
CUDA C/C++ BASICS

NVIDIA Corporation

What is CUDA?

CUDA Architecture

Expose GPU parallelism for general-purpose computing

Retain performance

CUDA C/C++

Based on industry-standard C/C++

Small set of extensions to enable heterogeneous programming

Straightforward APIs to manage devices, memory etc.

This session introduces CUDA C/C++

Introduction to CUDA C/C++

What will you learn in this session?

Start from “Hello World!”

Write and launch CUDA C/C++ kernels

Manage GPU memory

Manage communication and synchronization

Prerequisites

You (probably) need experience with C or C++

You don’t need GPU experience

You don’t need parallel programming experience

You don’t need graphics experience

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

HELLO WORLD!

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Heterogeneous Computing

 Terminology:

 Host The CPU and its memory (host memory)

 Device The GPU and its memory (device memory)

Host Device

Heterogeneous Computing

#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);

}

int main(void) {

 int *in, *out; // host copies of a, b, c

 int *d_in, *d_out; // device copies of a, b, c

 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values

 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies

 cudaMalloc((void **)&d_in, size);

 cudaMalloc((void **)&d_out, size);

 // Copy to device

 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

 // Copy result back to host

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(in); free(out);

 cudaFree(d_in); cudaFree(d_out);

 return 0;

}

serial code

parallel code

serial code

parallel fn

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCI Bus

Hello World!

 int main(void) {

 printf("Hello World!\n");

 return 0;

 }

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used to

compile programs with no device code

Output:

$ nvcc

hello_world.cu

$ a.out

Hello World!

$

Hello World! with Device Code

 __global__ void mykernel(void) {

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

 Two new syntactic elements…

Hello World! with Device Code

 __global__ void mykernel(void) {

 }

CUDA C/C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler

gcc, cl.exe

Hello World! with Device Code

 mykernel<<<1,1>>>();

Triple angle brackets mark a call from host code to device code

Also called a “kernel launch”

We’ll return to the parameters (1,1) in a moment

That’s all that is required to execute a function on the GPU!

Setup your environment/Hello world

Login to mcmillan.princeton.edu with your guest account

module load cudatoolkit/4.2.9

export CUDA_VISIBLE_DEVICES=<number>

I will assign you this number so that we utilize all the GPUs evenly

cp –r ~jonathan.bentz/Princeton .

Each coding project in a separate folder

cd exercises/cuda/hello_world

“make” to build the code

Try building/running the hello_world solution.

Screenshot

Hello World! with Device Code

 __global__ void mykernel(void) {

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

mykernel() does nothing, somewhat

anticlimactic!

Output:

$ nvcc hello.cu

$ a.out

Hello World!

$

Parallel Programming in CUDA C/C++

 But wait… GPU computing is about massive

parallelism!

 We need a more interesting example…

 We’ll start by adding two integers and build up

to vector addition

a b c

Addition on the Device

A simple kernel to add two integers

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

As before __global__ is a CUDA C/C++ keyword meaning

add() will execute on the device

add() will be called from the host

Addition on the Device

Note that we use pointers for the variables

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

add() runs on the device, so a, b and c must point to device

memory

We need to allocate memory on the GPU

Memory Management

Host and device memory are separate entities

Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

Host pointers point to CPU memory

May be passed to/from device code

May not be dereferenced in device code

Simple CUDA API for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents malloc(), free(), memcpy()

Addition on the Device: add()

Returning to our add() kernel

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

Let’s take a look at main()…

Open exercises/cuda/simple_add/kernel.cu

Fill-in missing code as indicated, wherever you see “FIXME”

Comments tell you what to do.

If something isn’t clear, PLEASE ASK!

Addition on the Device: main()

 int main(void) {

 int a, b, c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = sizeof(int);

 // Allocate space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Setup input values

 a = 2;

 b = 7;

Addition on the Device: main()

 // Copy inputs to device

 cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<1,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

RUNNING IN PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Moving to Parallel

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

By using blockIdx.x to index into the array, each block handles a

different index

Vector Addition on the Device

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

Vector Addition on the Device: add()

Returning to our parallelized add() kernel

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

Let’s take a look at main()…

Open exercises/cuda/simple_add_blocks/kernel.cu

Fill-in missing code as indicated.

Should be clear from comments where you need to add some code

Need to replace “FIXME” with the proper piece of code.

Vector Addition on the Device: main()

 #define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

Vector Addition on the Device: main()

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks

 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

Review (1 of 2)

Difference between host and device

Host CPU

Device GPU

Using __global__ to declare a function as device code

Executes on the device

Called from the host

Passing parameters from host code to a device function

Review (2 of 2)

Basic device memory management
cudaMalloc()

cudaMemcpy()

cudaFree()

Launching parallel kernels

Launch N copies of add() with add<<<N,1>>>(…);

Use blockIdx.x to access block index

INTRODUCING THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

CUDA Threads

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main()…

Open exercises/cuda/simple_add_threads/kernel.cu

__global__ void add(int *a, int *b, int *c) {

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

Vector Addition Using Threads: main()

 #define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

Vector Addition Using Threads: main()

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads

 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

COMBINING THREADS

AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Combining Blocks and Threads

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

With M threads/block a unique index for each thread is given by:
 int index = threadIdx.x + blockIdx.x * M;

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Indexing Arrays: Example

Which thread will operate on the red element?

 int index = threadIdx.x + blockIdx.x * M;

 = 5 + 2 * 8;

 = 21;

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

Vector Addition with Blocks and Threads

What changes need to be made in main()?

Open cuda/simple_add_blocks_threads/kernel.cu

Use the built-in variable blockDim.x for threads per block

 int index = threadIdx.x + blockIdx.x * blockDim.x;

Combined version of add() to use parallel threads and parallel

blocks
__global__ void add(int *a, int *b, int *c) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 c[index] = a[index] + b[index];

}

Addition with Blocks and Threads: main()

 #define N (2048*2048)

 #define THREADS_PER_BLOCK 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

Addition with Blocks and Threads: main()

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

Handling Arbitrary Vector Sizes

Update the kernel launch:
 add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 if (index < n)

 c[index] = a[index] + b[index];

}

Why Bother with Threads?

Threads seem unnecessary

They add a level of complexity

What do we gain?

Unlike parallel blocks, threads have mechanisms to:

Communicate

Synchronize

To look closer, we need a new example…

Review

Launching parallel kernels

Launch N copies of add() with add<<<N/M,M>>>(…);

Use blockIdx.x to access block index

Use threadIdx.x to access thread index within block

Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

COOPERATING THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

1D Stencil

Consider applying a 1D stencil to a 1D array of elements

Each output element is the sum of input elements within a radius

If radius is 3, then each output element is the sum of 7 input

elements:

radius radius

Implementing Within a Block

Each thread processes one output element

blockDim.x elements per block

Input elements are read several times

With radius 3, each input element is read seven times

Simple Stencil in 1d

Open cuda/simple_stencil/kernel.cu

Finish the kernel and the kernel launch

Each thread calculates one stencil value

Reads 2*RADIUS + 1 values

Inserted GPU timers into code to time the execution of the kernel

Try various sizes of N, RADIUS, BLOCK

Time a large (over a million) value of N with a RADIUS of 7

Can we do better?

Input elements are read multiple times

With RADIUS=3, each input element is read seven times!

Neighbouring threads read most of the same elements.

Thread 7 reads elements 4 through 10

Thread 8 reads elements 5 through 11

Can we avoid redundant reading of data?

Sharing Data Between Threads

Terminology: within a block, threads share data via shared memory

Extremely fast on-chip memory, user-managed

Declare using __shared__, allocated per block

Data is not visible to threads in other blocks

Implementing With Shared Memory

Cache data in shared memory (user managed scratch-pad)

Read (blockDim.x + 2 * radius) input elements from global memory to

shared memory

Compute blockDim.x output elements

Write blockDim.x output elements to global memory

Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] =

 in[gindex + BLOCK_SIZE];

 }

Stencil Kernel

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

Simple Stencil 1d with shared memory

Open cuda/simple_stencil_smem/kernel.cu

Run the code. It will build/run without modification.

If Errors occur, each offending element will be printed to the screen

What is the result with N=10,000 and BLOCK=32?

What is the result with N=10,000 and BLOCK=64?

Why?

Data Race!

 The stencil example will not work…

 Suppose thread 15 reads the halo before thread 0 has fetched it…

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 int result = 0;

 result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

__syncthreads()

void __syncthreads();

Synchronizes all threads within a block

Used to prevent RAW / WAR / WAW hazards

All threads must reach the barrier

In conditional code, the condition must be uniform across the block

Insert __syncthreads() into the kernel in the proper location

Compare timing of previous simple stencil with the current shared

memory implementation for same (large N) and BLOCK=512

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS] = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

Stencil Kernel

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

Review (1 of 2)

Launching parallel threads

Launch N blocks with M threads per block with kernel<<<N,M>>>(…);

Use blockIdx.x to access block index within grid

Use threadIdx.x to access thread index within block

Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

Review (2 of 2)

Use __shared__ to declare a variable/array in shared memory

Data is shared between threads in a block

Not visible to threads in other blocks

Using large shared mem size impacts number of blocks that can be

scheduled on an SM (48K total smem size)

Use __syncthreads() as a barrier

Use to prevent data hazards

MANAGING THE DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Coordinating Host & Device

Kernel launches are asynchronous

Control returns to the CPU immediately

CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed

Reporting Errors

All CUDA API calls return an error code (cudaError_t)

Error in the API call itself

 OR

Error in an earlier asynchronous operation (e.g. kernel)

Get the error code for the last error:
 cudaError_t cudaGetLastError(void)

Get a string to describe the error:
 char *cudaGetErrorString(cudaError_t)

 printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Device Management

Application can query and select GPUs
 cudaGetDeviceCount(int *count)

 cudaSetDevice(int device)

 cudaGetDevice(int *device)

 cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple threads can share a device

A single thread can manage multiple devices

 cudaSetDevice(i) to select current device

 cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support

Introduction to CUDA C/C++

What have we learned?

Write and launch CUDA C/C++ kernels

__global__, blockIdx.x, threadIdx.x, <<<>>>

Manage GPU memory

cudaMalloc(), cudaMemcpy(), cudaFree()

Manage communication and synchronization

__shared__, __syncthreads()

cudaMemcpy() vs cudaMemcpyAsync(), cudaDeviceSynchronize()

Compute Capability

The compute capability of a device describes its architecture, e.g.

Number of registers

Sizes of memories

Features & capabilities

The following presentations concentrate on Fermi devices

Compute Capability >= 2.0

Compute

Capability

Selected Features

(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses, atomics 10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P,

concurrent kernels/copies, function pointers, recursion

20-series

IDs and Dimensions

A kernel is launched as a grid of

blocks of threads

blockIdx and threadIdx

are 3D

We showed only one
dimension (x)

Built-in variables:
threadIdx

blockIdx

blockDim

gridDim

Device

Grid 1

Block

(0,0,0)

Block

(1,0,0)

Block

(2,0,0)

Block

(1,1,0)

Block

(2,1,0)

Block

(0,1,0)

Block (1,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(4,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(4,1,0)

Thread

(0,2,0)

Thread

(1,2,0)

Thread

(2,2,0)

Thread

(3,2,0)

Thread

(4,2,0)

Textures

Read-only object

Dedicated cache

Dedicated filtering hardware

(Linear, bilinear, trilinear)

Addressable as 1D, 2D or 3D

Out-of-bounds address handling

(Wrap, clamp)

0 1 2 3
0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

Topics we skipped

We skipped some details, you can learn more:

CUDA Programming Guide

CUDA Zone – tools, training, webinars and more

http://developer.nvidia.com/cuda

Need a quick primer for later:

Multi-dimensional indexing

Textures

Questions?

Global Memory

Throughput

Fermi Memory Hierarchy Review

Local storage

Each thread has own local storage

Mostly registers (managed by the compiler)

Shared memory / L1

Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1

Shared memory is accessible by the threads in the same threadblock

Very low latency

Very high throughput: 1+ TB/s aggregate

L2

All accesses to global memory go through L2, including copies to/from CPU host

Global memory

Accessible by all threads as well as host (CPU)

High latency (400-800 cycles)

Throughput: up to 177 GB/s

GMEM Optimization Guidelines

Strive for perfect coalescing

Align starting address (may require padding)

A warp should access within a contiguous region

Have enough concurrent accesses to saturate the bus

Process several elements per thread

Multiple loads get pipelined

Indexing calculations can often be reused

Launch enough threads to maximize throughput

Latency is hidden by switching threads (warps)

Try L1 and caching configurations to see which one works best

Caching vs non-caching loads (compiler option)

16KB vs 48KB L1 (CUDA call)

Shared Memory

Shared Memory
Uses:

Inter-thread communication within a block

Cache data to reduce redundant global memory accesses

Use it to improve global memory access patterns

Organization:

32 banks, 4-byte wide banks

Successive 4-byte words belong to different banks

If you use shared memory in a kernel, you should almost always
use __syncthreads() to avoid race conditions!!!

Bank Addressing Examples

No Bank Conflicts No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

Shared Memory: Avoiding Bank Conflicts

32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

2 1 0

31 2 1 0

31 2 1 0

warps:

0 1 2 31

Bank 0

Bank 1

 …

Bank 31
2 0 1

31

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

31 2 1 0

31 2 1 0

31 2 1 0

warps:

0 1 2 31 padding

Bank 0

Bank 1

 …

Bank 31

31 2 0 1

Matrix Transpose

Matrix Transpose

Open exercises/naive_transpose/kernel.cu
Defined INDX(row,col,ld) to translate 2d coordinates to 1d index

Column-major double precision elems
Out-of-place transpose

Naïve implementation:
Square threadblocks

Each thread:

Computes its global x and y coordinates

Reads from (x,y), writes to (y,x)

©

2012,

NVIDI

A

85

WRITE READ

thread X

thread (X+1)

naive_transpose

Use INDX(row,col,ld) to translate 2d coordinates to 1d index

Defined as MACRO at top of source code

Finish the kernel and kernel launch parameters

Each thread transposes one element from A to C, out-of-place

Kernel is compared to a CPU-side transpose

Both performance and answers are compared

Once you get correct answers in your kernel:

Measure performance of kernel with N=1024 and N=4096

NVIDIA Visual Profiler

nvvp &

Choose File->New Session

Choose exercises/cuda/naïve_transpose/x.transpose

Choose timeout = 60 seconds.

Uncheck “Run Analysis” then click “Finish”

Click “Analyze All”

Profiler will execute the code multiple times to record all performance

counters

In the timeline windows, click on the kernel of interest

Profiler results?

What does the profiler output show us?

Why are load and store performance so divergent?

Ideas for potential improvement?

Cause and Remedy

Cause:

Due to nature of operation, one of the accesses (read or write) will be at

large strides, i.e., uncoalesced!

32 doubles (256 bytes) in this case (on a warp basis)

Thus, bandwidth will be wasted as only a portion of a transaction is used by

the application

Remedy

Stage accesses through shared memory

A threadblock:

Reads a tile from GMEM to SMEM

Transposes the tile in SMEM

Write a tile, in a coalesced way, from SMEM to GMEM

©

2012,

NVIDI

A

89

Smem_transpose/kernel.cu

Finish the kernel code

Particularly the index calculations for the transpose.

One thread block cooperatively operates on a block of the matrix

Index calculations need to know which block I am in the full matrix

HINT: You are using shared memory. What should you include

when using smem?

Once you get correct answers in your kernel:

Measure performance of kernel with N=1024 and N=4096

Visual Profiler

Run the profiler

What are the results?

What is happening?

How to fix it?

Hint: requires adding only 2 characters to the kernel source!

SMEM bank conflicts

Recall that smem has 32 banks of 4 bytes each

When multiple threads IN THE SAME WARP access the same bank,

a conflict occurs and performance is affected negatively

Consider __shared__ double s[16][16]

Read/write s[tidx][tidy] (each read/write requires two 4byte banks)

tidx are consecutive threads

They are accessing the s[][] array with stride of 16 doubles

16 doubles == 128 bytes == 32 banks * 4 bytes.

s[0][tidy] accesses banks 0,1 to grab its 8 byte double

s[1][tidy] accesses banks 0,1 to grab its 8 byte double

16 threads are all accessing banks 0,1 in the same transaction!!!

SMEM bank conflicts cont’d

tidx from 0 to 16 all access banks 0,1

16 way bank conflict! VERY BAD for performance

How to remedy?

Pad shared memory.

__shared__ double s[16][17]

Now the stride between success tidx is 17 doubles,

i.e., 17 * 8bytes = 136 bytes

More importantly, 136 byte stride will be 32 + 2 banks

s[0][tidy] accesses banks 0,1 to grab its 8 byte double

s[1][tidy] accesses banks 2,3 to grab its 8 byte double

16 threads are all accessing different banks!!!

Still in smem_transpose/kernel.cu

Remedy the smem bank conflicts

Once you get correct answers in your kernel:

Measure performance of kernel with N=1024 and N=4096

Run with the profiler again.

Verify the bank conflicts have gone away

Review

SMEM often used to alleviate poor GMEM accesses

Uncoalesced loads/stores were solved using SMEM

SMEM almost always requires __syncthreads()

SMEM often requires an analysis to minimize bank conflicts.

Use NVIDIA Visual Profiler to identify performance bottlenecks

Matrix multiply

Matrix Multiply

The foundation of lots of linear algebra

High compute/communication ratio

Access O(N^2) data and execute O(N^3) operations

Relatively simple algorithm

Great teaching algorithm

Well-written code shows off the power of CPU and/or GPU

Matrix Multiply cont’d

Matrix A with M rows and K cols

Matrix B with K rows and N cols

A * B = C

C has M rows and N cols

𝑪𝒊,𝒋 = 𝑨𝒊,𝒌
𝑲
𝒌 ∗ 𝑩𝒌,𝒋

The dot product of the ith row of A and jth col of B yields the i,j element of C

matmul_CPU

Open matmul_CPU/kernel.cu

CPU-only example

Complete “host_dgemm” function

Finish the index calculations for the arithmetic in inner loop.

What is the performance of your naïve CPU matrix multiply?

DGEMM is often measured in terms of percentage of peak.

Intel X5690@3.47GHz has peak of 3.47GHz * 4 DP flops/clock = 13.88GF

What is your code’s percent of peak?

Matmul on GPU

In reality we’d never write a matmul for GPU

Call NVIDIA’s CUBLAS library

Open matmul_CUBLAS/kernel.cu

Code should run without modification.

Run the code with N=1024 and record performance of CUBLAS

dgemm

How does it compare to your naïve CPU code?

Matmul on GPU

We will write matrix multiply on GPU

Use square matrices for simplicity

Use powers of 2 so we can avoid writing the extra code for end

cases

Write three versions utilizing successively advanced optimization

ideas, based in part on profiling results we obtain

matmul_GPU_naive

Open matmul_GPU_naive/kernel.cu

Finish the kernel

Add the appropriate index calculations to the

kernel

Answers are compared against CUBLAS

You should see an error message printed to the

console if your results are suspect!

Record performance of N=1024

How does it compare to CUBLAS?

Visual profiler

Profile the code with Visual Profiler

What are some performance considerations?

Consider two successive threads

How is global memory accessed for matrices A, B, C?

What is a choice we have if we wish to remedy uncoalesced GMEM

accesses?

Strategies to improve

Use shared memory to achieve better coalescing

Allows us to share data among threads

Reduces number of times data must be read because we reuse from smem

rather than fetch from GMEM each time.

Similar to the matrix transpose example:

Load block of A into SMEM

Load block of B into SMEM

Compute block of C from A and B in SMEM

Open matmul_GPU_shmem/kernel.cu

#pragma unroll to unroll loops of predefined trip count

matmul_GPU_shmem

For each block in K direction

Load block of A into SMEM

Load block of B into SMEM

Use these blocks to contribute

to block of C

When using SMEM, what

function should you include???

Record performance of

N=1024

How does it compare to naïve

kernel?

Why???

Visual profiler

We solved the uncoalesced memory issue.

What does profiler show us?

What is the fix for this?

What is the performance with this change?

Algorithmic improvements

Currently one thread block calculates one block of C

By extension one thread only calculates one element of C

A natural extension is to try having one thread block calculate multiple

portions of C and thus one thread calculating multiple values of C

This would reduce the number of times A and B are fetched from GMEM

and increase the computational intensity of the thread block

A priori not obvious how many blocks C should calculate

Write a new kernel that does this idea in a general fashion

Experiment with different block sizes etc.

MAGMA from UTK http://icl.cs.utk.edu/magma/ has done

extensive work on dense linear algebra

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/

matmul_GPU_shmem1

Open matmul_gpu_shmem1/kernel.cu

Lots of #define at the top of the source code

Pay special attention to the defined constants and how they interact with

each other!

Keep TX=TY=BK=16

TBX=TBY=16 and NX=NY=1 is equivalent to the previous kernel.

Complete the kernel with some important reminders

What function should you automatically use with SMEM???

How can you avoid those nasty bank conflicts in SMEM???

Refer to diagram in cheatsheet for pictorial view of algorithm

Lots of code to fill in. This one is challenging!!!

http://www.netlib.org/lapack/lawnspdf/lawn227

.pdf

matmul_GPU_shmem1

Keep N=1024

Try different values of TBX, TBY, NX, NY

What is the best combination?

Are there multiple “best” values?

With the best combination you found, record performance for

N=1024

How does it differ with padded or unpadded SMEM?

How does it compare to the CUBLAS result we saw earlier?

Review

Compute intensity (arithmetic ops/memory reference) on a per-

thread basis impacts performance

Avoiding SMEM bank conflicts is critical

Visual Profiler is helpful to identify performance issues

Final Wrap-up

Optimizations we looked at

Coalesced global memory accesses

Shared memory usage

__syncthreads()

Padding to avoid bank conflicts

Appropriate arithmetic intensity

Things we didn’t examine

Optimizations of host->device data transfer

Overlap of communication/computation

Texture memory usage

Multi-GPU programming

Questions?

