0.91 0.92

Electron Temperature vs. R (m)

Electron Density vs. R (m)

Compare DEGAS 2 Result with Experimental Data
Radial Slice at \(Z = -0.034\) m

Normalized \(D_{\alpha}\) Emission Rate

Measured

DEGAS 2

R (m)
Peak Location & Width of Simulated Emission Insensitive to Details of D_2 Distribution

Radial Slices, $Z = -0.0255$ m

Vertical Slices, $R = 0.905$

⇒ Vertical extent can be affected
C-MOD RESULTS

- Alcator C-Mod shot 1010622006 at 700 ms.
- Baseline computed with time-average plasma profiles,
 - 10 – 20% of atoms in cloud undergone reflection,
 - “CX fraction” have had a CX,
 - Rest from dissociation ⇒ ballistic trajectories.
 - ⇒~ 50 – 65% of D emission
- At peak, molecular D_α's contribute ~ 40%,
 - < 10% for \(R \lesssim 0.9 \) m.
- Compare with time-average experimental GPI images,
 - Emission peak near nozzle not seen experimentally,
 - Probe data assumed constant for \(R > 0.91 \) m,
 - Nozzle peak \(\downarrow 10^{-2} \) if \(T_e < 2.5 \) eV
 - Or if \(n_e < 3.6 \times 10^{16} \) m\(^{-3}\),
 - Both consistent with exponential extrapolation of probe data.
DEGAS 2 Baseline

D$_\alpha$ Rate (1019 photons m$^{-3}$ s$^{-1}$)

CX Fraction = 0.30
Fraction of D_{α} Due to Atoms
• Impose 2-D perturbation on n_e and T_e,

 – Important to understand relation between spatial variation in emission & underlying plasma fluctuations,

 – Consider ad hoc perturbation:

 $$n_e'(R, Z) = n_e(R, Z)[1 + \frac{1}{2}\sin(\frac{\pi Z}{0.01})]$$

 $$\times\{1 + \frac{1}{2}\sin[\frac{\pi(R - R_{sep} + 0.0035)}{0.005}]\}$$,

 – where:

 * The $1/2$ factors make this a 50% perturbation,
 · Factor ranges from 0.25 to 2.25.
 * 2 cm wavelength for poloidal ($\sim Z$) variation,
 · Typical size of observed emission structures.
 * Used only 1 cm in R because of limited radial width,
 · 0.0035 shift so innermost data point unchanged.

 – Try same perturbation on T_e,

 * Only difference: T_e bound between 5 and 100 eV.
2-D Perturbation to Electron Density

\[R \ (m) \]

\[Z \ (m) \]

\[D_\alpha \ Rate \ (10^{19} \ photons \ m^{-3} \ s^{-1}) \]
2-D Perturbation to Electron Temperature

![Image of a 2-D perturbation to electron temperature graph with color scale showing D_α rate in units of 10^{19} photons m$^{-3}$ s$^{-1}$]
Effect of 2-D Perturbation
Normalized to Unperturbed Value
Vertical Slice

- n_e'/n_e or T_e'/T_e
- D_α with n_e perturbation
- D_α with T_e perturbation
Effect of 2-D Perturbation Normalized to Unperturbed Value Radial Slice
– Both simulations shows same 2-D structure,
– ⇒ wavenumber spectrum at least similar to that of plasma turbulence,
 * Expect autocorrelation function & frequency spectra similar also,
 * Will subsequently investigate quantitatively.
– Ratio of perturbed / unperturbed emission $\neq n_e'/n_e$ because $\partial \ln f_D/\partial \ln n_e, \partial \ln f_D/\partial \ln T_e < 1$.
– Further complicated by molecular contributions,
 * f_{D_2} and $f_{D_2^+} \propto n_e$,
 * T_e dependence not simple,
 * Effective scaling varies radially.
• Simple interpretation of GPI: image patterns $\propto n_e'/n_e$,
 – And insensitive to T_e,
 – Valid only if $n_e \lesssim 10^{18}$ m$^{-3}$ and $T_e \gg 10$ eV,
 – Not the case here!
 – $\Rightarrow n_e, T_e$ dependence of $S_{D\alpha}$ not different enough to infer perturbation amplitudes,
 – Would be simpler if n_e, T_e in phase.
The dependence of D_α emission rate contained in the ratio of $n=3$ density to $n=1$.

Scaling of $f(n_e, T_e)$ varies across radial profiles of 1010622.
Shadow Fraction

• Above focussed only on effect of perturbation on f_j,
• They also impact n_j!
• “Shadowing effect”: ionization caused by local n_e, T_e peak reduces light at smaller R.
• Compare images with and without shadowing,
 – “With” shadowing is as above,
 – To eliminate, use perturbed f_j and unperturbed n_j,
 – “Unshadowed” clearly shows n_e perturbation structure,
 – Shadowed image smeared out,
 * Due to n_j reductions by n_e peaks,
 * And n_j increases by n_e minima.
Runs with Electron Density Perturbation Shadowing:

with

without

\(D_\alpha \) Rate (10^{19} \text{ photons m}^{-3} \text{ s}^{-1})

(a)

(b)
• Estimate by computing:

\[F_s = \left[\sum_j (n'_j - n_j)f'_j \right] / \sum_j n_j f_j, \]

– Where prime indicates perturbed value.
– Evaluate separately for both “perturbed” simulations.

• Structure is complicated!

• Main observations:

1. \(|F_s| \gtrsim 0.5\) in many places
 ⇒ too large to ignore in GPI analysis.
2. Most of \(F_s\) due to molecules,
 – Analogous quantity based on atoms only \(\leq 0.2\).

• To understand \(F_s\) look at radial slices,

 – \(Z = -0.034\): peak in \(n'_e/n_e\),
 – \(Z = -0.025\): at nozzle & a minimum in \(n'_e/n_e\).
 – Compare with \(1 - n'_e/n_e\),
 * \(1 - n'_e/n_e < 0\) ⇒ local \(n_e >\) unperturbed value,
 * \(1 - n'_e/n_e > 0\) ⇒ local \(n_e <\) unperturbed value,
 * \(T_e\) perturbation differs at edges.
 – \(F_s < 0\) ⇒ \(n_j\) locally reduced,
 * \(F_s\) drops are in “shadows” of largest \(n'_e/n_e\).
 – \(F_s > 0\) ⇒ \(n_j\) locally increased,
 * \(F_s > 0\) at \(Z = -0.025\) since \(n_e\) modulation near min.,
 * Not so in perturbed \(T_e\) case due to smaller dissociation rate & strong \(T_e\) dependence of \(f_j\).
Shadow Fraction with Density Perturbation
Shadow Fraction with Temperature Perturbation
Shadow Fraction Significant

Radial Slices

Normalized Values

$Z = -0.034 \text{ m}$

$Z = -0.025 \text{ m}$

$Z = -0.025 \text{ m}$

$R (\text{ m})$
CONCLUSIONS

- **DEGAS 2** simulations show that spatial variation of D_α emission reflects that of n_e, T_e turbulence.

- But, n_e, T_e dependence of emission rate complicated,
 - \Rightarrow no simple scheme to get plasma fluctuations.

- Contributions from molecules significant,
 - Further complicating n_e, T_e dependence,
 - Densities significantly affected by perturbation.

- \Rightarrow will need neutral transport code to interpret GPI,
 - Must do careful benchmarks first,
 - To verify these conclusions,
 - Validate atomic & molecular physics models.