CUDA C/C++ BASICS

NVIDIA Corporation

What is CUDA?

CUDA Architecture

- Expose GPU parallelism for general-purpose computing
- Retain performance

CUDA C/C++

- Based on industry-standard C/C++
- Small set of extensions to enable heterogeneous programming
- Straightforward APIs to manage devices, memory etc.

This session introduces CUDA C/C++

Introduction to CUDA C/C++

What will you learn in this session?

- Start from "Hello World!"
- Write and launch CUDA C/C++ kernels
- Manage GPU memory
- Manage communication and synchronization

Prerequisites

- You (probably) need experience with C or C++
- You don't need GPU experience
- You don't need parallel programming experience
- You don't need graphics experience

CONCEPTS

Heterogeneous Computing

Blocks

.....

Threads

Indexing

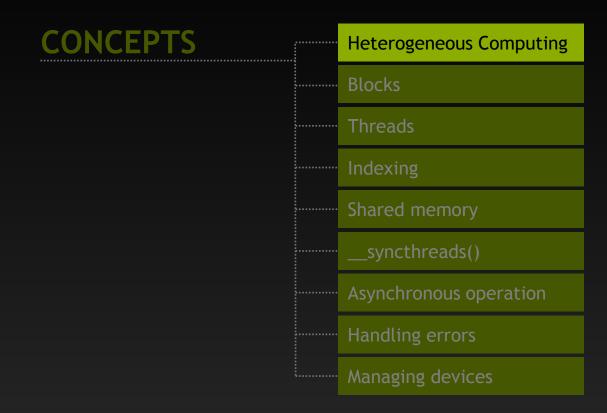
Shared memory

___syncthreads()

Asynchronous operation

Handling errors

Managing devices

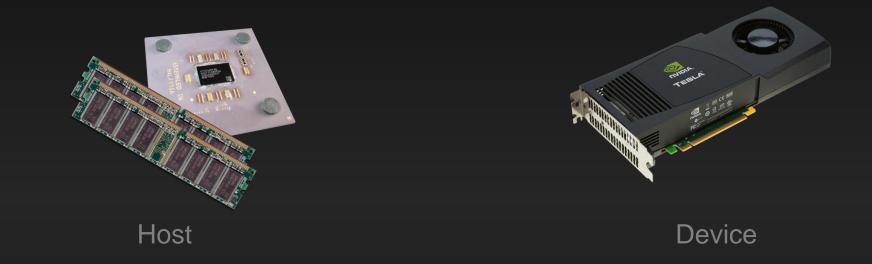


HELLO WORLD!

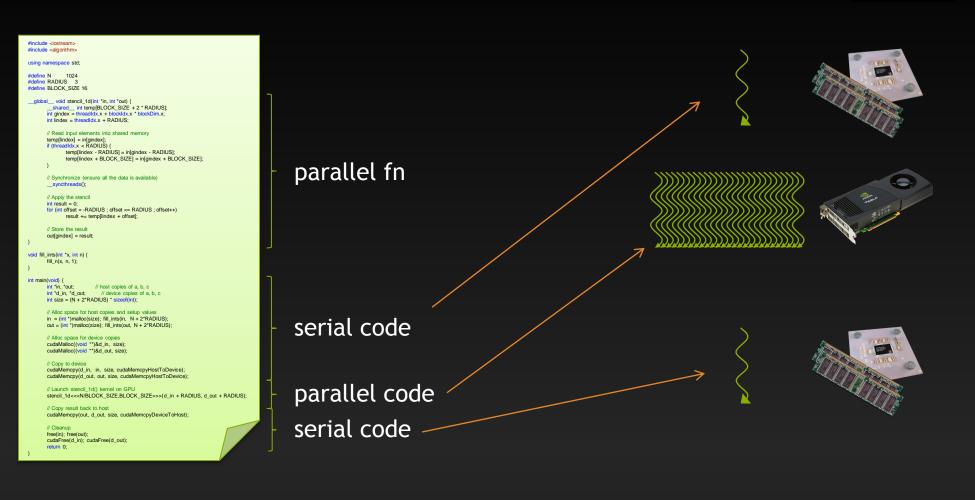
Heterogeneous Computing

Terminology:

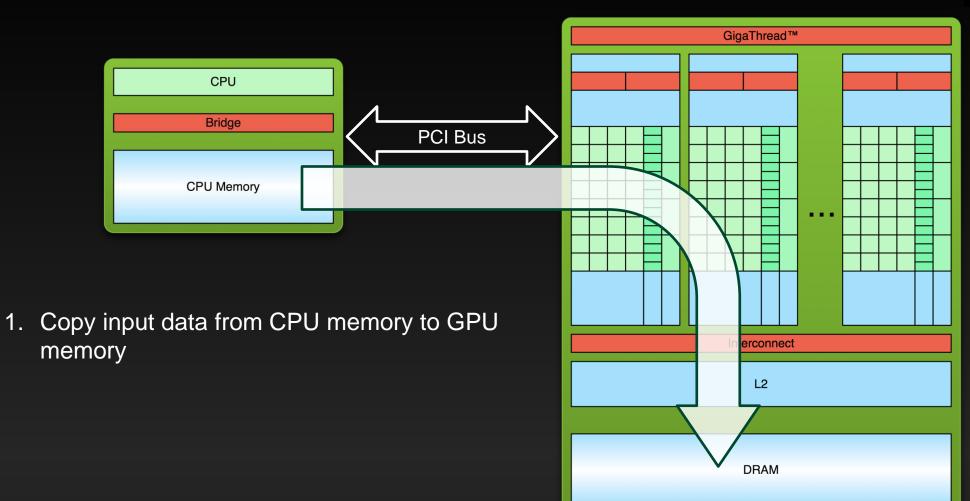
- Host The CPU and its memory (host memory)
- Device The GPU and its memory (device memory)



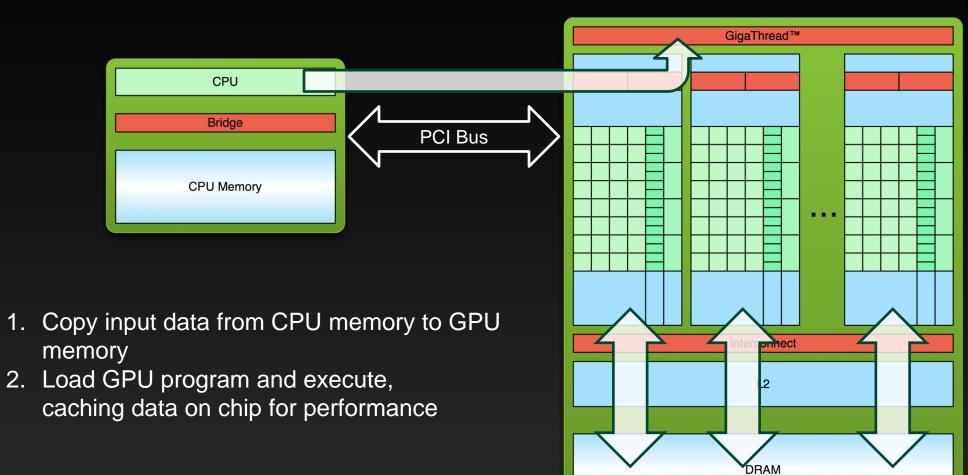
Heterogeneous Computing



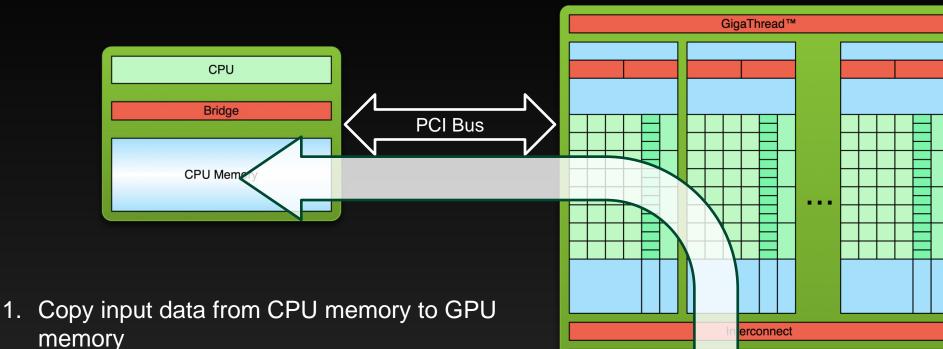
Simple Processing Flow



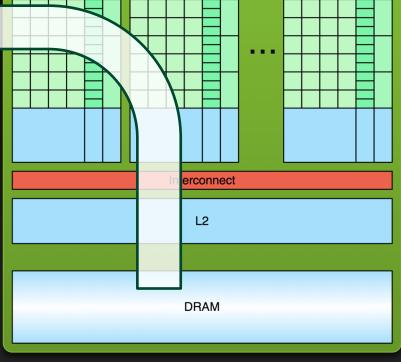
Simple Processing Flow



Simple Processing Flow



- 2. Load GPU program and execute, caching data on chip for performance
- 3. Copy results from GPU memory to CPU memory



Hello World!


```
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no *device* code

Output:

\$ nvcc hello_world.cu \$ a.out Hello World! \$


```
global void mykernel(void) {
}
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

```
    Two new syntactic elements...
```


__global__ void mykernel(void) {
}

CUDA C/C++ keyword __global__ indicates a function that:

- Runs on the device
- Is called from host code

nvcc separates source code into host and device components

- Device functions (e.g. mykernel()) processed by NVIDIA compiler
- Host functions (e.g. main()) processed by standard host compiler
 - gcc, cl.exe

mykernel<<<1,1>>>();

Triple angle brackets mark a call from host code to device code

- Also called a "kernel launch"
- We'll return to the parameters (1,1) in a moment

That's all that is required to execute a function on the GPU!

Setup your environment/Hello world

- Login to mcmillan.princeton.edu with your guest account
- module load cudatoolkit/4.2.9
- export CUDA_VISIBLE_DEVICES=<number>
 - I will assign you this number so that we utilize all the GPUs evenly
- or cp -r ~jonathan.bentz/Princeton .
- Each coding project in a separate folder
- ocd exercises/cuda/hello_world
- "make" to build the code
- Try building/running the hello_world solution.

Screenshot

Ε

jonathan.bentz@mcmillan-001:~/jlb_exercises/cuda/hello_world

```
[jonathan.bentz@mcmillan-001 hello_world]$ module load cudatoolkit/4.2.9
[jonathan.bentz@mcmillan-001 hello_world]$ export CUDA_VISIBLE_DEVICES=7
[jonathan.bentz@mcmillan-001 hello_world]$ make
nvcc -arch sm_20 -c kernel.cu
nvcc -arch sm_20 -o x.hello_world kernel.o
[jonathan.bentz@mcmillan-001 hello_world]$ ./x.hello_world
Hello World
[jonathan.bentz@mcmillan-001 hello world]$
```



```
_global__ void mykernel(void) {
}
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

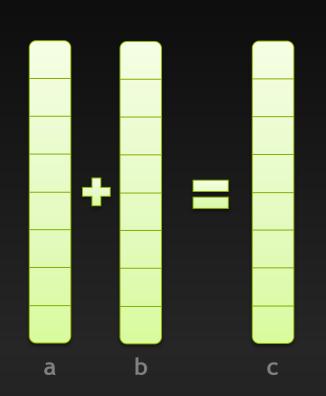
Output:

\$ nvcc hello.cu
\$ a.out
Hello World!
\$

mykernel() does nothing, somewhat anticlimactic!

Parallel Programming in CUDA C/C++

- But wait... GPU computing is about massive parallelism!
- We need a more interesting example...
- We'll start by adding two integers and build up to vector addition



Addition on the Device

A simple kernel to add two integers

```
__global___void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

As before ________ is a CUDA C/C++ keyword meaning

- add() will execute on the device
- add() will be called from the host

Addition on the Device

Note that we use pointers for the variables

```
__global___void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

 add() runs on the device, so a, b and c must point to device memory

We need to allocate memory on the GPU

Memory Management

Host and device memory are separate entities

- Device pointers point to GPU memory
 May be passed to/from host code
 May not be dereferenced in host code
- Host pointers point to CPU memory
 May be passed to/from device code
 May not be dereferenced in device code

Simple CUDA API for handling device memory

- cudaMalloc(), cudaFree(), cudaMemcpy()
- Similar to the C equivalents malloc(), free(), memcpy()

Addition on the Device: add()

Returning to our add() kernel

```
__global___void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- Let's take a look at main()...
- Open exercises/cuda/simple_add/kernel.cu
- Fill-in missing code as indicated, wherever you see "FIXME"
 - Comments tell you what to do.
 - If something isn't clear, PLEASE ASK! ③

Addition on the Device: main()

cudaMalloc((void **)&d_c, size);

// Setup input values
a = 2;
b = 7;

Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

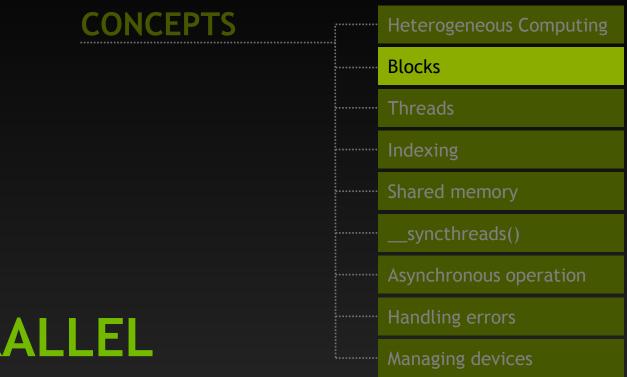
// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

}

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;



RUNNING IN PARALLEL

Moving to Parallel

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

- The set of blocks is referred to as a grid
- Each invocation can refer to its block index using blockIdx.x

```
__global___ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device

_global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

On the device, each block can execute in parallel:

Vector Addition on the Device: add()

Returning to our parallelized add() kernel

```
_global___void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
```

Let's take a look at main()...

}

- Open exercises/cuda/simple_add_blocks/kernel.cu
- Fill-in missing code as indicated.
 - Should be clear from comments where you need to add some code
 - Need to replace "FIXME" with the proper piece of code.

Vector Addition on the Device: main()

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

Vector Addition on the Device: main()

// Copy inputs to device

}

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

Review (1 of 2)

Difference between host and device

- *Host* CPU
- Device GPU

Using _______ to declare a function as device code

- Executes on the device
- Called from the host

Passing parameters from host code to a device function

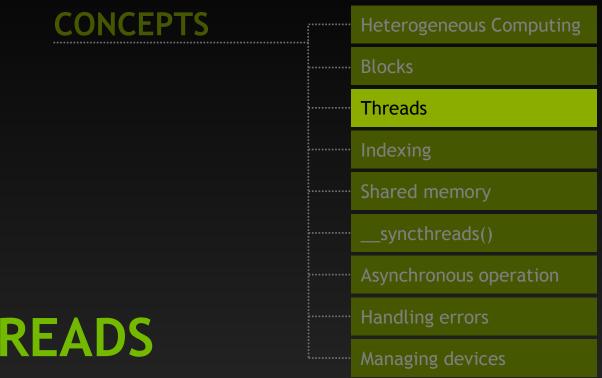
Review (2 of 2)

Basic device memory management

- cudaMalloc()
- cudaMemcpy()
- cudaFree()

Launching parallel kernels

- Launch N copies of add() with add<<<N,1>>>(...);
- Use blockIdx.x to access block index



INTRODUCING THREADS

- Terminology: a block can be split into parallel threads
- Let's change add() to use parallel threads instead of parallel blocks

```
__global___void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x
- Need to make one change in main()...
- Open exercises/cuda/simple_add_threads/kernel.cu


```
#define N 512
int main(void) {
    int *a, *b, *c;
    int *d_a, *d_b, *d_c;
    int size = N * sizeof(int);
```

```
// host copies of a, b, c
// device copies of a, b, c
```

```
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
```

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

Vector Addition Using Threads: main()

// Copy inputs to device

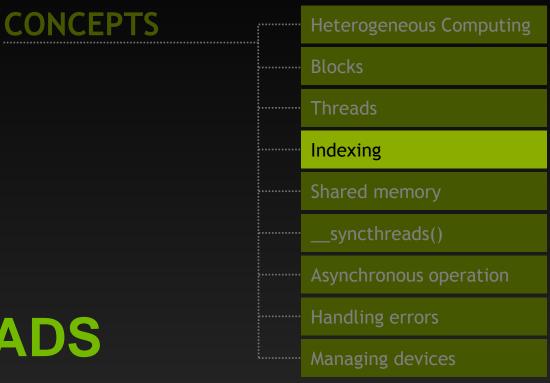
}

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N threads
add<<<1,N>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

```
// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```

COMBINING THREADS AND BLOCKS

Combining Blocks <u>and</u> Threads

- We've seen parallel vector addition using:
 - Many blocks with one thread each
 - One block with many threads
- Let's adapt vector addition to use both blocks and threads
- Why? We'll come to that...
- First let's discuss data indexing...

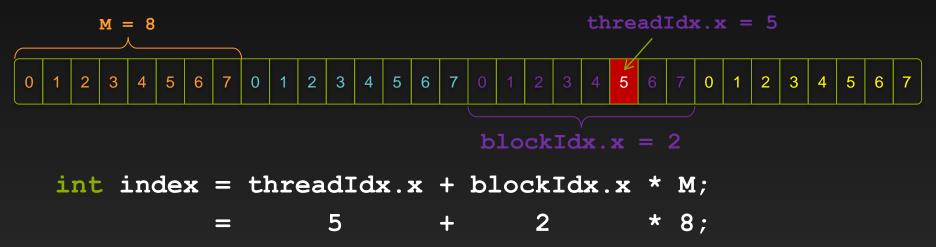
Indexing Arrays with Blocks and Threads

- No longer as simple as using blockIdx.x and threadIdx.x
 - Consider indexing an array with one element per thread (8 threads/block)

With M threads/block a unique index for each thread is given by: int index = threadIdx.x + blockIdx.x * M;

Indexing Arrays: Example

Which thread will operate on the red element?



= 21;

Vector Addition with Blocks and Threads

- Use the built-in variable blockDim.x for threads per block int index = threadIdx.x + blockIdx.x * blockDim.x;
- Combined version of add() to use parallel threads and parallel blocks _____global___ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

```
c[index] = a[index] + b[index];
```

What changes need to be made in main()?

}

Open cuda/simple_add_blocks_threads/kernel.cu

Addition with Blocks and Threads: main()


```
#define N (2048*2048)
#define THREADS PER BLOCK 512
int main(void) {
   int *a, *b, *c;
    int *d a, *d b, *d c;
    int size = N * sizeof(int);
```

// host copies of a, b, c // device copies of a, b, c

```
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);
```

```
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);
c = (int *)malloc(size);
```

Addition with Blocks and Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

```
// Cleanup
```

}

```
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```

Handling Arbitrary Vector Sizes

- **Typical problems are not friendly multiples of blockDim.x**
- Avoid accessing beyond the end of the arrays:

```
global void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];</pre>
```

Update the kernel launch:

}

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Why Bother with Threads?

Threads seem unnecessary

- They add a level of complexity
- What do we gain?
- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize
- To look closer, we need a new example...

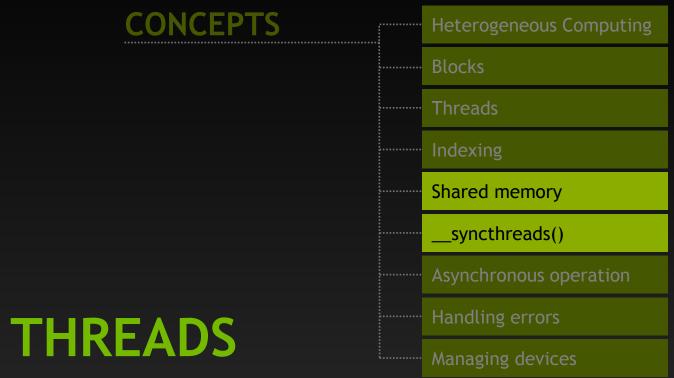
Review

Launching parallel kernels

- Launch N copies of add() with add (N/M, M>>>> (...);
- Use blockIdx.x to access block index
- Use threadIdx.x to access thread index within block

Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;



COOPERATING THREADS

- Consider applying a 1D stencil to a 1D array of elements
 - Each output element is the sum of input elements within a radius
- If radius is 3, then each output element is the sum of 7 input elements:

Implementing Within a Block

Each thread processes one output element

- blockDim.x elements per block
- Input elements are read several times
 - With radius 3, each input element is read seven times

Simple Stencil in 1d

- Open cuda/simple_stencil/kernel.cu
- Finish the kernel and the kernel launch
 - Each thread calculates one stencil value
 - Reads 2*RADIUS + 1 values
- Inserted GPU timers into code to time the execution of the kernel
- Try various sizes of N, RADIUS, BLOCK
- Time a large (over a million) value of N with a RADIUS of 7

Can we do better?

Input elements are read multiple times

- With RADIUS=3, each input element is read seven times!
- Neighbouring threads read most of the same elements.
 - Thread 7 reads elements 4 through 10
 - Thread 8 reads elements 5 through 11

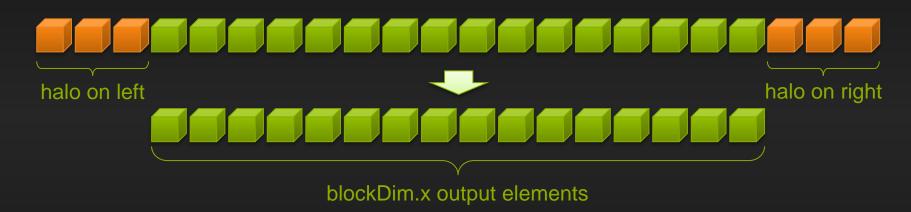
Can we avoid redundant reading of data?

Sharing Data Between Threads

- Terminology: within a block, threads share data via shared memory
- Extremely fast on-chip memory, user-managed
- Declare using <u>shared</u>, allocated per block
- Data is not visible to threads in other blocks

Implementing With Shared Memory

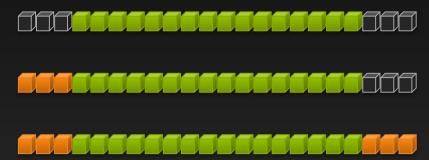
- Cache data in shared memory (user managed scratch-pad)
 - Read (blockDim.x + 2 * radius) input elements from global memory to shared memory
 - Compute blockDim.x output elements
 - Write blockDim.x output elements to global memory
- Each block needs a halo of radius elements at each boundary



_global___void stencil_ld(int *in, int *out) { __shared___int temp[BLOCK_SIZE + 2 * RADIUS]; int gindex = threadIdx.x + blockIdx.x * blockDim.x; int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =
 in[gindex + BLOCK_SIZE];</pre>

Stencil Kernel



Stencil Kernel


```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
  result += temp[lindex + offset];</pre>
```

```
// Store the result
out[gindex] = result;
```

}

Simple Stencil 1d with shared memory

- Open cuda/simple_stencil_smem/kernel.cu
- Run the code. It will build/run without modification.
 - If Errors occur, each offending element will be printed to the screen
- What is the result with N=10,000 and BLOCK=32?
- What is the result with N=10,000 and BLOCK=64?
 - Why?

- The stencil example will not work...
- Suppose thread 15 reads the halo before thread 0 has fetched it...

```
temp[lindex] = in[gindex]; Store at temp[18]
if (threadIdx.x < RADIUS) {
   temp[lindex - RADIUS = in[gindex - RADIUS]; Skipped, threadIdx > RADIUS
   temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
int result = 0;
result += temp[lindex + 1]; Load from temp[19]
```

____syncthreads()

void __syncthreads();

Synchronizes all threads within a block

- Used to prevent RAW / WAR / WAW hazards
- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block
- Insert _____syncthreads() into the kernel in the proper location
- Compare timing of previous simple stencil with the current shared memory implementation for same (large N) and BLOCK=512

Stencil Kernel


```
global _____void stencil_ld(int *in, int *out) {
    ____shared____int temp[BLOCK_SIZE + 2 * RADIUS];
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    int lindex = threadIdx.x + radius;
```

```
// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
   temp[lindex - RADIUS] = in[gindex - RADIUS];
   temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}</pre>
```

// Synchronize (ensure all the data is available)
____syncthreads();

Stencil Kernel

}


```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
    result += temp[lindex + offset];</pre>
```

// Store the result
out[gindex] = result;

Review (1 of 2)

Launching parallel threads

- Launch N blocks with M threads per block with kernel<<<N,M>>>>(...);
- Use blockIdx.x to access block index within grid
- Use threadIdx.x to access thread index within block

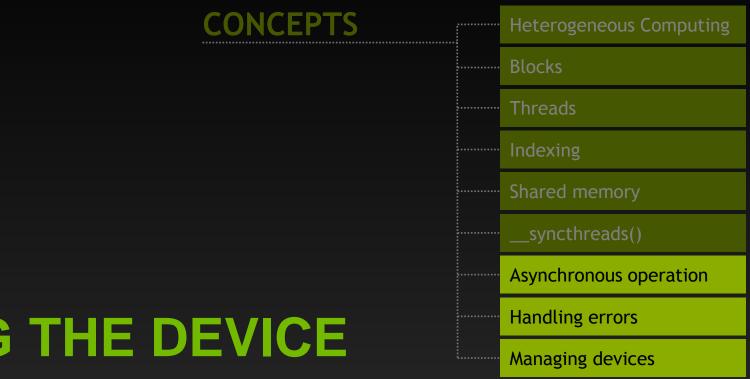
Allocate elements to threads:

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```

Review (2 of 2)

Use <u>shared</u> to declare a variable/array in shared memory

- Data is shared between threads in a block
- Not visible to threads in other blocks
- Using large shared mem size impacts number of blocks that can be scheduled on an SM (48K total smem size)
- Use <u>syncthreads</u> () as a barrier
 - Use to prevent data hazards



MANAGING THE DEVICE

Coordinating Host & Device

- Kernel launches are asynchronous
 - Control returns to the CPU immediately

CPU needs to synchronize before consuming the results

cudaMemcpy()Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completedcudaMemcpyAsync()Asynchronous, does not block the CPUcudaDeviceSynchronize()Blocks the CPU until all preceding CUDA calls have completed

Reporting Errors

All CUDA API calls return an error code (cudaError_t)

- Error in the API call itself OR
- Error in an earlier asynchronous operation (e.g. kernel)

Get the error code for the last error:

cudaError_t cudaGetLastError(void)

Get a string to describe the error:

char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Device Management

Application can query and select GPUs

cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple threads can share a device

A single thread can manage multiple devices cudaSetDevice(i) to select current device cudaMemcpy(...) for peer-to-peer copies[†]

Introduction to CUDA C/C++

What have we learned?

- Write and launch CUDA C/C++ kernels
 - global__, blockIdx.x, threadIdx.x, <<<>>>
- Manage GPU memory
 - cudaMalloc(), cudaMemcpy(), cudaFree()
- Manage communication and synchronization
 - shared__, __syncthreads()
 - cudaMemcpy() VS cudaMemcpyAsync(), cudaDeviceSynchronize()

Compute Capability

The compute capability of a device describes its architecture, e.g.

- Number of registers
- Sizes of memories
- Features & capabilities

Compute Capability	Selected Features (see CUDA C Programming Guide for complete list)	Tesla models
1.0	Fundamental CUDA support	870
1.3	Double precision, improved memory accesses, atomics	10-series
2.0	Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P, concurrent kernels/copies, function pointers, recursion	20-series

The following presentations concentrate on Fermi devices

Compute Capability >= 2.0

IDs and Dimensions

- A kernel is launched as a grid of blocks of threads
 - blockIdx and threadIdx
 are 3D
 - We showed only one dimension (x)

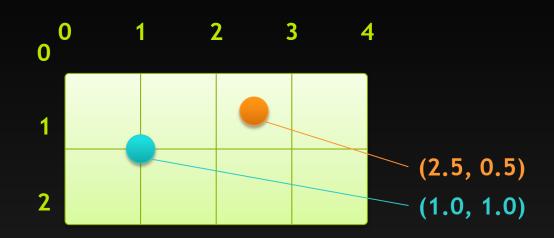
Built-in variables:

- threadIdx
- blockIdx
- blockDim
- gridDim

Device								
Grid 1								
		Block 0,0,0)		ock 0,0)	Block (2,0,0			
	Block (0,1,0)			Block (1,1,0)		;)		
Block (1,1,0)								
	Thread (0,0,0)	Thread (1,0,0)	Thread (2,0,0)	Thread (3,0,0)	Thread (4,0,0)			
	Thread (0,1,0)	Thread (1,1,0)	Thread (2,1,0)	Thread (3,1,0)	Thread (4,1,0)			
	Thread (0,2,0)	Thread (1,2,0)	Thread (2,2,0)	Thread (3,2,0)	Thread (4,2,0)			

Textures

- Read-only object
 - Dedicated cache
- Dedicated filtering hardware (Linear, bilinear, trilinear)
- Addressable as 1D, 2D or 3D
- Out-of-bounds address handling (Wrap, clamp)



Topics we skipped

We skipped some details, you can learn more:

- CUDA Programming Guide
- CUDA Zone tools, training, webinars and more http://developer.nvidia.com/cuda

Need a quick primer for later:

- Multi-dimensional indexing
- Textures

Global Memory Throughput

Fermi Memory Hierarchy Review

- Local storage
 - Each thread has own local storage
 - Mostly registers (managed by the compiler)
- Shared memory / L1
 - Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
 - Shared memory is accessible by the threads in the same threadblock
 - Very low latency
 - Very high throughput: 1+ TB/s aggregate
- L2
 - All accesses to global memory go through L2, including copies to/from CPU host
- Global memory
 - Accessible by all threads as well as host (CPU)
 - High latency (400-800 cycles)
 - Throughput: up to 177 GB/s

GMEM Optimization Guidelines

Strive for perfect coalescing

- Align starting address (may require padding)
- A warp should access within a contiguous region
- Have enough concurrent accesses to saturate the bus
 - Process several elements per thread
 - Multiple loads get pipelined
 - Indexing calculations can often be reused
 - Launch enough threads to maximize throughput
 - Latency is hidden by switching threads (warps)

Try L1 and caching configurations to see which one works best

- Caching vs non-caching loads (compiler option)
- 16KB vs 48KB L1 (CUDA call)

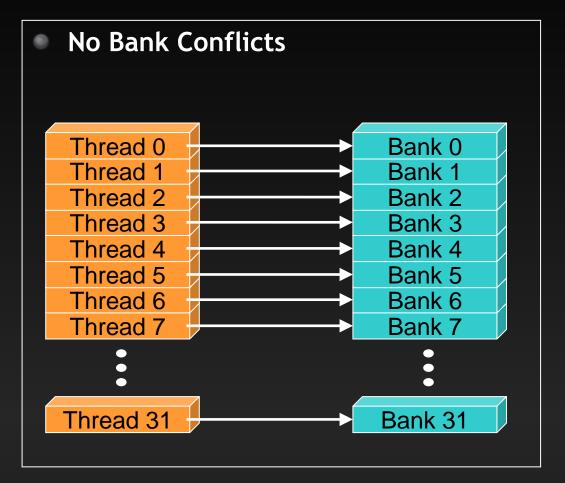
Shared Memory

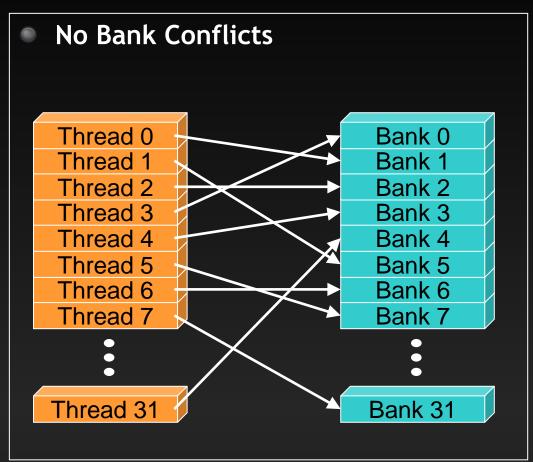
Shared Memory

Uses:

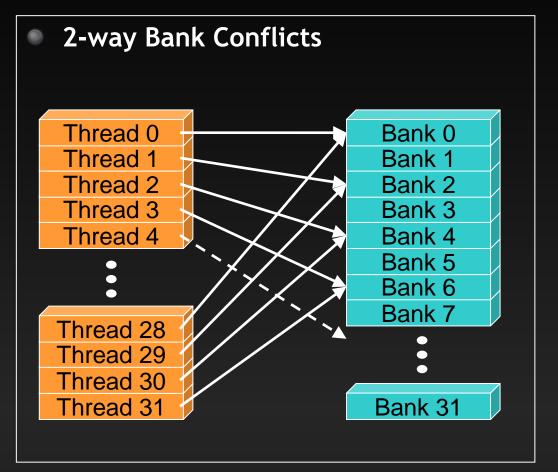
- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns
- Organization:
 - 32 banks, 4-byte wide banks
 - Successive 4-byte words belong to different banks
- If you use shared memory in a kernel, you should almost always use __syncthreads() to avoid race conditions!!!

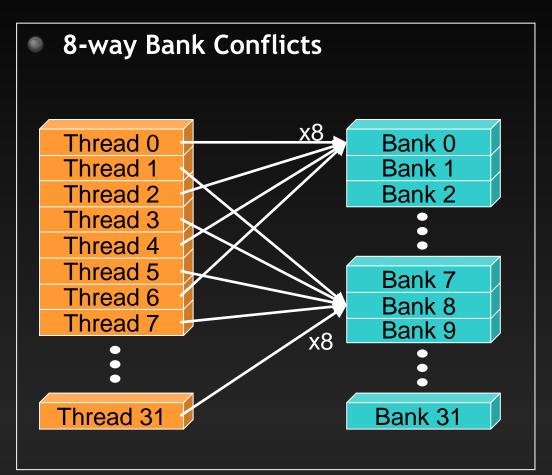
Bank Addressing Examples





Bank Addressing Examples





Shared Memory: Avoiding Bank Conflicts

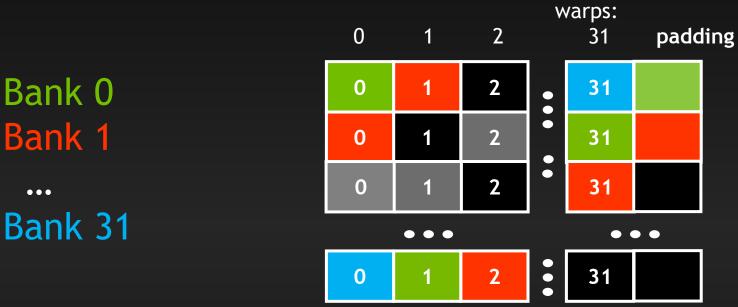
- 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Shared Memory: Avoiding Bank Conflicts

- Add a column for padding: ۲
 - 32x33 SMEM array

...

- Warp accesses a column:
 - 32 different banks, no bank conflicts



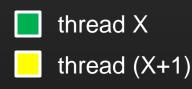
Matrix Transpose

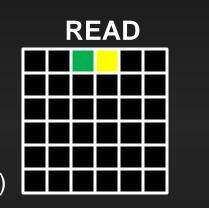
Matrix Transpose

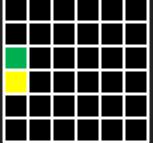
- Open exercises/naive_transpose/kernel.cu
 - Defined INDX(row,col,ld) to translate 2d coordinates to 1d index
- Column-major double precision elems
 - Out-of-place transpose
- Naïve implementation:
 - Square threadblocks
 - Each thread:

 \bigcirc

- Computes its global x and y coordinates
- Reads from (x,y), writes to (y,x)







naive_transpose

- Use INDX(row,col,ld) to translate 2d coordinates to 1d index
 - Defined as MACRO at top of source code
- Finish the kernel and kernel launch parameters
 - Each thread transposes one element from A to C, out-of-place
- Kernel is compared to a CPU-side transpose
 - Both performance and answers are compared
- Once you get correct answers in your kernel:
 - Measure performance of kernel with N=1024 and N=4096

NVIDIA Visual Profiler

- nvvp &
- Choose File->New Session
- Choose exercises/cuda/naive_transpose/x.transpose
- Choose timeout = 60 seconds.
- Uncheck "Run Analysis" then click "Finish"
- Click "Analyze All"
 - Profiler will execute the code multiple times to record all performance counters
- In the timeline windows, click on the kernel of interest

Profiler results?

What does the profiler output show us?

Why are load and store performance so divergent?

Ideas for potential improvement?

Cause and Remedy

Cause:

- Due to nature of operation, one of the accesses (read or write) will be at large strides, i.e., uncoalesced!
 - 32 doubles (256 bytes) in this case (on a warp basis)
 - Thus, bandwidth will be wasted as only a portion of a transaction is used by the application

Remedy

- Stage accesses through shared memory
- A threadblock:
 - Reads a tile from GMEM to SMEM
 - Transposes the tile in SMEM
 - Write a tile, in a coalesced way, from SMEM to GMEM

Smem_transpose/kernel.cu

- Finish the kernel code
 - Particularly the index calculations for the transpose.
- One thread block cooperatively operates on a block of the matrix
 - Index calculations need to know which block I am in the full matrix
- HINT: You are using shared memory. What should you include when using smem?
- Once you get correct answers in your kernel:
 - Measure performance of kernel with N=1024 and N=4096

Visual Profiler

- Run the profiler
- What are the results?
- What is happening?
- How to fix it?
 - Hint: requires adding only 2 characters to the kernel source!

SMEM bank conflicts

- Recall that smem has 32 banks of 4 bytes each
- When multiple threads IN THE SAME WARP access the same bank, a conflict occurs and performance is affected negatively
- Consider __shared __double s[16][16]
 - Read/write s[tidx][tidy] (each read/write requires two 4byte banks)
 - tidx are consecutive threads
 - They are accessing the s[][] array with stride of 16 doubles
 - 16 doubles == 128 bytes == 32 banks * 4 bytes.
 - s[0][tidy] accesses banks 0,1 to grab its 8 byte double
 - s[1][tidy] accesses banks 0,1 to grab its 8 byte double
 - 16 threads are all accessing banks 0,1 in the same transaction!!!

SMEM bank conflicts cont'd

- tidx from 0 to 16 all access banks 0,1
 - 16 way bank conflict! VERY BAD for performance
- How to remedy?
 - Pad shared memory.
- shared double s[16][17]
 - Now the stride between success tidx is 17 doubles,
 - i.e., 17 * 8bytes = 136 bytes
 - More importantly, 136 byte stride will be 32 + 2 banks
 - s[0][tidy] accesses banks 0,1 to grab its 8 byte double
 - s[1][tidy] accesses banks 2,3 to grab its 8 byte double
 - 16 threads are all accessing different banks!!!

Still in smem_transpose/kernel.cu

- Remedy the smem bank conflicts
- Once you get correct answers in your kernel:
 - Measure performance of kernel with N=1024 and N=4096

- Run with the profiler again.
 - Verify the bank conflicts have gone away

- SMEM often used to alleviate poor GMEM accesses
 - Uncoalesced loads/stores were solved using SMEM
- SMEM almost always requires _____syncthreads()
- SMEM often requires an analysis to minimize bank conflicts.
- Use NVIDIA Visual Profiler to identify performance bottlenecks

Matrix multiply

Matrix Multiply

- The foundation of lots of linear algebra
- High compute/communication ratio
 - Access O(N²) data and execute O(N³) operations
- Relatively simple algorithm
 - Great teaching algorithm
- Well-written code shows off the power of CPU and/or GPU

Matrix Multiply cont'd

- Matrix A with M rows and K cols
- Matrix B with K rows and N cols
- A * B = C
 - C has M rows and N cols

$$OC_{i,j} = \sum_{k}^{K} A_{i,k} * B_{k,j}$$

The dot product of the *ith* row of A and *jth* col of B yields the *i*, *j* element of C

matmul_CPU

- Open matmul_CPU/kernel.cu
- CPU-only example
- Complete "host_dgemm" function
 - Finish the index calculations for the arithmetic in inner loop.
- What is the performance of your naive CPU matrix multiply?
- DGEMM is often measured in terms of percentage of peak.
 - Intel X5690@3.47GHz has peak of 3.47GHz * 4 DP flops/clock = 13.88GF
 - What is your code's percent of peak?

Matmul on GPU

In reality we'd never write a matmul for GPU

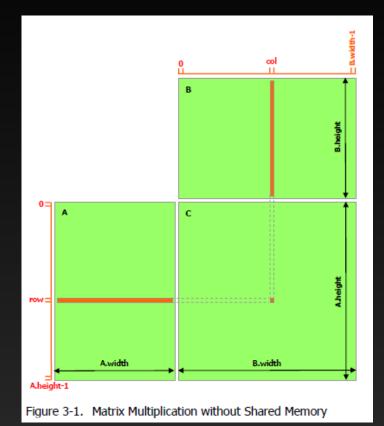
- Call NVIDIA's CUBLAS library
- Open matmul_CUBLAS/kernel.cu
 - Code should run without modification.
- Run the code with N=1024 and record performance of CUBLAS dgemm
 - How does it compare to your naive CPU code?

Matmul on GPU

- We will write matrix multiply on GPU
- Use square matrices for simplicity
- Use powers of 2 so we can avoid writing the extra code for end cases
- Write three versions utilizing successively advanced optimization ideas, based in part on profiling results we obtain

matmul_GPU_naive

- Open matmul_GPU_naive/kernel.cu
- Finish the kernel
 - Add the appropriate index calculations to the kernel
 - Answers are compared against CUBLAS
 - You should see an error message printed to the console if your results are suspect!
- Record performance of N=1024
 - How does it compare to CUBLAS?



Visual profiler

- Profile the code with Visual Profiler
- What are some performance considerations?
- Consider two successive threads
 - How is global memory accessed for matrices A, B, C?
- What is a choice we have if we wish to remedy uncoalesced GMEM accesses?

Strategies to improve

Use shared memory to achieve better coalescing

- Allows us to share data among threads
- Reduces number of times data must be read because we reuse from smem rather than fetch from GMEM each time.
- Similar to the matrix transpose example:
 - Load block of A into SMEM
 - Load block of B into SMEM
 - Compute block of C from A and B in SMEM
- Open matmul_GPU_shmem/kernel.cu
 - #pragma unroll to unroll loops of predefined trip count

matmul_GPU_shmem

For each block in K direction

- Load block of A into SMEM
- Load block of B into SMEM
- Use these blocks to contribute to block of C
- When using SMEM, what function should you include???
- Record performance of N=1024
 - How does it compare to naïve kernel?

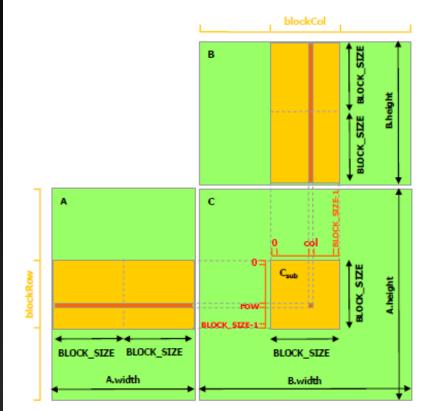


Figure 3-2. Matrix Multiplication with Shared Memory

Visual profiler

- We solved the uncoalesced memory issue.
- What does profiler show us?
- What is the fix for this?
- What is the performance with this change?

Algorithmic improvements

Currently one thread block calculates one block of C

- By extension one thread only calculates one element of C
- A natural extension is to try having one thread block calculate multiple portions of C and thus one thread calculating multiple values of C
- This would reduce the number of times A and B are fetched from GMEM and increase the computational intensity of the thread block
- A priori not obvious how many blocks C should calculate
- Write a new kernel that does this idea in a general fashion
 - Experiment with different block sizes etc.
- MAGMA from UTK <u>http://icl.cs.utk.edu/magma/</u> has done extensive work on dense linear algebra

matmul_GPU_shmem1

- Open matmul_gpu_shmem1/kernel.cu
- Lots of #define at the top of the source code
 - Pay special attention to the defined constants and how they interact with each other!
 - Keep TX=TY=BK=16
 - TBX=TBY=16 and NX=NY=1 is equivalent to the previous kernel.
- Complete the kernel with some important reminders
 - What function should you automatically use with SMEM???
 - How can you avoid those nasty bank conflicts in SMEM???
 - Refer to diagram in cheatsheet for pictorial view of algorithm
 - Lots of code to fill in. This one is challenging!!!

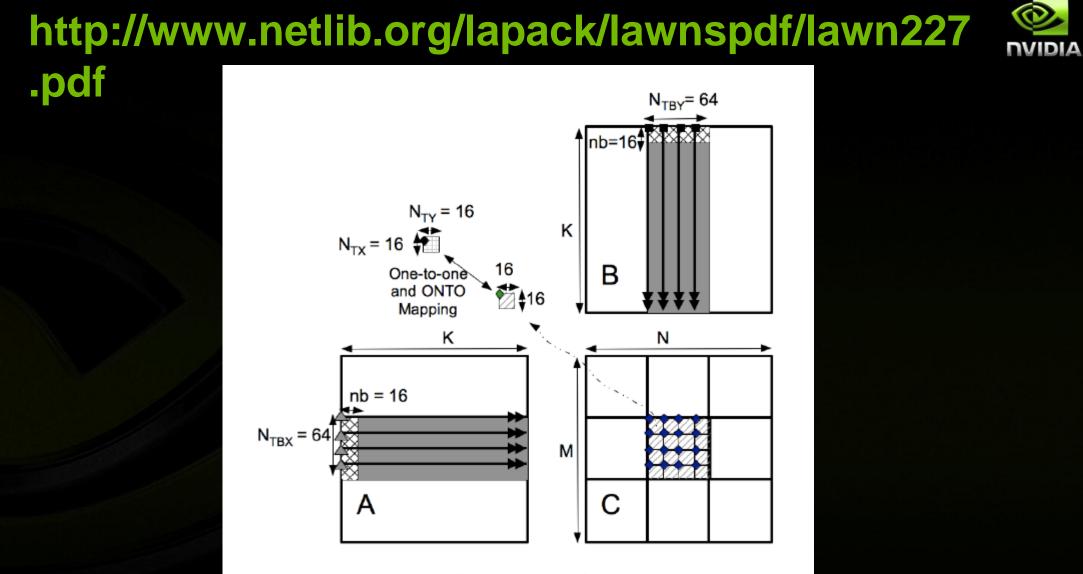


Fig. 2. The GPU GEMM ($C := \alpha AB + \beta C$) of a single TB for Fermi.

matmul_GPU_shmem1

Keep N=1024

- Try different values of TBX, TBY, NX, NY
- What is the best combination?
- Are there multiple "best" values?
- With the best combination you found, record performance for N=1024
 - How does it differ with padded or unpadded SMEM?
 - How does it compare to the CUBLAS result we saw earlier?

- Compute intensity (arithmetic ops/memory reference) on a perthread basis impacts performance
- Avoiding SMEM bank conflicts is critical
- Visual Profiler is helpful to identify performance issues

Final Wrap-up

Optimizations we looked at

- Coalesced global memory accesses
- Shared memory usage
 - ____syncthreads()
 - Padding to avoid bank conflicts
 - Appropriate arithmetic intensity
- Things we didn't examine
 - Optimizations of host->device data transfer
 - Overlap of communication/computation
 - Texture memory usage
 - Multi-GPU programming

Questions?

