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Why Do Neutrals Matter?Why Do Neutrals Matter?
Wall is sink for plasma, but not mass: recycling
Sputtered impurities leave wall as neutral atoms 
& molecules
Fueling beam heating pumping involve neutralsFueling, beam heating, pumping involve neutrals
Detachment hinges on neutral-plasma 
interactions 
Play a role in edge transport & turbulence / H-
mode (?)
I i it di ti tIncrease impurity radiation rate
Basis for edge & core diagnostics
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Wall is Sink for Plasma, But Not for 
Mass Rec cling [ b ]Mass: Recycling [Stangeby 2000]

•Flows along open field lines to 
surfaces

•Flows along open field lines to 
surfacessurfaces,

•Ions accelerated through sheath 
→ PMI:
•Backscattering → H
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•Desorbed as H2 in steady state. 

•H2: absorbed & desorbed.

Backscattering → H,
•Or Absorption,
•Desorbed as H2 in steady state. 

•H2: absorbed & desorbed.2

•Kinetic details:
•Backscattered velocity 
distribution,
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•Kinetic details:
•Backscattered velocity 
distribution,

•Ro-vibrational state of molecules?
•Other issues:

•Real PMI,

•Ro-vibrational state of molecules?
•Other issues:

•Real PMI,
•Permanent absorption / wall 
pumping.

•Permanent absorption / wall 
pumping.



Sputtered Impurities Leave Wall as Neutral 
At & M l lAtoms & Molecules

•⇒cross magnetic field lines.
•Particles knock off substrate 
atoms ⇒ physical sputtering.

•⇒cross magnetic field lines.
•Particles knock off substrate 
atoms ⇒ physical sputtering.p y p g

• E.g., ions going through 
sheath when Te > 100 eV.

•Or atoms CX’ing with hot ions,
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• Main chamber erosion & 
deposition issue for ITER [Kotov
2009].   
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• Main chamber erosion & 
deposition issue for ITER [Kotov
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• Chemical sputtering• Chemical sputtering
•Usually refers to hydrocarbons 
formed on graphite.

• Chemical sputtering
•Usually refers to hydrocarbons 
formed on graphite.



Fueling, Beam Heating, Pumping 
Based on NeutralsBased on Neutrals

•Gas Puff:•Gas Puff:Gas Puff:
• Easy to install & control,
• Flexible timing, composition, rate,
• Easy to simulate!
• Big drawback: poor penetration,
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•Higher density methods more efficient:
• Pellet,
• Supersonic gas injection,
• Molecular clusters

Big drawback: poor penetration,
•Higher density methods more efficient:

• Pellet,
• Supersonic gas injection,
• Molecular clustersMolecular clusters.
• Better not just due to speed,
• On HFS, aided by ∇B drift [Lang 1997].
• Difficult to model because of impact on 

plasma parameters & equilibrium. 

Molecular clusters.
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• On HFS, aided by ∇B drift [Lang 1997].
• Difficult to model because of impact on 

plasma parameters & equilibrium. p p q
•Neutral beam injection:

• Reliable heating with extensive database.
• Deep core fueling in present day devices.
• Can be modeled.

p p q
•Neutral beam injection:

• Reliable heating with extensive database.
• Deep core fueling in present day devices.
• Can be modeled.Can be modeled.
• Basis for several diagnostics.

Can be modeled.
• Basis for several diagnostics.



Volume Recombination of Hydrogen Can Be 
D i t N t l SDominant Neutral Source

•If Te low enough, say, < 1 
eV.

•Detect by Dγ / Dα,

•If Te low enough, say, < 1 
eV.

•Detect by Dγ / Dα,
-0.30

•Ratios & rates come from 
atomic physics model.

•Recombination included 
i d i l ti d
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in edge simulation codes, 
•Sensitivity to Te
complicates interpretation 
of experimental data 

in edge simulation codes, 
•Sensitivity to Te
complicates interpretation 
of experimental data -0.50

kW

[Lisgo 2005].
• Observed in detached 
plasmas.

[Lisgo 2005].
• Observed in detached 
plasmas.
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Descriptions of Materials & PMI in Neutral 
T t C d R l ti l Si lTransport Codes Relatively Simple



Electron Impact Ionization of Hydrogen is a 
M lti St PMulti-Step Process

•Collisions excite, de-excite, & 
i i

•Collisions excite, de-excite, & 
i iionize,

•Atoms can decay radiatively.
•Timescales comparable ⇒ treat all.
I i ti f H( 0) i f

ionize,
•Atoms can decay radiatively.
•Timescales comparable ⇒ treat all.
I i ti f H( 0) i f• Ionization of H(n=0) is one of 
thousands [Loch 2009].

•Excited states equilibrate faster 
than ground state changes,
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•Excited states equilibrate faster 
than ground state changes,
•⇒ collisional radiative model.
• Yields effective rates of ionization 

and recombination for ground state.
• Functions of ne & Te.

•⇒ collisional radiative model.
• Yields effective rates of ionization 

and recombination for ground state.
• Functions of ne & Te.e e

•& line emission (Dα), total 
radiation, electron cooling rates.

•Assumes plasma optically thin.
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•& line emission (Dα), total 
radiation, electron cooling rates.

•Assumes plasma optically thin.

[Post 1995]

• Similar data for He [Loch 2009], Li 
[Loch 2006]…  

• Similar data for He [Loch 2009], Li 
[Loch 2006]…  



Charge Exchange & Elastic Scattering Exchange 
Momentum & Energy Between Ions & Neutrals

•H + H+ → H+ + H•H + H+ → H+ + HH + H → H + H,
•Pure CX:180° scattering in center of 
mass,

•Below ~1 eV, momentum transfer from 
elastic scattering also important
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•Fully quantal calculations of dσ/dΩ
describe as single reaction [Krstic
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H2, H2
+: How Big Does the Zoo Need to Be?

•Lower Te ⇒ H2 longer lifetime ⇒ additional processes,
•Vibrational excitation & de-excitation,
•⇒ ion conversion: H2(v) + H+ → H2

+ + H,
•More species: H + H-
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•“Collisional radiative” rates for  H2, H2
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flux to targets. [Kukushkin 2005].
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Another Reason to Get Rid of Carbon
•Would like to avoid carbon because of T 
inventory [Federici 2001].

•If we really understood hydrocarbon 
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creation, transport, & deposition...

•Starting point: data for dissociation & 
ionization of hydrocarbons,

CH C H C H [J 2002] [J 2004]
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CH C H C H [J 2002] [J 2004]•CHy, C2Hy, C3Hy [Janev 2002], [Janev 2004],
•HYDKIN reaction analysis tool: 
http://www.hydkin.de

•Resulting systems very complicated!
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•Many more fragmentation channels.

•Different pathways dominate at low (1 – 2 

Resulting systems very complicated! 
•700 processes for C3Hy!
•Many more fragmentation channels.

•Different pathways dominate at low (1 – 2 p y (
eV) & high Te (> 10 eV) [Reiter 2009] ⇒
simpler models may be possible.

p y (
eV) & high Te (> 10 eV) [Reiter 2009] ⇒
simpler models may be possible.



Partial Detachment Allows ITER to Radiate 
60 – 70% of Divertor Power60 – 70% of Divertor Power

•Via photons & neutrals 
[Pitts 2009].

•Via photons & neutrals 
[Pitts 2009].[ ]

• jsat ↓, but Dα ↑ with 
increasing 〈ne〉 [Stangeby
2000],
•& T < 1 2 eV or pressure
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increasing 〈ne〉 [Stangeby
2000],
•& T < 1 2 eV or pressure•& Te < 1 – 2 eV or pressure 
drop along field line.

•Complicated interplay of 
many processes ⇒ different 
t f d t h t

•& Te < 1 – 2 eV or pressure 
drop along field line.

•Complicated interplay of 
many processes ⇒ different 
t f d t h ttypes of detachment.
• Ion-neutral friction to 
removes momentum & 
power,

b b

types of detachment.
• Ion-neutral friction to 
removes momentum & 
power,

b b•Recombination may be 
present, but not controlling,

•Radiation trapping.
•Simulation of observed 

•Recombination may be 
present, but not controlling,

•Radiation trapping.
•Simulation of observed 
detachment behavior 
difficult [Wischmeier 2009].
detachment behavior 
difficult [Wischmeier 2009]. [Pitcher 1997]



Lyman-α MFP << Local Dimensions for 
ITER DivertorITER Divertor

For Ly-α ~ 0.2 cm / nD(1020 m-3)  [Post 1995],
⇒ Photons reabsorbed by atoms ⇒ “trapped”

For Ly-α ~ 0.2 cm / nD(1020 m-3)  [Post 1995],
⇒ Photons reabsorbed by atoms ⇒ “trapped”⇒ Photons reabsorbed by atoms ⇒ trapped .
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& line shape effects important.

EIRENE models photons in same way as atoms & 
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& line shape effects important.
EIRENE models photons in same way as atoms & p y
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Add photo-excitation to H CR model [Reiter 2002],
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Zeeman-Stark profiles [Reiter 2007].
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2x increase in ITER ne, lower Te [Reiter 2007].  
~100% of Ly-α trapped & 60-90% inner divertor
ionization due to “radiative stimulated ionization”.

Alternative: add plasma transport model to NLTE code 
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Used to benchmark modified CR rates [Scott 2004] ⇒
Seff(ne, Te, L), Reff(ne, Te, L) & use in existing plasma & 
neutral transport codes.
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Used to benchmark modified CR rates [Scott 2004] ⇒
Seff(ne, Te, L), Reff(ne, Te, L) & use in existing plasma & 
neutral transport codes.
A i ffi f hi h i [Adams 2003]Approximate treatment may suffice for high opacity 
[Scott 2004], [Kotov 2006].
Approximate treatment may suffice for high opacity 
[Scott 2004], [Kotov 2006].

[Adams 2003]



How Important are Neutrals for 
Edge Turbulence & Transport?Edge Turbulence & Transport?

• Investigated by Center for Plasma 
Edge Simulation

• Investigated by Center for Plasma 
Edge Simulation
• SciDAC Proto-FSP, C. S. Chang – PI.

•Developing simulations of edge 
pedestal buildup & ELM crash via:
•XGC0 – kinetic neoclassical guiding 
center particle code [Chang 2004]
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•DEGAS 2 – kinetic Monte Carlo 
neutral transport code,

•ELITE- Linear MHD code,
•M3D – Extended MHD code.
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•ELITE- detect ELM instability,
•M3D – simulate nonlinear ELM crash.

•Other impacts of neutrals being 
investigated
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•M3D – simulate nonlinear ELM crash.

•Other impacts of neutrals being 
investigated
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[Park 2007]investigated,
•E.g., modifications to ion distribution 
function.

investigated,
•E.g., modifications to ion distribution 
function.

[Park 2007]



P i I it R di ti & Di tiPumping, Impurity Radiation & Diagnostics
•Helium pumping 
[Kukushkin 2009]

•Helium pumping 
[Kukushkin 2009][Kukushkin 2009]
•Code results given high 
credibility,

•Used to evaluate divertor
d i

[Kukushkin 2009]
•Code results given high 
credibility,

•Used to evaluate divertor
d idesign.

•Impurity CX with H,
•Reduces average charge 
state ⇒ increased

design.
•Impurity CX with H,

•Reduces average charge 
state ⇒ increasedstate ⇒ increased 
radiation.

•Neutral based diagnostics
•CX recombination 

state ⇒ increased 
radiation.

•Neutral based diagnostics
•CX recombination 
spectroscopy,

•Gas puff imaging, etc.
•Beam emission 
spectroscopy

spectroscopy,
•Gas puff imaging, etc.
•Beam emission 
spectroscopy [Post 1995]spectroscopy,

•Motional Stark Effect.
spectroscopy,

•Motional Stark Effect.



ConclusionsConclusions
Do we understand neutral transport?

Why else would we develop detailed 3 D kineticWhy else would we develop detailed 3-D, kinetic, 
neutral transport models?

But, we don’t have a complete picture:
l d d lSimulations depend on uncertain plasma 

parameters,
Incomplete atomic physics data,
And rudimentary PMI. 

We’ve got a lot of work to get to a predictive 
model:

Fusion Simulation Program,
Expanding PMI research effort.
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Interpretation of Light EmissionInterpretation of Light Emission
Neutral transport calculations readily yield volumetric 
light emission (e.g., Dalpha) amenable to calculation g ( g , p )
of synthetic diagnostics and comparison with 
experimental data.
However, emission rates may be sensitive to Te,

And ne, Te may vary locally over short times due to 
intermittent turbulent transport,
Because emission nonlinear function of Te, time average 
emission ≠ emission at average Te.e ss o e ss o at a e age e

Interpretation further complicated by light 
reflections,

Occasionally problematic in past,
Much more so with full metal machines and shiny Li 
coatings,
For Li, using Ly-alpha lines instead.
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