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What is CUDA? 

CUDA Architecture 

Expose GPU parallelism for general-purpose computing 

Retain performance 

 

CUDA C/C++ 

Based on industry-standard C/C++ 

Small set of extensions to enable heterogeneous programming 

Straightforward APIs to manage devices, memory etc. 

 

This session introduces CUDA C/C++ 



Introduction to CUDA C/C++ 

What will you learn in this session? 

Start from “Hello World!” 

Write and launch CUDA C/C++ kernels 

Manage GPU memory 

Manage communication and synchronization 



Prerequisites 

You (probably) need experience with C or C++ 

 

You don’t need GPU experience 

 

You don’t need parallel programming experience 

 

You don’t need graphics experience 
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Heterogeneous Computing 

 Terminology: 

 Host The CPU and its memory (host memory) 

 Device The GPU and its memory (device memory) 

Host Device 



Heterogeneous Computing 

#include <iostream> 

#include <algorithm> 

 

using namespace std; 

 

#define N          1024 

#define RADIUS     3 

#define BLOCK_SIZE 16 

 

__global__ void stencil_1d(int *in, int *out) { 

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 

 int gindex = threadIdx.x + blockIdx.x * blockDim.x; 

 int lindex = threadIdx.x + RADIUS; 

 

 // Read input elements into shared memory 

 temp[lindex] = in[gindex]; 

 if (threadIdx.x < RADIUS) { 

  temp[lindex - RADIUS] = in[gindex - RADIUS]; 

  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

 } 

 

 // Synchronize (ensure all the data is available) 

 __syncthreads(); 

 

 // Apply the stencil 

 int result = 0; 

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

  result += temp[lindex + offset]; 

 

 // Store the result 

 out[gindex] = result; 

} 

 

void fill_ints(int *x, int n) { 

 fill_n(x, n, 1); 

} 

 

int main(void) { 

 int *in, *out;              // host copies of a, b, c 

 int *d_in, *d_out;          // device copies of a, b, c 

 int size = (N + 2*RADIUS) * sizeof(int); 

 

 // Alloc space for host copies and setup values 

 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS); 

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS); 

  

 // Alloc space for device copies 

 cudaMalloc((void **)&d_in,  size); 

 cudaMalloc((void **)&d_out, size); 

 

 // Copy to device 

 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice); 

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice); 

 

 // Launch stencil_1d() kernel on GPU 

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS); 

 

 // Copy result back to host 

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); 

 

 // Cleanup 

 free(in); free(out); 

 cudaFree(d_in); cudaFree(d_out); 

 return 0; 

} 

 

serial code 

parallel code 

serial code 

parallel fn 
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Simple Processing Flow 

1. Copy input data from CPU memory to GPU 

memory 

2. Load GPU program and execute, 

caching data on chip for performance 

3. Copy results from GPU memory to CPU 

memory 

PCI Bus 



Hello World! 

 int main(void) { 

  printf("Hello World!\n"); 

  return 0; 

 } 

 

Standard C that runs on the host 

 

NVIDIA compiler (nvcc) can be used to 

compile programs with no device code 

 

 

 

 

 

Output: 
 

$ nvcc 

hello_world.cu 

$ a.out 

Hello World! 

$ 



Hello World! with Device Code 

 __global__ void mykernel(void) { 

 } 

 

 int main(void) { 

  mykernel<<<1,1>>>(); 

  printf("Hello World!\n"); 

  return 0; 

 } 

 

 Two new syntactic elements… 
 



Hello World! with Device Code 

 __global__ void mykernel(void) { 

 } 

 

CUDA C/C++ keyword __global__ indicates a function that: 

Runs on the device 

Is called from host code 

 

nvcc separates source code into host and device components 

Device functions (e.g. mykernel()) processed by NVIDIA compiler 

Host functions (e.g. main()) processed by standard host compiler 

gcc, cl.exe 

 



Hello World! with Device Code 

 mykernel<<<1,1>>>(); 

 

Triple angle brackets mark a call from host code to device code 

Also called a “kernel launch” 

We’ll return to the parameters (1,1) in a moment 

 

That’s all that is required to execute a function on the GPU! 
 



Setup your environment/Hello world 

Login to mcmillan.princeton.edu with your guest account 

module load cudatoolkit/4.2.9 

export CUDA_VISIBLE_DEVICES=<number>  

I will assign you this number so that we utilize all the GPUs evenly 

cp –r ~jonathan.bentz/Princeton . 

Each coding project in a separate folder 

cd exercises/cuda/hello_world 

“make” to build the code 

Try building/running the hello_world solution. 

 



Screenshot 



Hello World! with Device Code 

 __global__ void mykernel(void) { 

 } 

 

 int main(void) { 

  mykernel<<<1,1>>>(); 

  printf("Hello World!\n"); 

  return 0; 

 } 

 

mykernel() does nothing, somewhat 

anticlimactic! 
 

 

 

 

Output: 
 

$ nvcc hello.cu 

$ a.out 

Hello World! 

$ 



Parallel Programming in CUDA C/C++ 

 But wait… GPU computing is about massive 

parallelism! 

 

 We need a more interesting example… 

 

 We’ll start by adding two integers and build up 

to vector addition 

a b c 



Addition on the Device 

A simple kernel to add two integers 
 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

 

As before __global__ is a CUDA C/C++ keyword meaning 

add() will execute on the device 

add() will be called from the host 

 



Addition on the Device 

Note that we use pointers for the variables 
 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

add() runs on the device, so a, b and c must point to device 

memory 
 

We need to allocate memory on the GPU 

 
 



Memory Management 

Host and device memory are separate entities 

Device pointers point to GPU memory 

May be passed to/from host code 

May not be dereferenced in host code 

Host pointers point to CPU memory 

May be passed to/from device code 

May not be dereferenced in device code 

 

Simple CUDA API for handling device memory 

cudaMalloc(), cudaFree(), cudaMemcpy() 

Similar to the C equivalents malloc(), free(), memcpy() 

 



Addition on the Device: add() 

Returning to our add() kernel 

 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

Let’s take a look at main()… 

Open exercises/cuda/simple_add/kernel.cu 

Fill-in missing code as indicated, wherever you see “FIXME” 

Comments tell you what to do. 

If something isn’t clear, PLEASE ASK!   



Addition on the Device: main() 

 int main(void) { 

  int a, b, c;   // host copies of a, b, c 

  int *d_a, *d_b, *d_c; // device copies of a, b, c 

  int size = sizeof(int); 

   

  // Allocate space for device copies of a, b, c 

  cudaMalloc((void **)&d_a, size); 

  cudaMalloc((void **)&d_b, size); 

  cudaMalloc((void **)&d_c, size); 

 

  // Setup input values 

  a = 2; 

  b = 7; 

 



Addition on the Device: main() 

  // Copy inputs to device 

  cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice); 

  cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice); 

 

  // Launch add() kernel on GPU 

  add<<<1,1>>>(d_a, d_b, d_c); 

 

  // Copy result back to host 

  cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost); 

 

  // Cleanup 

  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

  return 0; 

 } 
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Moving to Parallel 

GPU computing is about massive parallelism 

So how do we run code in parallel on the device? 

 
  add<<< 1, 1 >>>(); 

 

  add<<< N, 1 >>>(); 

 
Instead of executing add() once, execute N times in parallel 

 



Vector Addition on the Device 

With add() running in parallel we can do vector addition 

 

Terminology: each parallel invocation of add() is referred to as a block 

The set of blocks is referred to as a grid 

Each invocation can refer to its block index using blockIdx.x 

 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

By using blockIdx.x to index into the array, each block handles a 

different index 
 



Vector Addition on the Device 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

On the device, each block can execute in parallel: 
 

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3]; 

Block 0 Block 1 Block 2 Block 3 



Vector Addition on the Device: add() 

Returning to our parallelized add() kernel 

 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

Let’s take a look at main()… 

Open exercises/cuda/simple_add_blocks/kernel.cu 

Fill-in missing code as indicated. 

Should be clear from comments where you need to add some code 

Need to replace “FIXME” with the proper piece of code. 

 



Vector Addition on the Device: main() 

    #define N 512 

    int main(void) { 

 int *a, *b, *c;  // host copies of a, b, c 

 int *d_a, *d_b, *d_c; // device copies of a, b, c 

 int size = N * sizeof(int); 

   

 // Alloc space for device copies of a, b, c 

 cudaMalloc((void **)&d_a, size); 

 cudaMalloc((void **)&d_b, size); 

 cudaMalloc((void **)&d_c, size); 

 

 // Alloc space for host copies of a, b, c and setup input values 

 a = (int *)malloc(size); random_ints(a, N); 

 b = (int *)malloc(size); random_ints(b, N); 

 c = (int *)malloc(size); 



Vector Addition on the Device: main() 

        // Copy inputs to device 

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 

 

        // Launch add() kernel on GPU with N blocks 

        add<<<N,1>>>(d_a, d_b, d_c); 

 

        // Copy result back to host 

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 

 

        // Cleanup 

        free(a); free(b); free(c); 

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

        return 0; 

    } 



Review (1 of 2) 

Difference between host and device 

Host CPU 

Device GPU 

 

Using __global__ to declare a function as device code 

Executes on the device 

Called from the host 

 

Passing parameters from host code to a device function 



Review (2 of 2) 

Basic device memory management 
cudaMalloc() 

cudaMemcpy() 

cudaFree() 

 

Launching parallel kernels 

Launch N copies of add() with add<<<N,1>>>(…); 

Use blockIdx.x to access block index 



INTRODUCING THREADS 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 



CUDA Threads 

Terminology: a block can be split into parallel threads 

 

Let’s change add() to use parallel threads instead of parallel blocks 

 

 

We use threadIdx.x instead of blockIdx.x 

Need to make one change in main()… 

Open exercises/cuda/simple_add_threads/kernel.cu 

__global__ void add(int *a, int *b, int *c) { 

    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 

} 



Vector Addition Using Threads: main() 

    #define N 512 

    int main(void) { 

        int *a, *b, *c;   // host copies of a, b, c 

        int *d_a, *d_b, *d_c;  // device copies of a, b, c 

        int size = N * sizeof(int); 

   

        // Alloc space for device copies of a, b, c 

        cudaMalloc((void **)&d_a, size); 

        cudaMalloc((void **)&d_b, size); 

        cudaMalloc((void **)&d_c, size); 

         

        // Alloc space for host copies of a, b, c and setup input values 

        a = (int *)malloc(size); random_ints(a, N); 

        b = (int *)malloc(size); random_ints(b, N); 

        c = (int *)malloc(size); 



Vector Addition Using Threads: main() 

         // Copy inputs to device 

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 

 

        // Launch add() kernel on GPU with N threads 

        add<<<1,N>>>(d_a, d_b, d_c); 

 

        // Copy result back to host 

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 

 

        // Cleanup 

        free(a); free(b); free(c); 

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

        return 0; 

    } 
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Combining Blocks and Threads 

We’ve seen parallel vector addition using: 

Many blocks with one thread each 

One block with many threads 

 

Let’s adapt vector addition to use both blocks and threads 

 

Why? We’ll come to that… 

 

First let’s discuss data indexing… 

 



0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

Indexing Arrays with Blocks and Threads 

With M threads/block a unique index for each thread is given by: 
 int index = threadIdx.x + blockIdx.x * M; 

 

No longer as simple as using blockIdx.x and threadIdx.x 

Consider indexing an array with one element per thread (8 threads/block) 

threadIdx.x threadIdx.x threadIdx.x threadIdx.x 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 



Indexing Arrays: Example 

Which thread will operate on the red element? 

 int index = threadIdx.x + blockIdx.x * M; 

           =      5      +     2      * 8; 

           = 21; 

 

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

threadIdx.x = 5 

blockIdx.x = 2 

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

M = 8 



Vector Addition with Blocks and Threads 

 

 

 

What changes need to be made in main()? 

Open cuda/simple_add_blocks_threads/kernel.cu 

Use the built-in variable blockDim.x for threads per block 

 int index = threadIdx.x + blockIdx.x * blockDim.x; 

 

Combined version of add() to use parallel threads and parallel 

blocks 
__global__ void add(int *a, int *b, int *c) { 

    int index = threadIdx.x + blockIdx.x * blockDim.x; 

    c[index] = a[index] + b[index]; 

} 



Addition with Blocks and Threads: main() 

    #define N (2048*2048) 

    #define THREADS_PER_BLOCK 512 

    int main(void) { 

        int *a, *b, *c;   // host copies of a, b, c 

        int *d_a, *d_b, *d_c;  // device copies of a, b, c 

        int size = N * sizeof(int); 

  

        // Alloc space for device copies of a, b, c 

        cudaMalloc((void **)&d_a, size); 

        cudaMalloc((void **)&d_b, size); 

        cudaMalloc((void **)&d_c, size); 

 

        // Alloc space for host copies of a, b, c and setup input values 

        a = (int *)malloc(size); random_ints(a, N); 

        b = (int *)malloc(size); random_ints(b, N); 

        c = (int *)malloc(size); 



Addition with Blocks and Threads: main() 

        // Copy inputs to device 

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 

 

        // Launch add() kernel on GPU 

        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c); 

 

        // Copy result back to host 

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 

 

        // Cleanup 

        free(a); free(b); free(c); 

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

        return 0; 

    } 



Handling Arbitrary Vector Sizes 

 

 

 

Update the kernel launch: 
 add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N); 

 

Typical problems are not friendly multiples of blockDim.x 
 

Avoid accessing beyond the end of the arrays: 

__global__ void add(int *a, int *b, int *c, int n) { 

    int index = threadIdx.x + blockIdx.x * blockDim.x; 

    if (index < n) 

        c[index] = a[index] + b[index]; 

} 



Why Bother with Threads? 

Threads seem unnecessary 

They add a level of complexity 

What do we gain? 

 

Unlike parallel blocks, threads have mechanisms to: 

Communicate 

Synchronize 

 

To look closer, we need a new example… 



Review 

Launching parallel kernels 

Launch N copies of add() with add<<<N/M,M>>>(…); 

Use blockIdx.x to access block index 

Use threadIdx.x to access thread index within block 

 

Allocate elements to threads: 
 

 int index = threadIdx.x + blockIdx.x * blockDim.x; 
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1D Stencil 

Consider applying a 1D stencil to a 1D array of elements 

Each output element is the sum of input elements within a radius 

 

If radius is 3, then each output element is the sum of 7 input 

elements: 

radius radius 



Implementing Within a Block 

Each thread processes one output element 

blockDim.x elements per block 

 

Input elements are read several times 

With radius 3, each input element is read seven times 



Simple Stencil in 1d 

Open cuda/simple_stencil/kernel.cu 

Finish the kernel and the kernel launch 

Each thread calculates one stencil value 

Reads 2*RADIUS + 1 values 

 

Inserted GPU timers into code to time the execution of the kernel 

 

Try various sizes of N, RADIUS, BLOCK 

Time a large (over a million) value of N with a RADIUS of 7 



Can we do better? 

 

Input elements are read multiple times 

With RADIUS=3, each input element is read seven times! 

Neighbouring threads read most of the same elements. 

Thread 7 reads elements 4 through 10 

Thread 8 reads elements 5 through 11 

 

 

Can we avoid redundant reading of data? 



Sharing Data Between Threads 

Terminology: within a block, threads share data via shared memory 

 

Extremely fast on-chip memory, user-managed 

 

Declare using __shared__, allocated per block 

 

Data is not visible to threads in other blocks 



Implementing With Shared Memory 

Cache data in shared memory (user managed scratch-pad) 

Read (blockDim.x + 2 * radius) input elements from global memory to 

shared memory 

Compute blockDim.x output elements 

Write blockDim.x output elements to global memory 

 

Each block needs a halo of radius elements at each boundary 

blockDim.x output elements 

halo on left halo on right 



Stencil Kernel 

__global__ void stencil_1d(int *in, int *out) { 

  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 

  int gindex = threadIdx.x + blockIdx.x * blockDim.x; 

  int lindex = threadIdx.x + RADIUS; 

 

  // Read input elements into shared memory 

  temp[lindex] = in[gindex]; 

  if (threadIdx.x < RADIUS) { 

    temp[lindex - RADIUS] = in[gindex - RADIUS]; 

    temp[lindex + BLOCK_SIZE] =  

      in[gindex + BLOCK_SIZE]; 

  } 



Stencil Kernel 

  // Apply the stencil 

  int result = 0; 

  for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

    result += temp[lindex + offset]; 

 

  // Store the result 

  out[gindex] = result; 

} 



Simple Stencil 1d with shared memory 

Open cuda/simple_stencil_smem/kernel.cu 

 

Run the code.  It will build/run without modification. 

If Errors occur, each offending element will be printed to the screen 

 

What is the result with N=10,000 and BLOCK=32? 

What is the result with N=10,000 and BLOCK=64? 

Why? 

 

 



Data Race! 

 The stencil example will not work… 

 

 Suppose thread 15 reads the halo before thread 0 has fetched it… 
 

    temp[lindex] = in[gindex]; 

    if (threadIdx.x < RADIUS) { 

        temp[lindex – RADIUS = in[gindex – RADIUS]; 

        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

    } 

    int result = 0; 

    result += temp[lindex + 1]; 

 

Store at temp[18] 

Load from temp[19] 

Skipped, threadIdx > RADIUS 



__syncthreads() 

void __syncthreads(); 

 

Synchronizes all threads within a block 

Used to prevent RAW / WAR / WAW hazards 

All threads must reach the barrier 

In conditional code, the condition must be uniform across the block 

 

Insert __syncthreads() into the kernel in the proper location 

Compare timing of previous simple stencil with the current shared 

memory implementation for same (large N) and BLOCK=512 



Stencil Kernel 

__global__ void stencil_1d(int *in, int *out) { 

    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 

    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 

    int lindex = threadIdx.x + radius; 

 

    // Read input elements into shared memory 

    temp[lindex] = in[gindex]; 

    if (threadIdx.x < RADIUS) { 

        temp[lindex – RADIUS] = in[gindex – RADIUS]; 

        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

    } 

 

    // Synchronize (ensure all the data is available) 

    __syncthreads(); 



Stencil Kernel 

    // Apply the stencil 

    int result = 0; 

    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

        result += temp[lindex + offset]; 

 

    // Store the result 

    out[gindex] = result; 

} 



Review (1 of 2) 

Launching parallel threads 

Launch N blocks with M threads per block with kernel<<<N,M>>>(…); 

Use blockIdx.x to access block index within grid 

Use threadIdx.x to access thread index within block 

 

Allocate elements to threads: 
 

 int index = threadIdx.x + blockIdx.x * blockDim.x; 

 



Review (2 of 2) 

Use __shared__ to declare a variable/array in shared memory 

Data is shared between threads in a block 

Not visible to threads in other blocks 

Using large shared mem size impacts number of blocks that can be 

scheduled on an SM (48K total smem size) 

 

Use __syncthreads() as a barrier 

Use to prevent data hazards 
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Coordinating Host & Device 

Kernel launches are asynchronous 

Control returns to the CPU immediately 

 

CPU needs to synchronize before consuming the results 

cudaMemcpy() Blocks the CPU until the copy is complete 

Copy begins when all preceding CUDA calls have completed 

cudaMemcpyAsync() Asynchronous, does not block the CPU 

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed 



Reporting Errors 

All CUDA API calls return an error code (cudaError_t) 

Error in the API call itself 

 OR 

Error in an earlier asynchronous operation (e.g. kernel) 

 

Get the error code for the last error: 
 cudaError_t cudaGetLastError(void) 

Get a string to describe the error: 
 char *cudaGetErrorString(cudaError_t) 

 

 printf("%s\n", cudaGetErrorString(cudaGetLastError())); 



Device Management 

Application can query and select GPUs 
 cudaGetDeviceCount(int *count) 

 cudaSetDevice(int device) 

 cudaGetDevice(int *device) 

 cudaGetDeviceProperties(cudaDeviceProp *prop, int device) 

 

Multiple threads can share a device 

 

A single thread can manage multiple devices 

 cudaSetDevice(i) to select current device 

 cudaMemcpy(…) for peer-to-peer copies✝ 

✝ requires OS and device support 



Introduction to CUDA C/C++ 

What have we learned? 

Write and launch CUDA C/C++ kernels 

__global__,  blockIdx.x,  threadIdx.x,  <<<>>> 

Manage GPU memory 

cudaMalloc(),  cudaMemcpy(),  cudaFree() 

Manage communication and synchronization 

__shared__,  __syncthreads() 

cudaMemcpy() vs cudaMemcpyAsync(),  cudaDeviceSynchronize() 



Compute Capability 

The compute capability of a device describes its architecture, e.g. 

Number of registers 

Sizes of memories 

Features & capabilities 

The following presentations concentrate on Fermi devices 

Compute Capability >= 2.0 

Compute 

Capability 

Selected Features 

(see CUDA C Programming Guide for complete list) 

Tesla models 

1.0 Fundamental CUDA support 870 

1.3 Double precision, improved memory accesses, atomics 10-series 

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P, 

concurrent kernels/copies, function pointers, recursion 

20-series 



IDs and Dimensions 

A kernel is launched as a grid of 

blocks of threads 

blockIdx and threadIdx 

are 3D 

We showed only one 
dimension (x) 

 

Built-in variables: 
threadIdx 

blockIdx 

blockDim 

gridDim 

 

Device 

Grid 1 

Block 

(0,0,0) 

Block 

(1,0,0) 

Block 

(2,0,0) 

Block 

(1,1,0) 

Block 

(2,1,0) 

Block 

(0,1,0) 

Block (1,1,0) 

Thread 

(0,0,0) 

Thread 

(1,0,0) 

Thread 

(2,0,0) 

Thread 

(3,0,0) 

Thread 

(4,0,0) 

Thread 

(0,1,0) 

Thread 

(1,1,0) 

Thread 

(2,1,0) 

Thread 

(3,1,0) 

Thread 

(4,1,0) 

Thread 

(0,2,0) 

Thread 

(1,2,0) 

Thread 

(2,2,0) 

Thread 

(3,2,0) 

Thread 

(4,2,0) 



Textures 

Read-only object 

Dedicated cache 

 

Dedicated filtering hardware 

(Linear, bilinear, trilinear) 

 

Addressable as 1D, 2D or 3D 

 

Out-of-bounds address handling 

(Wrap, clamp) 

0 1 2 3 
0 

1 

2 

4 

(2.5, 0.5) 

(1.0, 1.0) 



Topics we skipped 

We skipped some details, you can learn more: 

CUDA Programming Guide 

CUDA Zone – tools, training, webinars and more 

http://developer.nvidia.com/cuda 

 

Need a quick primer for later: 

Multi-dimensional indexing 

Textures 

 



Questions? 



Global Memory 

Throughput 



Fermi Memory Hierarchy Review 

Local storage 

Each thread has own local storage 

Mostly registers (managed by the compiler) 

Shared memory / L1 

Program configurable: 16KB shared / 48 KB L1   OR   48KB shared / 16KB L1 

Shared memory is accessible by the threads in the same threadblock 

Very low latency 

Very high throughput: 1+ TB/s aggregate 

L2 

All accesses to global memory go through L2, including copies to/from CPU host 

Global memory 

Accessible by all threads as well as host (CPU) 

High latency (400-800 cycles) 

Throughput: up to 177 GB/s 



GMEM Optimization Guidelines 

Strive for perfect coalescing 

Align starting address (may require padding) 

A warp should access within a contiguous region 

Have enough concurrent accesses to saturate the bus 

Process several elements per thread 

Multiple loads get pipelined 

Indexing calculations can often be reused 

Launch enough threads to maximize throughput 

Latency is hidden by switching threads (warps) 

Try L1 and caching configurations to see which one works best 

Caching vs non-caching loads (compiler option) 

16KB vs 48KB L1 (CUDA call) 



Shared Memory 



Shared Memory 
Uses: 

Inter-thread communication within a block 

Cache data to reduce redundant global memory accesses 

Use it to improve global memory access patterns 

Organization: 

32 banks, 4-byte wide banks 

Successive 4-byte words belong to different banks 

 

If you use shared memory in a kernel, you should almost always 
use __syncthreads() to avoid race conditions!!! 



Bank Addressing Examples 

No Bank Conflicts No Bank Conflicts 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 



Bank Addressing Examples 

2-way Bank Conflicts 8-way Bank Conflicts 

Thread 31 
Thread 30 
Thread 29 
Thread 28 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 31 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 



Shared Memory: Avoiding Bank Conflicts 

32x32 SMEM array 

Warp accesses a column: 

32-way bank conflicts (threads in a warp access the same bank) 

 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

warps: 

0         1         2              31 

Bank 0 

Bank 1 

  … 

Bank 31 
2 0 1 

31 



Shared Memory: Avoiding Bank Conflicts 

Add a column for padding: 

32x33 SMEM array 

Warp accesses a column: 

32 different banks, no bank conflicts 

 

31 2 1 0 

31 2 1 0 

31 2 1 0 

warps: 

0         1         2             31       padding 

Bank 0 

Bank 1 

  … 

Bank 31 

31 2 0 1 



Matrix Transpose 



Matrix Transpose  

Open exercises/naive_transpose/kernel.cu 
Defined INDX(row,col,ld) to translate 2d coordinates to 1d index 

Column-major double precision elems 
Out-of-place transpose 

Naïve implementation: 
Square threadblocks 

Each thread: 

Computes its global x and y coordinates 

Reads from (x,y), writes to (y,x) 
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WRITE READ 

thread X 

thread (X+1) 



naive_transpose 

Use INDX(row,col,ld) to translate 2d coordinates to 1d index 

Defined as MACRO at top of source code 

Finish the kernel and kernel launch parameters 

Each thread transposes one element from A to C, out-of-place 

Kernel is compared to a CPU-side transpose 

Both performance and answers are compared 

 

Once you get correct answers in your kernel: 

Measure performance of kernel with N=1024 and N=4096 

 



NVIDIA Visual Profiler 

nvvp & 

Choose File->New Session 

Choose exercises/cuda/naïve_transpose/x.transpose 

Choose timeout = 60 seconds. 

Uncheck “Run Analysis” then click “Finish” 

Click “Analyze All” 

Profiler will execute the code multiple times to record all performance 

counters 

In the timeline windows, click on the kernel of interest 



Profiler results? 

What does the profiler output show us? 

 

 

Why are load and store performance so divergent? 

 

 

Ideas for potential improvement? 



Cause and Remedy 

Cause: 

Due to nature of operation, one of the accesses (read or write) will be at 

large strides, i.e., uncoalesced! 

32 doubles (256 bytes) in this case (on a warp basis) 

Thus, bandwidth will be wasted as only a portion of a transaction is used by 

the application 

Remedy 

Stage accesses through shared memory 

A threadblock: 

Reads a tile from GMEM to SMEM 

Transposes the tile in SMEM 

Write a tile, in a coalesced way, from SMEM to GMEM 
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Smem_transpose/kernel.cu 

Finish the kernel code 

Particularly the index calculations for the transpose. 

One thread block cooperatively operates on a block of the matrix 

Index calculations need to know which block I am in the full matrix 

 

HINT: You are using shared memory.  What should you include 

when using smem? 

 

Once you get correct answers in your kernel: 

Measure performance of kernel with N=1024 and N=4096 

 



Visual Profiler 

Run the profiler 

 

What are the results? 

 

What is happening? 

 

How to fix it? 

Hint: requires adding only 2 characters to the kernel source! 



SMEM bank conflicts 

Recall that smem has 32 banks of 4 bytes each 

When multiple threads IN THE SAME WARP access the same bank, 

a conflict occurs and performance is affected negatively 

Consider __shared__ double s[16][16]  

Read/write s[tidx][tidy] (each read/write requires two 4byte banks) 

tidx are consecutive threads 

They are accessing the s[][] array with stride of 16 doubles 

16 doubles == 128 bytes == 32 banks * 4 bytes. 

s[0][tidy] accesses banks 0,1 to grab its 8 byte double 

s[1][tidy] accesses banks 0,1 to grab its 8 byte double 

16 threads are all accessing banks 0,1 in the same transaction!!! 



SMEM bank conflicts cont’d 

tidx from 0 to 16 all access banks 0,1 

16 way bank conflict!  VERY BAD for performance 

How to remedy? 

Pad shared memory. 

__shared__ double s[16][17] 

Now the stride between success tidx is 17 doubles,  

i.e., 17 * 8bytes = 136 bytes 

More importantly, 136 byte stride will be 32 + 2 banks 

s[0][tidy] accesses banks 0,1 to grab its 8 byte double 

s[1][tidy] accesses banks 2,3 to grab its 8 byte double 

16 threads are all accessing different banks!!! 

 



Still in smem_transpose/kernel.cu 

Remedy the smem bank conflicts 

 

Once you get correct answers in your kernel: 

Measure performance of kernel with N=1024 and N=4096 

 

 

Run with the profiler again. 

Verify the bank conflicts have gone away 

 



Review 

SMEM often used to alleviate poor GMEM accesses 

Uncoalesced loads/stores were solved using SMEM 

 

SMEM almost always requires __syncthreads() 

 

SMEM often requires an analysis to minimize bank conflicts. 

 

Use NVIDIA Visual Profiler to identify performance bottlenecks 



Matrix multiply 



Matrix Multiply 

The foundation of lots of linear algebra 

 

High compute/communication ratio 

Access O(N^2) data and execute O(N^3) operations 

 

Relatively simple algorithm 

Great teaching algorithm 

 

Well-written code shows off the power of CPU and/or GPU 



Matrix Multiply cont’d 

Matrix A with M rows and K cols 

Matrix B with K rows and N cols 

A * B = C 

C has M rows and N cols 

 

𝑪𝒊,𝒋 =  𝑨𝒊,𝒌
𝑲
𝒌  ∗  𝑩𝒌,𝒋 

 

The dot product of the ith row of A and jth col of B yields the i,j element of C 



matmul_CPU 

Open matmul_CPU/kernel.cu 

 

CPU-only example 

Complete “host_dgemm” function 

Finish the index calculations for the arithmetic in inner loop. 

 

What is the performance of your naïve CPU matrix multiply? 

DGEMM is often measured in terms of percentage of peak. 

Intel X5690@3.47GHz has peak of 3.47GHz * 4 DP flops/clock =  13.88GF 

What is your code’s percent of peak? 



Matmul on GPU 

In reality we’d never write a matmul for GPU 

Call NVIDIA’s CUBLAS library 

 

Open matmul_CUBLAS/kernel.cu 

Code should run without modification. 

 

Run the code with N=1024 and record performance of CUBLAS 

dgemm 

How does it compare to your naïve CPU code? 



Matmul on GPU 

We will write matrix multiply on GPU 

 

Use square matrices for simplicity 

 

Use powers of 2 so we can avoid writing the extra code for end 

cases 

 

Write three versions utilizing successively advanced optimization 

ideas, based in part on profiling results we obtain 



matmul_GPU_naive 

Open matmul_GPU_naive/kernel.cu 

Finish the kernel 

Add the appropriate index calculations to the 

kernel 

Answers are compared against CUBLAS 

You should see an error message printed to the 

console if your results are suspect! 

Record performance of N=1024 

How does it compare to CUBLAS? 

 



Visual profiler 

Profile the code with Visual Profiler 

 

What are some performance considerations? 

 

Consider two successive threads 

How is global memory accessed for matrices A, B, C? 

 

What is a choice we have if we wish to remedy uncoalesced GMEM 

accesses? 



Strategies to improve 

Use shared memory to achieve better coalescing 

Allows us to share data among threads 

Reduces number of times data must be read because we reuse from smem 

rather than fetch from GMEM each time. 

Similar to the matrix transpose example: 

Load block of A into SMEM 

Load block of B into SMEM 

Compute block of C from A and B in SMEM 

 

Open matmul_GPU_shmem/kernel.cu 

#pragma unroll to unroll loops of predefined trip count 



matmul_GPU_shmem 

For each block in K direction 

Load block of A into SMEM 

Load block of B into SMEM 

Use these blocks to contribute 

to block of C 

When using SMEM, what 

function should you include??? 

Record performance of 

N=1024 

How does it compare to naïve 

kernel? 

Why??? 

 



Visual profiler 

We solved the uncoalesced memory issue. 

 

What does profiler show us? 

 

What is the fix for this? 

 

What is the performance with this change? 



Algorithmic improvements 

Currently one thread block calculates one block of C 

By extension one thread only calculates one element of C 

A natural extension is to try having one thread block calculate multiple 

portions of C and thus one thread calculating multiple values of C 

This would reduce the number of times A and B are fetched from GMEM 

and increase the computational intensity of the thread block 

A priori not obvious how many blocks C should calculate 

Write a new kernel that does this idea in a general fashion 

Experiment with different block sizes etc. 

MAGMA from UTK http://icl.cs.utk.edu/magma/ has done 

extensive work on dense linear algebra 

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/


matmul_GPU_shmem1 

Open matmul_gpu_shmem1/kernel.cu 

Lots of #define at the top of the source code 

Pay special attention to the defined constants and how they interact with 

each other! 

Keep TX=TY=BK=16 

TBX=TBY=16 and NX=NY=1 is equivalent to the previous kernel. 

Complete the kernel with some important reminders 

What function should you automatically use with SMEM??? 

How can you avoid those nasty bank conflicts in SMEM??? 

Refer to diagram in cheatsheet for pictorial view of algorithm 

Lots of code to fill in.  This one is challenging!!! 



http://www.netlib.org/lapack/lawnspdf/lawn227

.pdf 



matmul_GPU_shmem1 

Keep N=1024 

Try different values of TBX, TBY, NX, NY 

What is the best combination? 

Are there multiple “best” values? 

 

With the best combination you found, record performance for 

N=1024 

How does it differ with padded or unpadded SMEM? 

How does it compare to the CUBLAS result we saw earlier? 



Review 

Compute intensity (arithmetic ops/memory reference) on a per-

thread basis impacts performance 

 

Avoiding SMEM bank conflicts is critical 

 

Visual Profiler is helpful to identify performance issues 



Final Wrap-up 

Optimizations we looked at 

Coalesced global memory accesses 

Shared memory usage 

__syncthreads() 

Padding to avoid bank conflicts 

Appropriate arithmetic intensity 

Things we didn’t examine 

Optimizations of host->device data transfer 

Overlap of communication/computation 

Texture memory usage 

Multi-GPU programming 



Questions? 


