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NVIDIA CUDA Library Approach 

 Provide basic building blocks 

 Make them easy to use 

 Make them fast 

 

 

 Provides a quick path to GPU acceleration 

 Enables developers to focus on their “secret 

sauce” 

 Ideal for applications that use CPU libraries 
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NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU Accelerated 
Linear Algebra 

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT 

C++ STL Features 
for CUDA 

Sparse Linear 
Algebra 

Building-block 
Algorithms for CUDA IMSL Library 

GPU Accelerated Libraries 
“Drop-in” Acceleration for Your Applications 

http://developer.nvidia.com/gpu-accelerated-libraries
http://code.google.com/p/thrust/downloads/list


© NVIDIA Corporation 2012 

CUDA Math Libraries 

High performance math routines for your applications: 

 cuFFT – Fast Fourier Transforms Library 

 cuBLAS – Complete BLAS Library 

 cuSPARSE – Sparse Matrix Library 

 cuRAND – Random Number Generation (RNG) Library  

 NPP – Performance Primitives for Image & Video Processing 

 Thrust – Templated C++ Parallel Algorithms & Data Structures 

 math.h - C99 floating-point Library 

 

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda  

 

http://www.nvidia.com/getcuda
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Linear Algebra 

Dense Sparse 

cuBLAS 
cuSPARSE 
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cuBLAS Interface 

  

err = cublasIdamax(hdl, n, col, 1, size); 

 

 

err = cublasDscal(hdl, n, val, row, 1); 

 

 

cublas_dgemm(‘N’,’N’,m,n,k,1.0,A,m, 

      B,k,0.0,C,m) 

  

 

  

err = idamax(n, col, 1, size); 

 

 

err = dscal(n, val, row, 1); 

 

 

dgemm(‘N’,’N’,m,n,k,1.0,A,m, 

      B,k,0.0,C,m) 
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Speedup over MKL 

cuBLAS Level 3: >1 TFLOPS double-precision 

• MKL 10.3.6  on Intel SandyBridge E5-2687W @3.10GHz 

• CUBLAS 5.0.30 on K20X, input and output data on device 
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GPU-Callable Libraries 

New in CUDA 5.0 

 

Call cuBLAS library function from GPU code 

 

Supported on K20 and K20X only 

 

Encourages third party libraries 
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cuSPARSE Interface 

  

 

  

err = cusparseDcsrmv(hdl, transa, m, k, 

                     nnz, alpha, desrc, 

                     val, indx, col,  

                     x, beta, y); 

  

mkl_dcsrmv(transa, m, k,  

           alpha, descr,  

           val, indx, pntrb, pntre,  

           x, beta, y); 
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cuSPARSE Performance 

• MKL 10.3.6  on Intel SandyBridge E5-2687W @3.10GHz 

• CUBLAS 5.0.30 on K20X, input and output data on 

device 
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Different Approaches to Linear Algebra 

 CULA tools (dense, sparse) 
 LAPACK based  API 

 Solvers, Factorizations, Least Squares, SVD, 
Eigensolvers 

 Sparse: Krylov solvers, Preconditioners, support 
for various formats 

culaSgetrf(M, N, A, LDA, IPIV, INFO) 
 

 

 ArrayFire 
 Array container object 

 Solvers, Factorizations, SVD, Eigensolvers 
array out = lu(A)  

 

 

 
 

ArrayFire Matrix 
Computations 

EM Photonics 

AccelerEyes 
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Different Approaches to Linear Algebra 

(cont.) 

 MAGMA 

 LAPACK conforming API 

 Magma BLAS and LAPACK 

 High performance by utilizing both GPU and CPU 

magma_sgetrf(M, N, A, LDA, IPIV, INFO) 

 

 LibFlame 

 LAPACK compatibility interface 

 Infrastructure for rapid linear algebra algorithm  

 development 

FLASH_LU_piv(A, p) 

 

 

 

 

 

FLAME Library 

ICL 

UT-Austin 
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Different Approaches to Linear Algebra 

(cont.) 

 CUSP 

 Sparse matrix operations 

 Open source 

 Supports COO, CSR, ELL, DIA, hybrid, etc. 

 Solvers, monitors, preconditioners, etc. 

cusp::krylov::cg(A, x, b); 
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Toolkits are increasingly supporting GPUs 

 PETSc 

 GPU support via extension to Vec  

 and Mat classes 

 Partially dependent on CUSP 

 MPI parallel, GPU accelerated solvers 

 

 Trilinos 

 GPU support in KOKKOS package 

 Used through vector class Tpetra 

 MPI parallel, GPU accelerated solvers 
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Signal Processing 
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Common Tasks in Signal Processing 

Filtering Correlation Segmentation 
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Vector Signal 
Image Processing 

NVIDIA NPP 

Parallel Computing 
Toolbox 

Libraries for GPU Accelerated Signal 
Processing 

ArrayFire Matrix 
Computations 

GPU Accelerated 
Data Analysis 
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cuFFT 

 

cufftPlan2d PlanA; 

 

cufftCreatePlan(N, M, &PlanA, 

CUFFT_C2C); 

 

cufftExecC2C(PlanA, d_data, d_data, 

             CUFFT_FORWARD); 

 

fftw_plan PlanA; 

 

fftw_plan_dft_2d(N, M, &PlanA, 

         data, data, FFT_FORWARD) 

 

fftw_execute_dft(PlanA, data, 

                 data); 

 

 Interface modeled after FFTW 

 

 

 

 

 

 

 

 

 Supports streams and batching (2 and 3-D, too!) for better performance 
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CUFFT: up to 600 GFLOPS 
1D used in audio processing and as a foundation for 2D and 3D FFTs 

• CUFFT 5.0.30 on K20X, input and output data on device 
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Basic concepts of NPP 

 Collection of high-performance GPU processing 

 Non-linear data transforms (point-by-point mult, sqrt, etc.) 

 Support for multi-channel integer and float data 

 

 C API => name disambiguates between data types, flavor  

nppiAdd_32f_C1R (…) 

 “Add” two single channel (“C1”) 32-bit float (“32f”) images, possibly 

masked  by a region of interest (“R”)  
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NPP features a large set of functions 

 Arithmetic and Logical Operations 
 Point-by-point ops, clamp, threshold, etc. 

 

 Geometric transformations 
 Rotate, Warp, Interpolate 

 

 Compression 
 jpeg de/compression 

 

 Image processing 
 Filter, histogram, statistics 

 

NVIDIA NPP 
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cuRAND 
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Random Number Generation on GPU 

 Generating high quality random numbers in parallel is hard 

 Don’t do it yourself, use a library! 

 

 Large suite of generators and distributions 

 XORWOW, MRG323ka, MTGP32, (scrambled) Sobol 

 uniform, normal, log-normal 

 Single and double precision 

 

 

 Two APIs for cuRAND 

 Called from CPU: Ideal when generating large batches of RNGs on GPU 

 Called from GPU: Ideal when RNGs need to be generated inside a kernel 
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cuRAND: Host vs Device API 

 CPU API 

 #include “curand.h” 

 curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT); 

 curandGenerateUniform(gen, d_data, n); 

 

 GPU API 

 #include “curand_kernel.h” 

 __global__ void generate_kernel(curandState *state) { 

      int id = threadIdx.x + blockIdx.x * 64; 

     x = curand(&state[id]); 

 } 

 

 

 

 

Generate set of 

random numbers 

at once 

Generate  random 

numbers per thread 
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cuRAND Performance 
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Thrust: STL-like CUDA Template Library  

 GPU(device) and CPU(host) vector class 
   thrust::host_vector<float> H(10, 1.f); 

   thrust::device_vector<float> D = H; 
 

Iterators 
 thrust::fill(D.begin(), D.begin()+5, 42.f); 

 float* raw_ptr = thrust::raw_pointer_cast(D); 
 

 Algorithms 

Sort, reduce, transformation, scan, ..  

 thrust::transform(D1.begin(), D1.end(), D2.begin(), D2.end(),    

        thrust::plus<float>());   // D2 = D1 + D2 

    

 

 

C++ STL Features 
for CUDA 

http://code.google.com/p/thrust/downloads/list
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CUDA libs with OpenACC 

 

cufftExecPlan(plan, d_signal, d_signal) 

… 

#pragma acc data deviceptr(d_signal) 

#pragma acc loop independent 

for(i=0; i<n; i++) d_signal[i] = 2 * d_signal[i];  
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Expanded presentation @ GTC On Demand 

 CUDA Accelerated GPU Libraries, Peter Messmer 

S0629 
 nvidia.fullviewmedia.com/gtc2012/0514-A5-S0629.html 

 More at www.gputechconf.com/gtcnew/on-demand-gtc.php 
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Explore the CUDA (Libraries) Ecosystem 

CUDA Tools and Ecosystem 
described in detail on NVIDIA 
Developer Zone: 

developer.nvidia.com/  

 

Get a taste of CUDA libs 

Test drive your app on the 
new K20 

 

See the demos 

CUDA/CUDA library experts 
on call 

 

 
 

http://developer.nvidia.com/cuda-tools-ecosystem
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Summary 

 CUDA libraries offer high performance for minimal effort 

 

 Robust community of 3rd party libraries  

 

 Familiar interfaces make porting legacy code easy (“drop-in”) 

 

 Enables focus on core IP 

 

 



OpenACC 
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OpenACC Directives 
  

Program myscience 

   ... serial code ... 

!$acc kernels 

   do k = 1,n1 

      do i = 1,n2 

          ... parallel code ... 

      enddo 

    enddo 

!$acc end kernels  

  ... 

End Program myscience 

CPU GPU 

Your original  

Fortran or C code 

Simple Compiler hints 

Compiler Parallelizes code 

Works on many-core GPUs & 

multicore CPUs 

OpenACC 

Compiler 

Hint 



Familiar to OpenMP Programmers 

main() { 

  double pi = 0.0; long i; 

 

   

  #pragma omp parallel for reduction(+:pi) 

  for (i=0; i<N; i++) 

  { 

    double t = (double)((i+0.05)/N); 

    pi += 4.0/(1.0+t*t); 

  } 

 

  printf(“pi = %f\n”, pi/N); 

} 

CPU 

OpenMP 

main() { 

  double pi = 0.0; long i; 

 

  #pragma acc kernels 

  for (i=0; i<N; i++) 

  { 

    double t = (double)((i+0.05)/N); 

    pi += 4.0/(1.0+t*t); 

  } 

 

printf(“pi = %f\n”, pi/N); 

} 

CPU GPU 

OpenACC 



OpenACC  
Open Programming Standard for Parallel Computing 

“OpenACC will enable programmers to easily develop portable applications that maximize 
the performance and power efficiency benefits of the hybrid CPU/GPU architecture of 
Titan.” 

--Buddy Bland, Titan Project Director, Oak Ridge National Lab 

“OpenACC is a technically impressive initiative brought together by members of the 
OpenMP Working Group on Accelerators, as well as many others. We look forward to 
releasing a version of this proposal in the next release of OpenMP.” 

--Michael Wong, CEO OpenMP Directives Board 

OpenACC Standard 



Easy:  Directives are the easy path to accelerate compute 

  intensive applications 

 

Open:  OpenACC is an open GPU directives standard, making GPU  

  programming straightforward and portable across parallel  

                and multi-core processors 

 

Powerful:  GPU Directives allow complete access to the massive  

  parallel power of a GPU 

 

OpenACC  

The Standard for GPU Directives 



High-level, with low-level access 

Compiler directives to specify parallel regions in C, C++, Fortran 

OpenACC compilers offload parallel regions from host to accelerator 

Portable across OSes, host CPUs, accelerators, and compilers 

Create high-level heterogeneous programs 

Without explicit accelerator initialization,  

Without explicit data or program transfers between host and accelerator 

Programming model allows programmers to start simple 

Enhance with additional guidance for compiler on loop mappings, data 

location, and other performance details 

Compatible with other GPU languages and libraries 

Interoperate between CUDA C/Fortran and GPU libraries  

e.g. CUFFT, CUBLAS, CUSPARSE, etc. 



Directives: Easy & Powerful 

Real-Time Object 
Detection 

Global Manufacturer of Navigation 
Systems 

Valuation of Stock Portfolios 
using Monte Carlo  

Global Technology Consulting Company 

Interaction of Solvents and 
Biomolecules 

University of Texas at San Antonio 

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The 
most important thing is avoiding restructuring of existing code for production applications. ” 

-- Developer at the Global Manufacturer of Navigation Systems  

“ 
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours 



Small Effort.  Real Impact. 

Large Oil Company 

 

3x in 7 days 

 

Solving billions of 

equations iteratively for oil 

production at world’s 

largest petroleum 

reservoirs 

Univ. of Houston 

Prof. M.A. Kayali 

20x in 2 days 

 

Studying magnetic 

systems for innovations in 

magnetic storage media 

and memory, field sensors, 

and biomagnetism 

Ufa State Aviation 

Prof. Arthur Yuldashev 

7x in 4 Weeks 

 

Generating stochastic 

geological models of 

oilfield reservoirs with 

borehole data 

Uni. Of Melbourne 

Prof. Kerry Black 

65x in 2 days 

 

Better understand complex 

reasons by lifecycles of 

snapper fish in Port Phillip 

Bay 

GAMESS-UK 

Dr. Wilkinson, Prof. Naidoo 

10x 

 

Used for various fields 

such as investigating 

biofuel production and 

molecular sensors.  

* Achieved using the PGI Accelerator Compiler 



Focus on Exposing Parallelism 

With Directives, tuning work focuses on exposing parallelism, 

which makes codes inherently better  

Example: Application tuning work using directives for new Titan system at ORNL 

S3D 
Research more efficient 
combustion with next-
generation fuels 

CAM-SE 
Answer questions about specific 
climate change adaptation and 
mitigation scenarios 

• Tuning top 3 kernels (90% of runtime) 
• 3 to 6x faster on CPU+GPU vs. CPU+CPU 
• But also improved all-CPU version by 50% 

• Tuning top key kernel (50% of runtime) 
• 6.5x  faster on CPU+GPU vs. CPU+CPU 
• Improved performance of CPU version by 100% 



OpenACC Specification and Website 

Full OpenACC 1.0 Specification available online 

 

http://www.openacc-standard.org 
 

Quick reference card also available 

 

Beta implementations available now from PGI, Cray, 

and CAPS 

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/


Start Now with OpenACC Directives 

Free trial license to PGI Accelerator 
 

Tools for quick ramp 
 

www.nvidia.com/gpudirectives  

Sign up for a free trial of the 

directives compiler now! 

http://www.nvidia.com/gpudirectives


 
subroutine saxpy(n, a, x, y)  
  real :: x(:), y(:), a 
  integer :: n, i 
$!acc kernels 
  do i=1,n 
    y(i) = a*x(i)+y(i) 
  enddo 
$!acc end kernels 
end subroutine saxpy 
  
 
... 
$ Perform SAXPY on 1M elements 
call saxpy(2**20, 2.0, x_d, y_d) 
... 

 

void saxpy(int n,  

           float a,  

           float *x,  

           float *restrict y) 

{ 

#pragma acc kernels 

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

... 

// Perform SAXPY on 1M elements 

saxpy(1<<20, 2.0, x, y); 

... 

 

 

A Very Simple Exercise: SAXPY 
SAXPY in C SAXPY in Fortran 



Directive Syntax 

Fortran 
!$acc directive [clause [,] clause] …] 

Often paired with a matching end directive surrounding a 

structured  code block 
!$acc end directive 

C 
#pragma acc directive [clause [,] clause] …] 

Often followed by a structured code block 



kernels: Your first OpenACC Directive 

Each loop executed as a separate kernel on the GPU. 
 

!$acc kernels 

  do i=1,n 

     a(i) = 0.0 

     b(i) = 1.0 

     c(i) = 2.0 

  end do 

 

  do i=1,n 

     a(i) = b(i) + c(i) 

  end do 

!$acc end kernels 

 

kernel 1 

kernel 2 

Kernel:  
A parallel function 

that runs on the GPU 



Kernels Construct 

Fortran 
!$acc kernels [clause …] 
    structured block 
!$acc end kernels 

 

Clauses 
 if( condition ) 

 async( expression ) 

 Also, any data clause (more later) 
 

C 
#pragma acc kernels [clause …] 
    { structured block } 

 

 
 



C tip: the restrict keyword 

Declaration of intent given by the programmer to the compiler 

Applied to a pointer, e.g. 

 float *restrict ptr 

Meaning: “for the lifetime of ptr, only it or a value directly derived from it 

(such as ptr + 1) will be used to access the object to which it points”* 

 

Limits the effects of pointer aliasing 

OpenACC compilers often require restrict to determine 

independence 

Otherwise the compiler can’t parallelize loops that access ptr 

Note: if programmer violates the declaration, behavior is undefined 

 
http://en.wikipedia.org/wiki/Restrict 

http://en.wikipedia.org/wiki/Restrict


Complete SAXPY example code 

Trivial first example 

Apply a loop directive 

Learn compiler commands 

#include <stdlib.h> 

 

void saxpy(int n, 

           float a, 

           float *x, 

           float *restrict y) 

{ 

#pragma acc kernels  

for (int i = 0; i < n; ++i) 

    y[i] = a * x[i] + y[i]; 

} 

 

int main(int argc, char **argv) 

{ 

  int N = 1<<20; // 1 million floats 

 

  if (argc > 1) 

    N = atoi(argv[1]); 

 

  float *x = (float*)malloc(N * sizeof(float)); 

  float *y = (float*)malloc(N * sizeof(float)); 

 

  for (int i = 0; i < N; ++i) { 

    x[i] = 2.0f; 

    y[i] = 1.0f; 

  } 

 

  saxpy(N, 3.0f, x, y); 

 

  return 0; 

} 

*restrict:  

“I promise y does not alias x” 



Compile and run 

C: 

pgcc –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.c 

Fortran: 

pgf90 –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.f90 

Compiler output: 

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c 

saxpy: 

      8, Generating copyin(x[:n-1]) 

         Generating copy(y[:n-1]) 

         Generating compute capability 1.0 binary 

         Generating compute capability 2.0 binary 

      9, Loop is parallelizable 

         Accelerator kernel generated 

          9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */ 

             CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy 

             CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy 



CUDA 
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GPU Architecture: 

Two Main Components 

Global memory 
Analogous to RAM in a CPU server 

Accessible by both GPU and CPU 

Currently up to 6 GB 

Bandwidth currently up to 150 GB/s for Quadro and 
Tesla products 

ECC on/off option for Quadro and Tesla products 
 

Streaming Multiprocessors (SMs) 
Perform the actual computations 

Each SM has its own: 

Control units, registers, execution pipelines, caches 
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MEMORY SYSTEM 



Memory hierarchy 

Thread: 

Registers 



Memory hierarchy 

Thread: 

Registers 

Local memory 

Local Local Local Local Local Local Local 



Memory hierarchy 

Thread: 

Registers 

Local memory 

 

Block of threads: 

Shared memory 



Memory hierarchy : Shared memory 

__shared__ int a[SIZE]; 

 

Allocated per thread block, same 

lifetime as the block 

Accessible by any thread in the 

block 

Latency: a few cycles 

High aggregate bandwidth: 

14 * 32 * 4 B * 1.15 GHz / 2 = 1.03 TB/s 

Several uses: 

Sharing data among threads in a 

block 

User-managed cache (reducing 

gmem accesses) 



Memory hierarchy 

Thread: 

Registers 

Local memory 

 

Block of threads: 

Shared memory 

 

All blocks: 

Global memory 



Memory hierarchy : Global memory 

Accessible by all threads of any 

kernel 

Data lifetime: from allocation to 

deallocation by host code 
cudaMalloc (void ** pointer, size_t nbytes) 

cudaMemset (void * pointer, int value, size_t 

count) 

cudaFree (void* pointer) 

Latency: 400-800 cycles 

Bandwidth: 156 GB/s 

Note: requirement on access pattern to 

reach peak performance 



CUDA PROGRAMMING MODEL 



Anatomy of a CUDA C/C++ Application 

Serial code executes in a Host (CPU) thread 

Parallel code executes in many Device (GPU) threads 

across multiple processing elements 

 
CUDA C/C++ Application 

Serial code 

 

Serial code 

 

Parallel code 

 

Parallel code 

 

Device = GPU 

… 

Host = CPU 

Device = GPU 

... 

Host = CPU 



Compiling CUDA C Applications 

void serial_function(… ) { 

  ... 

} 

void other_function(int ... ) { 

  ... 

} 

 

void saxpy_serial(float ... ) { 

   for (int i = 0; i < n; ++i) 

      y[i] = a*x[i] + y[i]; 

} 

 

void main( ) { 

  float x; 

  saxpy_serial(..); 

  ... 

} 

 

NVCC 

(Open64/LLVM) 
CPU Compiler 

CUDA C 

Functions 

CUDA object 

files 

Rest of C 

Application 

CPU object 

files 
Linker 

CPU-GPU 

Executable 

Modify into 

Parallel 

CUDA C code 



CUDA C : C with a few keywords 

void saxpy_serial(int n, float a, float *x, float *y) 

{ 

    for (int i = 0; i < n; ++i) 

        y[i] = a*x[i] + y[i]; 

} 

// Invoke serial SAXPY kernel 

saxpy_serial(n, 2.0, x, y); 

 

__global__ void saxpy_parallel(int n, float a, float *x, float *y) 

{ 

    int i = blockIdx.x*blockDim.x + threadIdx.x; 

    if (i < n)  y[i] = a*x[i] + y[i]; 

} 

// Invoke parallel SAXPY kernel with 256 threads/block 

int nblocks = (n + 255) / 256; 

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y); 

Standard C Code 

Parallel C Code 



CUDA C : C with a few keywords 

Kernel: function called by the host that executes on the GPU 
Can only access GPU memory 

No variable number of arguments 

No static variables 

No recursion 

 

Functions must be declared with a qualifier: 
__global__ : GPU kernel function launched by CPU, must return void 

__device__ : can be called from GPU functions 

__host__    : can be called from CPU functions (default) 

__host__ and __device__ qualifiers can be combined 



CUDA Kernels 

Parallel portion of application: execute as a kernel 

Entire GPU executes kernel, many threads 

 

CUDA threads: 

Lightweight 

Fast switching 

1000s execute simultaneously 

CPU Host Executes functions 

GPU Device Executes kernels 



CUDA Kernels: Parallel Threads 

A kernel is a function executed 

on the GPU as an array of 

threads in parallel 

 

All threads execute the same 

code, can take different paths 

 

Each thread has an ID 

Select input/output data 

Control decisions 

float x = input[threadIdx.x]; 

float y = func(x); 

output[threadIdx.x] = y; 



CUDA Kernels: Subdivide into Blocks 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 

A kernel is executed as a grid of blocks of threads 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 
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GPU 



Kernel Execution 

• Each kernel is executed on 

one device 

• Multiple kernels can execute 

on a device at one time 

… 
… 

… 

CUDA-enabled GPU 

CUDA thread • Each thread is executed by a 

core 

CUDA core 

CUDA thread block 

 

• Each block is executed by 

one SM and does not migrate 

• Several concurrent blocks can 

reside on one SM depending 

on the blocks’ memory 

requirements and the SM’s 

memory resources 

… 

CUDA Streaming 

Multiprocessor 

CUDA kernel grid 

... 



Thread blocks allow cooperation 
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Instruction Cache 

Threads may need to cooperate: 

Cooperatively load/store blocks of 

memory all will use 

Share results with each other or 

cooperate to produce a single result 

Synchronize with each other 



Thread blocks allow scalability 

Blocks can execute in any order, concurrently or sequentially 

This independence between blocks gives scalability: 

A kernel scales across any number of SMs 

Device with 2 SMs 

SM 0 SM 1 

 Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel Grid 

Launch 

Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Device with 4 SMs 

SM 0 SM 1 

 
SM 2 SM 3 

 Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 



Intro to CUDA C 
 

Memory Management 



Memory Spaces 

CPU and GPU have separate memory spaces 

Data is moved across PCIe bus 

Use functions to allocate/set/copy memory on GPU 

Very similar to corresponding C functions 
 

Pointers are just addresses 

Can’t tell from the pointer value whether the address is on CPU or GPU 

Must use cudaPointerGetAttributes(…)  

Must exercise care when dereferencing: 

Dereferencing CPU pointer on GPU will likely crash 

Dereferencing GPU pointer on CPU will likely crash 

 

 



GPU Memory Allocation / Release 

Host (CPU) manages device (GPU) memory 

cudaMalloc (void ** pointer, size_t nbytes) 

cudaMemset (void * pointer, int value, size_t count) 

cudaFree (void* pointer) 

 

int n = 1024; 

int nbytes = 1024*sizeof(int); 

int * d_a = 0; 

cudaMalloc( (void**)&d_a,  nbytes ); 

cudaMemset( d_a, 0, nbytes); 

cudaFree(d_a); 

 

Note:  Device memory from 

 GPU point of view  

  is also referred to as 

 global memory. 



Data Copies 

cudaMemcpy( void *dst,   void *src,   size_t nbytes,           

enum cudaMemcpyKind direction); 

returns after the copy is complete 

blocks CPU thread until all bytes have been copied 

doesn’t start copying until previous CUDA calls complete 

enum cudaMemcpyKind 

cudaMemcpyHostToDevice 

cudaMemcpyDeviceToHost 

cudaMemcpyDeviceToDevice 

Non-blocking memcopies are provided 



Code Walkthrough 1 

Allocate CPU memory for n integers 

Allocate GPU memory for n integers 

Initialize GPU memory to 0s 

Copy from GPU to CPU 

Print the values 



Code Walkthrough 1 
#include <stdio.h> 

 

int main() 
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    int dimx = 16; 

    int num_bytes = dimx*sizeof(int); 

 

    int *d_a=0, *h_a=0; // device and host pointers 
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Code Walkthrough 1 
#include <stdio.h> 

 

int main() 

{ 

    int dimx = 16; 

    int num_bytes = dimx*sizeof(int); 

 

    int *d_a=0, *h_a=0; // device and host pointers 

 

    h_a = (int*)malloc(num_bytes); 

    cudaMalloc( (void**)&d_a, num_bytes ); 

 

    if( 0==h_a || 0==d_a ) { 

        printf("couldn't allocate memory\n"); return 1; 

    } 

 

    cudaMemset( d_a, 0, num_bytes ); 

    cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost ); 

 

    for(int i=0; i<dimx; i++) 

        printf("%d ", h_a[i] ); 

    printf("\n"); 

 

    free( h_a ); 

    cudaFree( d_a ); 

 

    return 0; 

} 



BASIC KERNELS AND EXECUTION 



CUDA Programming Model revisited 

Parallel code (kernel) is launched and executed on a device by many 

threads 

Threads are grouped into thread blocks 

Parallel code is written for a thread 

Each thread is free to execute a unique code path 

Built-in thread and block ID variables 



Thread Hierarchy 

Threads launched for a parallel section are partitioned into thread blocks 

Grid = all blocks for a given launch 

 

Thread block is a group of threads that can: 

Synchronize their execution 

Communicate via shared memory 



IDs and Dimensions 

Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(2, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

Block 

(2, 1) 

(Continued) 

Threads 

3D IDs, unique within a block 

Blocks 

2D IDs, unique within a grid 

Dimensions set at launch time 

Can be unique for each grid 

Built-in variables 

threadIdx, blockIdx 

blockDim, gridDim 
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Code executed on GPU 

C function with some restrictions: 
Can only access GPU memory (0-copy is the exception) 

No variable number of arguments 

No static variables 

No recursion 

Must be declared with a qualifier: 
__global__  : launched by CPU, cannot be called from GPU must return void 

__device__ : called from other GPU functions, cannot be launched by the CPU 

__host__     : can be executed by CPU 

__host__ and __device__ qualifiers can be combined 

– sample use: complex mathematical functions  



Code Walkthrough 2 

Build on Walkthrough 1 

Write a kernel to initialize integers 

Copy the result back to CPU 

Print the values 



 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = 7; 

} 
 

Kernel Code (executed on GPU) 



Launching Kernels on GPU 

Launch parameters (triple chevron <<<>>> notation) 

grid dimensions (up to 2D), dim3 type 

thread-block dimensions (up to 3D), dim3 type 

shared memory: number of bytes per block 

for extern smem variables declared without size 

Optional, 0 by default 

stream ID 

Optional, 0 by default 

dim3 grid(16, 16); 

dim3 block(16,16); 

kernel<<<grid, block, 0, 0>>>(...); 

kernel<<<32, 512>>>(...); 

 



#include <stdio.h> 

 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = 7; 

} 

 
int main() 

{ 

    int dimx = 16; 

    int num_bytes = dimx*sizeof(int); 

 

    int *d_a=0, *h_a=0; // device and host pointers 

 

    h_a = (int*)malloc(num_bytes); 

    cudaMalloc( (void**)&d_a, num_bytes ); 

 

    if( 0==h_a || 0==d_a )  { 

        printf("couldn't allocate memory\n"); return 1; 

    } 

 

    cudaMemset( d_a, 0, num_bytes ); 

 

    dim3 grid, block; 

    block.x = 4; 

    grid.x  = dimx / block.x; 

 

    kernel<<<grid, block>>>( d_a ); 
 
    cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost ); 

 

    for(int i=0; i<dimx; i++) 

        printf("%d ", h_a[i] ); 

    printf("\n"); 

 

    free( h_a ); 

    cudaFree( d_a ); 

 

    return 0; 

} 



 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = 7; 

} 

 

 

 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = blockIdx.x; 

} 

 

 

 

__global__ void kernel( int *a ) 

{ 

    int idx = blockIdx.x*blockDim.x + threadIdx.x; 

    a[idx] = threadIdx.x; 

} 

Kernel Variations and Output 

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 



GPU Kernel Execution 

How the HW executes kernels 

GPU consists of multiple cores (Multiprocessors, up to 30) 

Blocks are launched on SMs 

Each SM can have multiple concurrent blocks executing 

Once a block is started it will not migrate to another SM 



Blocks Must Be Independent 

Any possible interleaving of blocks should be valid 

presumed to run to completion without pre-emption 

can run in any order 

can run concurrently OR sequentially 

 

Blocks may coordinate but not synchronize 

shared queue pointer: OK 

shared lock: BAD … any dependence on order easily deadlocks 

 

Independence requirement gives scalability 



Blocks Must Be Independent 

Facilitates scaling of the same code across many devices  

 

Scalability 



COORDINATING GPU AND GPU 

EXECUTION 



Synchronizing GPU and CPU 

All kernel launches are asynchronous 

control returns to CPU immediately 

kernel starts executing once all previous CUDA calls have completed 

cudaMemcpy() is synchronous 

control returns to CPU once the copy is complete 

copy starts once all previous CUDA calls have completed 

cudaThreadSynchronize() 

blocks until all previous CUDA calls complete 

Outlook: Asynchronous CUDA calls 

non-blocking memcopies 

ability to overlap memcopies and kernel execution 



CUDA Error Reporting to CPU 

All CUDA calls return error code: 

except kernel launches 

cudaError_t type 

cudaError_t cudaGetLastError(void) 

returns the code for the last error (“no error” has a code) 

char* cudaGetErrorString(cudaError_t code) 

returns a null-terminated character string describing the error 

 

printf(“%s\n”, cudaGetErrorString( cudaGetLastError() ) ); 



CUDA Event API 

Events are inserted (recorded) into CUDA call streams 

Usage scenarios: 

measure elapsed time for CUDA calls (clock cycle precision) 

query the status of an asynchronous CUDA call 

block CPU until CUDA calls prior to the event are completed 

asyncAPI sample in CUDA SDK 



CUDA Event API 

cudaEvent_t start, stop; 

cudaEventCreate(&start);   cudaEventCreate(&stop); 

cudaEventRecord(start, 0); 

kernel<<<grid, block>>>(...); 

cudaEventRecord(stop, 0); 

cudaEventSynchronize(stop); 

float et; 

cudaEventElapsedTime(&et, start, stop); 

cudaEventDestroy(start);   cudaEventDestroy(stop); 

 



Device Management 

CPU can query and select GPU devices 

cudaGetDeviceCount( int* count ) 

cudaSetDevice( int device ) 

cudaGetDevice( int  *current_device ) 

cudaGetDeviceProperties( cudaDeviceProp* prop, int  device ) 

cudaChooseDevice( int *device, cudaDeviceProp* prop ) 

Outlook: Multi-GPU setup 

device 0 is used by default 

one CPU thread can control one GPU 

multiple CPU threads can control the same GPU  

SDK sample simpleMultiGPU 
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Rich Toolchain & Ecosystem for Fast Ramp-up on GPUs 

Debuggers 
& Profilers 

cuda-gdb 
NV Visual Profiler  

Parallel Nsight  
Visual Studio 

Allinea 
TotalView 

MATLAB 
Mathematica 
NI LabView 

pyCUDA 
 

Numerical 
Packages 

C 
C++ 

Fortran 
OpenCL 

DirectCompute 
Java 

Python 

GPU Compilers 

PGI Accelerator 
CAPS HMPP 

mCUDA 
OpenMP 

Parallelizing 
Compilers 

BLAS 
FFT 

LAPACK 
NPP 

Sparse 
Imaging 

RNG 

Libraries 

OEM Solution Providers GPGPU Consultants & Training 

ANEO GPU Tech 

http://www.supermicro.com/
http://en.wikipedia.org/wiki/File:Logo_groupe_bull.jpg
http://images.google.com/imgres?imgurl=http://fishtrain.com/wp-content/uploads/2007/09/cray_logo.gif&imgrefurl=http://fishtrain.com/2007/09/03/nvidias-playbook/&usg=__mBEPjqB6tUo0mps50ld866NdmmI=&h=70&w=160&sz=3&hl=en&start=8&sig2=erIWlru80_C67bxBapde6g&tbnid=ooG9_suq3ywK-M:&tbnh=43&tbnw=98&prev=/images?q=cray+logo&gbv=2&hl=en&ei=aHYpSvyWEo-ctgPd-dXxCg
http://www.google.com/imgres?imgurl=http://blog.taragana.com/wp-content/uploads/2009/05/nec-logo.jpg&imgrefurl=http://blog.taragana.com/index.php/t/east-asia/&h=354&w=354&sz=8&tbnid=YJa5kHMJJ5aMmM:&tbnh=121&tbnw=121&prev=/images?q=NEC+logo&hl=en&usg=__vqs8CIGTn2HFsKXlXcsnKjhGaww=&ei=Q98zSsTUG4vWsgPysrDODg&sa=X&oi=image_result&resnum=2&ct=image


CUDA By the Numbers: 

   CUDA Capable GPUs >375,000,000 

  Toolkit Downloads >1,000,000 

   Active Developers >120,000 

   Universities Teaching CUDA >500 

   OEMs offer CUDA GPU PCs 100% 



 
GPU Technology Conference 2013 
March 18-21 | San Jose, CA 
 Why attend GTC? 

GTC advances global awareness of the dramatic changes 

we’re seeing in science and research, graphics, cloud  

computing, game development, and mobile computing,  

and how the GPU is central to innovation in all areas. 

 

 

Ways to participate 

 Submit a Research Poster – share your work and gain  

   exposure as a thought leader 

 Register – learn from the experts and network with your peers 

 Exhibit/Sponsor – promote your organization as a key player in  

   the GPU ecosystem 

Visit www.gputechconf.com  


