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Gas Puff Imaging (GPI) Experiments Designed
to Measure 2-D Structure of Edge Turbulence

• Puff neutral gas near outer wall,

• View with fast camera fluctuating visible emission resulting from
electron impact excitation of that gas,

– Compare with 3-D nonlinear plasma simulation codes,

– Reduced theoretical turbulence models,

– And with turbulence measured by probes.

– See also: [Maqueda 2002, Zweben 2004, Zweben 2006]

• How accurate are assumptions underlying interpretation of GPI?

• Can we infer plasma parameters from GPI images?



OUTLINE

1. Describe GPI experiments,

2. Time Dependent Response of Helium Atomic Physics Models,

3. 3-D DEGAS 2 Simulations,

4. Conclusions.
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Experimental Arrangement

• NSTX GPI gas puff generated by 30 holes in 30 cm tube ⊥ ~B,

– ⇒ sheet of neutral gas (ideal).

• Camera views 587.6 nm He I line in direction ⊥ to sheet & ‖ ~B.

• Assumes plasma turbulence extended along ~B,

– Shorter scale lengths ⊥ ~B,

– Supported by theory & observations.



Camera Records Fluctuating Emission 
for 300 Frames @ 4 µs/frame
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Time-Dependent Response of Helium Atomic Physics Models

• GPI assumes light emission instantaneous compared with
time scales of interest, & 1 µs,

• May not always be true,

– E.g., helium has 21S and 23S metastable states.

– If not, temporal & spatial characteristics of turbulence could be affected.

• Find that the simple model conventionally used is valid
& provides adequate time resolution.



General Description of Excited Atomic States
Requires Solving N � 1 Equations

• Full equations:

dn(i)

dt
= −

 N∑
j 6=i

C(i, j)ne +
N∑
j<i

A(i, j) + S(i)ne

n(i)
+

N∑
j 6=i

[C(j, i)ne +A(j, i)]n(j) + [α(i)ne + β(i) + βd(i)]nine,

• Where for helium, i = 1→ 11S, 2→ 21S, 3→ 23S, 4→ 21P,
5→ 23P, 6→ 31S, . . . , and N = 59 [Fujimoto 1979, Goto 2003]

• Write in matrix form as:

ṅ = Mn + Γ.



Collisional Radiative Models Intended to Simplify
Treatment of Excited Atomic States

• Split N states into sets P (NP ) and Q (NQ) [Greenland 2001],[
ṅP
ṅQ

]
=

[
MP H
V MQ

] [
nP
nQ

]
+

[
ΓP
ΓQ

]

• Define effective rates Meff such that entire system
described as [Bates 1962, Johnson 1973]:

ṅP = MeffnP + Γ′P .

• And Q state evolution computed from nP :

nQ = ΩnP −M−1
Q ΓQ.

• [Greenland 2001] gives criteria for testing particular choice of P andQ states,

– And gives time scales that choice can resolve.



[Greenland 2001] Criteria Based on
Eigenvectors of Rate Matrix

• Use normalized eigenvectors of M to form T,

– Columns ordered by increasing eigenvalue λ(i).

• Then, break up into submatrices:

T =

[
TP ∆
δ TQ

]
.

• For CR model to be valid [Greenland 2001], ‖δ‖ � 1 and ‖T−1
Q δ‖ � 1.

• And phenomena faster than τQ ≡ 1/|λQ| are not resolved,

– λQ = smallest eigenvalue in Q.



Do Helium CR Models Adhere to These Requirements?

• [Fujimoto 1979, Goto 2003] describe one (NP = 1)
and three (NP = 3) state CR models,

– 3 state model requires explicit modeling of 11S, 21S, and 23S states.

• Do these models provide ∼ µs time resolution required by GPI experiments?

• Is 3 state model enough of an improvement over 1 state to
offset additional overhead (12 reactions vs. 2)?



Apply Analysis to Code from [Goto 2003]

(Te eV, ne m−3) = (3, 1018) (15, 6× 1018) (30, 1016)
NP = 1: ‖δ‖ 8.2× 10−5 2.5× 10−3 1.0× 10−2

‖T−1
Q δ‖ 8.7× 10−5 1.9× 10−3 1.0× 10−2

τQ (µs) 14 0.61 980
NP = 3: ‖δ‖ 7.3× 10−2 5.4× 10−1 1.6× 10−3

‖T−1
Q δ‖ 1.1× 10−1 6.9× 10−1 2.7× 10−3

τQ (µs) 0.087 0.045 0.52

• Single state model valid for all three conditions,

• But, 3 state model valid only for lowest ne!

• Confirm with time dependent integrations.
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Three-Dimensional DEGAS 2 Simulations of GPI Experiments

• Procedure similar to [Stotler 2004],

• Begin with EFIT equilibrium at time of interest ⇒ mesh,

• Incorporate geometry of vacuum vessel, including manifold,

– Point sources along a line matching actual manifold.

• Single-time ne(Rmid), Te(Rmid) from Thomson scattering,

– Assume ni = ne(ψ), Ti = Te(ψ) only.

– Simulations are time-independent.

• Emulate 64× 64 pixel camera view,

– Record helium 587.6 nm emission.



Thomson Scattering Midplane Profiles
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Compare With Experiment

• Two shots: 112811 (H-mode), 112814 (L-mode),

• Overlay experimental data,

– 3-D plasma used in DEGAS 2 does not correspond
to a particular GPI frame,

– ⇒ compare with “averaged” frame,

– Use median in time to minimze effect of blobs.

• Experimental contours at 25%, 50%, and 75% of peak.
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Conclusions

• Single state atomic physics model valid for GPI conditions
& provides adequate time resolution,

– More complicated 3 state model does not provide greater time resolution,

– Is not even valid for conditions at center of GPI emission cloud!

• Can then use simple relation between emission S
& plasma parameters: S = n0F (ne, Te) provided by this model,

– ⇒ can unfold 2-D, time-varying plasma parameters from
GPI images if we know n0,

• 3-D DEGAS 2 simulations give this n0,

– Satisfactory agreement with observed emission clouds confirms
fidelity of n0,

– And of entire model of helium-based GPI diagnostic.
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