

Accelerating High Performance Computing

http://www.nvidia.com/tesla

http://www.nvidia.com/tesla

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

© NVIDIA Corporation 2012

NVIDIA CUDA Library Approach

 Provide basic building blocks

 Make them easy to use

 Make them fast

 Provides a quick path to GPU acceleration

 Enables developers to focus on their “secret

sauce”

 Ideal for applications that use CPU libraries

© NVIDIA Corporation 2011

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra

Building-block
Algorithms for CUDA IMSL Library

GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications

http://developer.nvidia.com/gpu-accelerated-libraries
http://code.google.com/p/thrust/downloads/list

© NVIDIA Corporation 2012

CUDA Math Libraries

High performance math routines for your applications:

 cuFFT – Fast Fourier Transforms Library

 cuBLAS – Complete BLAS Library

 cuSPARSE – Sparse Matrix Library

 cuRAND – Random Number Generation (RNG) Library

 NPP – Performance Primitives for Image & Video Processing

 Thrust – Templated C++ Parallel Algorithms & Data Structures

 math.h - C99 floating-point Library

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda

http://www.nvidia.com/getcuda

© NVIDIA Corporation 2012

Linear Algebra

Dense Sparse

cuBLAS
cuSPARSE

© NVIDIA Corporation 2012

cuBLAS Interface

err = cublasIdamax(hdl, n, col, 1, size);

err = cublasDscal(hdl, n, val, row, 1);

cublas_dgemm(‘N’,’N’,m,n,k,1.0,A,m,

 B,k,0.0,C,m)

err = idamax(n, col, 1, size);

err = dscal(n, val, row, 1);

dgemm(‘N’,’N’,m,n,k,1.0,A,m,

 B,k,0.0,C,m)

© NVIDIA Corporation 2012

x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

Speedup over MKL

cuBLAS Level 3: >1 TFLOPS double-precision

• MKL 10.3.6 on Intel SandyBridge E5-2687W @3.10GHz

• CUBLAS 5.0.30 on K20X, input and output data on device

0

500

1000

1500

2000

2500

3000

GFLOPS

© NVIDIA Corporation 2012

GPU-Callable Libraries

New in CUDA 5.0

Call cuBLAS library function from GPU code

Supported on K20 and K20X only

Encourages third party libraries

© NVIDIA Corporation 2012

cuSPARSE Interface

err = cusparseDcsrmv(hdl, transa, m, k,

 nnz, alpha, desrc,

 val, indx, col,

 x, beta, y);

mkl_dcsrmv(transa, m, k,

 alpha, descr,

 val, indx, pntrb, pntre,

 x, beta, y);

© NVIDIA Corporation 2012

cuSPARSE Performance

• MKL 10.3.6 on Intel SandyBridge E5-2687W @3.10GHz

• CUBLAS 5.0.30 on K20X, input and output data on

device

.x

.5x

1.x

1.5x

2.x

2.5x

3.x

3.5x

S
p

e
e
d

u
p

 O
v

e
r

M
K

L

CSRMV*

* Average of single, double, complex and double complex

© NVIDIA Corporation 2012

Different Approaches to Linear Algebra

 CULA tools (dense, sparse)
 LAPACK based API

 Solvers, Factorizations, Least Squares, SVD,
Eigensolvers

 Sparse: Krylov solvers, Preconditioners, support
for various formats

culaSgetrf(M, N, A, LDA, IPIV, INFO)

 ArrayFire
 Array container object

 Solvers, Factorizations, SVD, Eigensolvers
array out = lu(A)

ArrayFire Matrix
Computations

EM Photonics

AccelerEyes

© NVIDIA Corporation 2012

Different Approaches to Linear Algebra

(cont.)

 MAGMA

 LAPACK conforming API

 Magma BLAS and LAPACK

 High performance by utilizing both GPU and CPU

magma_sgetrf(M, N, A, LDA, IPIV, INFO)

 LibFlame

 LAPACK compatibility interface

 Infrastructure for rapid linear algebra algorithm

 development

FLASH_LU_piv(A, p)

FLAME Library

ICL

UT-Austin

© NVIDIA Corporation 2012

Different Approaches to Linear Algebra

(cont.)

 CUSP

 Sparse matrix operations

 Open source

 Supports COO, CSR, ELL, DIA, hybrid, etc.

 Solvers, monitors, preconditioners, etc.

cusp::krylov::cg(A, x, b);

© NVIDIA Corporation 2012

Toolkits are increasingly supporting GPUs

 PETSc

 GPU support via extension to Vec

 and Mat classes

 Partially dependent on CUSP

 MPI parallel, GPU accelerated solvers

 Trilinos

 GPU support in KOKKOS package

 Used through vector class Tpetra

 MPI parallel, GPU accelerated solvers

© NVIDIA Corporation 2012

Signal Processing

© NVIDIA Corporation 2012

Common Tasks in Signal Processing

Filtering Correlation Segmentation

© NVIDIA Corporation 2012

Vector Signal
Image Processing

NVIDIA NPP

Parallel Computing
Toolbox

Libraries for GPU Accelerated Signal
Processing

ArrayFire Matrix
Computations

GPU Accelerated
Data Analysis

© NVIDIA Corporation 2012

cuFFT

cufftPlan2d PlanA;

cufftCreatePlan(N, M, &PlanA,

CUFFT_C2C);

cufftExecC2C(PlanA, d_data, d_data,

 CUFFT_FORWARD);

fftw_plan PlanA;

fftw_plan_dft_2d(N, M, &PlanA,

 data, data, FFT_FORWARD)

fftw_execute_dft(PlanA, data,

 data);

 Interface modeled after FFTW

 Supports streams and batching (2 and 3-D, too!) for better performance

© NVIDIA Corporation 2012

CUFFT: up to 600 GFLOPS
1D used in audio processing and as a foundation for 2D and 3D FFTs

• CUFFT 5.0.30 on K20X, input and output data on device

0

100

200

300

400

500

600

700

2 4 6 8 10 14 16 18 20 22 24 26 28

g
F

L
O

P
s

log2(size)

cuFFT-Single Precision

0

50

100

150

200

250

300

2 4 6 8 10 14 16 18 20 22 24 26 28

g
F

L
O

P
s

log2(size)

cuFFT-Double Precision

© NVIDIA Corporation 2012

Basic concepts of NPP

 Collection of high-performance GPU processing

 Non-linear data transforms (point-by-point mult, sqrt, etc.)

 Support for multi-channel integer and float data

 C API => name disambiguates between data types, flavor

nppiAdd_32f_C1R (…)

 “Add” two single channel (“C1”) 32-bit float (“32f”) images, possibly

masked by a region of interest (“R”)

© NVIDIA Corporation 2012

NPP features a large set of functions

 Arithmetic and Logical Operations
 Point-by-point ops, clamp, threshold, etc.

 Geometric transformations
 Rotate, Warp, Interpolate

 Compression
 jpeg de/compression

 Image processing
 Filter, histogram, statistics

NVIDIA NPP

© NVIDIA Corporation 2012

cuRAND

© NVIDIA Corporation 2012

Random Number Generation on GPU

 Generating high quality random numbers in parallel is hard

 Don’t do it yourself, use a library!

 Large suite of generators and distributions

 XORWOW, MRG323ka, MTGP32, (scrambled) Sobol

 uniform, normal, log-normal

 Single and double precision

 Two APIs for cuRAND

 Called from CPU: Ideal when generating large batches of RNGs on GPU

 Called from GPU: Ideal when RNGs need to be generated inside a kernel

© NVIDIA Corporation 2012

cuRAND: Host vs Device API

 CPU API

 #include “curand.h”

 curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT);

 curandGenerateUniform(gen, d_data, n);

 GPU API

 #include “curand_kernel.h”

 __global__ void generate_kernel(curandState *state) {

 int id = threadIdx.x + blockIdx.x * 64;

 x = curand(&state[id]);

 }

Generate set of

random numbers

at once

Generate random

numbers per thread

© NVIDIA Corporation 2012

cuRAND Performance

0

2

4

6

8

10

12

14

16

MRG32k3a 32-bit Sobol MRG32k3a 32-bit Sobol

Uniform Distribution Normal Distribution

G
s
a
m

p
le

s
/s

e
c

Double Precision RNGs

GPU

CPU

© NVIDIA Corporation 2012

Thrust: STL-like CUDA Template Library

 GPU(device) and CPU(host) vector class
 thrust::host_vector<float> H(10, 1.f);

 thrust::device_vector<float> D = H;

Iterators
 thrust::fill(D.begin(), D.begin()+5, 42.f);

 float* raw_ptr = thrust::raw_pointer_cast(D);

 Algorithms

Sort, reduce, transformation, scan, ..

 thrust::transform(D1.begin(), D1.end(), D2.begin(), D2.end(),

 thrust::plus<float>()); // D2 = D1 + D2

C++ STL Features
for CUDA

http://code.google.com/p/thrust/downloads/list

© NVIDIA Corporation 2012

CUDA libs with OpenACC

cufftExecPlan(plan, d_signal, d_signal)

…

#pragma acc data deviceptr(d_signal)

#pragma acc loop independent

for(i=0; i<n; i++) d_signal[i] = 2 * d_signal[i];

© NVIDIA Corporation 2012

Expanded presentation @ GTC On Demand

 CUDA Accelerated GPU Libraries, Peter Messmer

S0629
 nvidia.fullviewmedia.com/gtc2012/0514-A5-S0629.html

 More at www.gputechconf.com/gtcnew/on-demand-gtc.php

© NVIDIA Corporation 2012

Explore the CUDA (Libraries) Ecosystem

CUDA Tools and Ecosystem
described in detail on NVIDIA
Developer Zone:

developer.nvidia.com/

Get a taste of CUDA libs

Test drive your app on the
new K20

See the demos

CUDA/CUDA library experts
on call

http://developer.nvidia.com/cuda-tools-ecosystem

© NVIDIA Corporation 2012

Summary

 CUDA libraries offer high performance for minimal effort

 Robust community of 3rd party libraries

 Familiar interfaces make porting legacy code easy (“drop-in”)

 Enables focus on core IP

OpenACC

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

OpenACC Directives

Program myscience

 ... serial code ...

!$acc kernels

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end kernels

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &

multicore CPUs

OpenACC

Compiler

Hint

Familiar to OpenMP Programmers

main() {

 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

 printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

 double pi = 0.0; long i;

 #pragma acc kernels

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

OpenACC
Open Programming Standard for Parallel Computing

“OpenACC will enable programmers to easily develop portable applications that maximize
the performance and power efficiency benefits of the hybrid CPU/GPU architecture of
Titan.”

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought together by members of the
OpenMP Working Group on Accelerators, as well as many others. We look forward to
releasing a version of this proposal in the next release of OpenMP.”

--Michael Wong, CEO OpenMP Directives Board

OpenACC Standard

Easy: Directives are the easy path to accelerate compute

 intensive applications

Open: OpenACC is an open GPU directives standard, making GPU

 programming straightforward and portable across parallel

 and multi-core processors

Powerful: GPU Directives allow complete access to the massive

 parallel power of a GPU

OpenACC

The Standard for GPU Directives

High-level, with low-level access

Compiler directives to specify parallel regions in C, C++, Fortran

OpenACC compilers offload parallel regions from host to accelerator

Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogeneous programs

Without explicit accelerator initialization,

Without explicit data or program transfers between host and accelerator

Programming model allows programmers to start simple

Enhance with additional guidance for compiler on loop mappings, data

location, and other performance details

Compatible with other GPU languages and libraries

Interoperate between CUDA C/Fortran and GPU libraries

e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Directives: Easy & Powerful

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Small Effort. Real Impact.

Large Oil Company

3x in 7 days

Solving billions of

equations iteratively for oil

production at world’s

largest petroleum

reservoirs

Univ. of Houston

Prof. M.A. Kayali

20x in 2 days

Studying magnetic

systems for innovations in

magnetic storage media

and memory, field sensors,

and biomagnetism

Ufa State Aviation

Prof. Arthur Yuldashev

7x in 4 Weeks

Generating stochastic

geological models of

oilfield reservoirs with

borehole data

Uni. Of Melbourne

Prof. Kerry Black

65x in 2 days

Better understand complex

reasons by lifecycles of

snapper fish in Port Phillip

Bay

GAMESS-UK

Dr. Wilkinson, Prof. Naidoo

10x

Used for various fields

such as investigating

biofuel production and

molecular sensors.

* Achieved using the PGI Accelerator Compiler

Focus on Exposing Parallelism

With Directives, tuning work focuses on exposing parallelism,

which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

S3D
Research more efficient
combustion with next-
generation fuels

CAM-SE
Answer questions about specific
climate change adaptation and
mitigation scenarios

• Tuning top 3 kernels (90% of runtime)
• 3 to 6x faster on CPU+GPU vs. CPU+CPU
• But also improved all-CPU version by 50%

• Tuning top key kernel (50% of runtime)
• 6.5x faster on CPU+GPU vs. CPU+CPU
• Improved performance of CPU version by 100%

OpenACC Specification and Website

Full OpenACC 1.0 Specification available online

http://www.openacc-standard.org

Quick reference card also available

Beta implementations available now from PGI, Cray,

and CAPS

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

Start Now with OpenACC Directives

Free trial license to PGI Accelerator

Tools for quick ramp

www.nvidia.com/gpudirectives

Sign up for a free trial of the

directives compiler now!

http://www.nvidia.com/gpudirectives

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
$!acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
$!acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY
SAXPY in C SAXPY in Fortran

Directive Syntax

Fortran
!$acc directive [clause [,] clause] …]

Often paired with a matching end directive surrounding a

structured code block
!$acc end directive

C
#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

kernels: Your first OpenACC Directive

Each loop executed as a separate kernel on the GPU.

!$acc kernels

 do i=1,n

 a(i) = 0.0

 b(i) = 1.0

 c(i) = 2.0

 end do

 do i=1,n

 a(i) = b(i) + c(i)

 end do

!$acc end kernels

kernel 1

kernel 2

Kernel:
A parallel function

that runs on the GPU

Kernels Construct

Fortran
!$acc kernels [clause …]
 structured block
!$acc end kernels

Clauses
 if(condition)

 async(expression)

 Also, any data clause (more later)

C
#pragma acc kernels [clause …]
 { structured block }

C tip: the restrict keyword

Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

 float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

Limits the effects of pointer aliasing

OpenACC compilers often require restrict to determine

independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict

Complete SAXPY example code

Trivial first example

Apply a loop directive

Learn compiler commands

#include <stdlib.h>

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

 y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

 int N = 1<<20; // 1 million floats

 if (argc > 1)

 N = atoi(argv[1]);

 float *x = (float*)malloc(N * sizeof(float));

 float *y = (float*)malloc(N * sizeof(float));

 for (int i = 0; i < N; ++i) {

 x[i] = 2.0f;

 y[i] = 1.0f;

 }

 saxpy(N, 3.0f, x, y);

 return 0;

}

*restrict:

“I promise y does not alias x”

Compile and run

C:

pgcc –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.c

Fortran:

pgf90 –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.f90

Compiler output:

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c

saxpy:

 8, Generating copyin(x[:n-1])

 Generating copy(y[:n-1])

 Generating compute capability 1.0 binary

 Generating compute capability 2.0 binary

 9, Loop is parallelizable

 Accelerator kernel generated

 9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

 CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

 CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

CUDA

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

GPU Architecture:

Two Main Components

Global memory
Analogous to RAM in a CPU server

Accessible by both GPU and CPU

Currently up to 6 GB

Bandwidth currently up to 150 GB/s for Quadro and
Tesla products

ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)
Perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

D
R

A
M

 I
/F

G

ig
a
 T

h
re

a
d

H

O
S

T
 I

/F

D
R

A
M

 I
/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

L2

MEMORY SYSTEM

Memory hierarchy

Thread:

Registers

Memory hierarchy

Thread:

Registers

Local memory

Local Local Local Local Local Local Local

Memory hierarchy

Thread:

Registers

Local memory

Block of threads:

Shared memory

Memory hierarchy : Shared memory

__shared__ int a[SIZE];

Allocated per thread block, same

lifetime as the block

Accessible by any thread in the

block

Latency: a few cycles

High aggregate bandwidth:

14 * 32 * 4 B * 1.15 GHz / 2 = 1.03 TB/s

Several uses:

Sharing data among threads in a

block

User-managed cache (reducing

gmem accesses)

Memory hierarchy

Thread:

Registers

Local memory

Block of threads:

Shared memory

All blocks:

Global memory

Memory hierarchy : Global memory

Accessible by all threads of any

kernel

Data lifetime: from allocation to

deallocation by host code
cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t

count)

cudaFree (void* pointer)

Latency: 400-800 cycles

Bandwidth: 156 GB/s

Note: requirement on access pattern to

reach peak performance

CUDA PROGRAMMING MODEL

Anatomy of a CUDA C/C++ Application

Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA C/C++ Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

Compiling CUDA C Applications

void serial_function(…) {

 ...

}

void other_function(int ...) {

 ...

}

void saxpy_serial(float ...) {

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

void main() {

 float x;

 saxpy_serial(..);

 ...

}

NVCC

(Open64/LLVM)
CPU Compiler

CUDA C

Functions

CUDA object

files

Rest of C

Application

CPU object

files
Linker

CPU-GPU

Executable

Modify into

Parallel

CUDA C code

CUDA C : C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

Parallel C Code

CUDA C : C with a few keywords

Kernel: function called by the host that executes on the GPU
Can only access GPU memory

No variable number of arguments

No static variables

No recursion

Functions must be declared with a qualifier:
__global__ : GPU kernel function launched by CPU, must return void

__device__ : can be called from GPU functions

__host__ : can be called from CPU functions (default)

__host__ and __device__ qualifiers can be combined

CUDA Kernels

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

CUDA Kernels: Parallel Threads

A kernel is a function executed

on the GPU as an array of

threads in parallel

All threads execute the same

code, can take different paths

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadIdx.x];

float y = func(x);

output[threadIdx.x] = y;

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

GPU

Kernel Execution

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…

…

CUDA-enabled GPU

CUDA thread • Each thread is executed by a

core

CUDA core

CUDA thread block

• Each block is executed by

one SM and does not migrate

• Several concurrent blocks can

reside on one SM depending

on the blocks’ memory

requirements and the SM’s

memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

Thread blocks allow cooperation

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Threads may need to cooperate:

Cooperatively load/store blocks of

memory all will use

Share results with each other or

cooperate to produce a single result

Synchronize with each other

Thread blocks allow scalability

Blocks can execute in any order, concurrently or sequentially

This independence between blocks gives scalability:

A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

 Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel Grid

Launch

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Device with 4 SMs

SM 0 SM 1

SM 2 SM 3

 Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Intro to CUDA C

Memory Management

Memory Spaces

CPU and GPU have separate memory spaces

Data is moved across PCIe bus

Use functions to allocate/set/copy memory on GPU

Very similar to corresponding C functions

Pointers are just addresses

Can’t tell from the pointer value whether the address is on CPU or GPU

Must use cudaPointerGetAttributes(…)

Must exercise care when dereferencing:

Dereferencing CPU pointer on GPU will likely crash

Dereferencing GPU pointer on CPU will likely crash

GPU Memory Allocation / Release

Host (CPU) manages device (GPU) memory

cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc((void**)&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

Note: Device memory from

 GPU point of view

 is also referred to as

 global memory.

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,

enum cudaMemcpyKind direction);

returns after the copy is complete

blocks CPU thread until all bytes have been copied

doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

Non-blocking memcopies are provided

Code Walkthrough 1

Allocate CPU memory for n integers

Allocate GPU memory for n integers

Initialize GPU memory to 0s

Copy from GPU to CPU

Print the values

Code Walkthrough 1
#include <stdio.h>

int main()

{

 int dimx = 16;

 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

Code Walkthrough 1
#include <stdio.h>

int main()

{

 int dimx = 16;

 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);

 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a) {

 printf("couldn't allocate memory\n"); return 1;

 }

Code Walkthrough 1
#include <stdio.h>

int main()

{

 int dimx = 16;

 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);

 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a) {

 printf("couldn't allocate memory\n"); return 1;

 }

 cudaMemset(d_a, 0, num_bytes);

 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

Code Walkthrough 1
#include <stdio.h>

int main()

{

 int dimx = 16;

 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);

 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a) {

 printf("couldn't allocate memory\n"); return 1;

 }

 cudaMemset(d_a, 0, num_bytes);

 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for(int i=0; i<dimx; i++)

 printf("%d ", h_a[i]);

 printf("\n");

 free(h_a);

 cudaFree(d_a);

 return 0;

}

BASIC KERNELS AND EXECUTION

CUDA Programming Model revisited

Parallel code (kernel) is launched and executed on a device by many

threads

Threads are grouped into thread blocks

Parallel code is written for a thread

Each thread is free to execute a unique code path

Built-in thread and block ID variables

Thread Hierarchy

Threads launched for a parallel section are partitioned into thread blocks

Grid = all blocks for a given launch

Thread block is a group of threads that can:

Synchronize their execution

Communicate via shared memory

IDs and Dimensions

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

(Continued)

Threads

3D IDs, unique within a block

Blocks

2D IDs, unique within a grid

Dimensions set at launch time

Can be unique for each grid

Built-in variables

threadIdx, blockIdx

blockDim, gridDim

IDs and Dimensions

Threads

3D IDs, unique within a block

Blocks

2D IDs, unique within a grid

Dimensions set at launch time

Can be unique for each grid

Built-in variables

threadIdx, blockIdx

blockDim, gridDim

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Code executed on GPU

C function with some restrictions:
Can only access GPU memory (0-copy is the exception)

No variable number of arguments

No static variables

No recursion

Must be declared with a qualifier:
__global__ : launched by CPU, cannot be called from GPU must return void

__device__ : called from other GPU functions, cannot be launched by the CPU

__host__ : can be executed by CPU

__host__ and __device__ qualifiers can be combined

– sample use: complex mathematical functions

Code Walkthrough 2

Build on Walkthrough 1

Write a kernel to initialize integers

Copy the result back to CPU

Print the values

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = 7;

}

Kernel Code (executed on GPU)

Launching Kernels on GPU

Launch parameters (triple chevron <<<>>> notation)

grid dimensions (up to 2D), dim3 type

thread-block dimensions (up to 3D), dim3 type

shared memory: number of bytes per block

for extern smem variables declared without size

Optional, 0 by default

stream ID

Optional, 0 by default

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block, 0, 0>>>(...);

kernel<<<32, 512>>>(...);

#include <stdio.h>

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = 7;

}

int main()

{

 int dimx = 16;

 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);

 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a) {

 printf("couldn't allocate memory\n"); return 1;

 }

 cudaMemset(d_a, 0, num_bytes);

 dim3 grid, block;

 block.x = 4;

 grid.x = dimx / block.x;

 kernel<<<grid, block>>>(d_a);

 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for(int i=0; i<dimx; i++)

 printf("%d ", h_a[i]);

 printf("\n");

 free(h_a);

 cudaFree(d_a);

 return 0;

}

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = 7;

}

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 a[idx] = threadIdx.x;

}

Kernel Variations and Output

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

GPU Kernel Execution

How the HW executes kernels

GPU consists of multiple cores (Multiprocessors, up to 30)

Blocks are launched on SMs

Each SM can have multiple concurrent blocks executing

Once a block is started it will not migrate to another SM

Blocks Must Be Independent

Any possible interleaving of blocks should be valid

presumed to run to completion without pre-emption

can run in any order

can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer: OK

shared lock: BAD … any dependence on order easily deadlocks

Independence requirement gives scalability

Blocks Must Be Independent

Facilitates scaling of the same code across many devices

Scalability

COORDINATING GPU AND GPU

EXECUTION

Synchronizing GPU and CPU

All kernel launches are asynchronous

control returns to CPU immediately

kernel starts executing once all previous CUDA calls have completed

cudaMemcpy() is synchronous

control returns to CPU once the copy is complete

copy starts once all previous CUDA calls have completed

cudaThreadSynchronize()

blocks until all previous CUDA calls complete

Outlook: Asynchronous CUDA calls

non-blocking memcopies

ability to overlap memcopies and kernel execution

CUDA Error Reporting to CPU

All CUDA calls return error code:

except kernel launches

cudaError_t type

cudaError_t cudaGetLastError(void)

returns the code for the last error (“no error” has a code)

char* cudaGetErrorString(cudaError_t code)

returns a null-terminated character string describing the error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));

CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)

query the status of an asynchronous CUDA call

block CPU until CUDA calls prior to the event are completed

asyncAPI sample in CUDA SDK

CUDA Event API

cudaEvent_t start, stop;

cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);

Device Management

CPU can query and select GPU devices

cudaGetDeviceCount(int* count)

cudaSetDevice(int device)

cudaGetDevice(int *current_device)

cudaGetDeviceProperties(cudaDeviceProp* prop, int device)

cudaChooseDevice(int *device, cudaDeviceProp* prop)

Outlook: Multi-GPU setup

device 0 is used by default

one CPU thread can control one GPU

multiple CPU threads can control the same GPU

SDK sample simpleMultiGPU

105

Rich Toolchain & Ecosystem for Fast Ramp-up on GPUs

Debuggers
& Profilers

cuda-gdb
NV Visual Profiler

Parallel Nsight
Visual Studio

Allinea
TotalView

MATLAB
Mathematica
NI LabView

pyCUDA

Numerical
Packages

C
C++

Fortran
OpenCL

DirectCompute
Java

Python

GPU Compilers

PGI Accelerator
CAPS HMPP

mCUDA
OpenMP

Parallelizing
Compilers

BLAS
FFT

LAPACK
NPP

Sparse
Imaging

RNG

Libraries

OEM Solution Providers GPGPU Consultants & Training

ANEO GPU Tech

http://www.supermicro.com/
http://en.wikipedia.org/wiki/File:Logo_groupe_bull.jpg
http://images.google.com/imgres?imgurl=http://fishtrain.com/wp-content/uploads/2007/09/cray_logo.gif&imgrefurl=http://fishtrain.com/2007/09/03/nvidias-playbook/&usg=__mBEPjqB6tUo0mps50ld866NdmmI=&h=70&w=160&sz=3&hl=en&start=8&sig2=erIWlru80_C67bxBapde6g&tbnid=ooG9_suq3ywK-M:&tbnh=43&tbnw=98&prev=/images?q=cray+logo&gbv=2&hl=en&ei=aHYpSvyWEo-ctgPd-dXxCg
http://www.google.com/imgres?imgurl=http://blog.taragana.com/wp-content/uploads/2009/05/nec-logo.jpg&imgrefurl=http://blog.taragana.com/index.php/t/east-asia/&h=354&w=354&sz=8&tbnid=YJa5kHMJJ5aMmM:&tbnh=121&tbnw=121&prev=/images?q=NEC+logo&hl=en&usg=__vqs8CIGTn2HFsKXlXcsnKjhGaww=&ei=Q98zSsTUG4vWsgPysrDODg&sa=X&oi=image_result&resnum=2&ct=image

CUDA By the Numbers:

 CUDA Capable GPUs >375,000,000

 Toolkit Downloads >1,000,000

 Active Developers >120,000

 Universities Teaching CUDA >500

 OEMs offer CUDA GPU PCs 100%

GPU Technology Conference 2013
March 18-21 | San Jose, CA
 Why attend GTC?

GTC advances global awareness of the dramatic changes

we’re seeing in science and research, graphics, cloud

computing, game development, and mobile computing,

and how the GPU is central to innovation in all areas.

Ways to participate

 Submit a Research Poster – share your work and gain

 exposure as a thought leader

 Register – learn from the experts and network with your peers

 Exhibit/Sponsor – promote your organization as a key player in

 the GPU ecosystem

Visit www.gputechconf.com

