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Gyrokinetic Tokamak Simulation (GTS) code:
simulate turbulence and transport in fusion experiments

• Solving modern gyrokinetic equation in conservative form for f(Z, t)

∂fa

∂t
+

1
B∗∇Z · ( �̇ZB∗fa) =

∑
b

C[fa, fb]

(see, e.g., Brizard & Hahm, Rev. Mod. Phys. ’07)

• Using δf method (based on importance sampling) – δf ≡ f − f0

∂δfa

∂t
+

1
B∗∇Z · ( �̇ZB∗δfa) = − 1

B∗∇Z · ( �̇Z1B
∗fa0) +

∑
b

Cl(δfa)

– f0 = neoclassical equilibrium satisfying:

∂fa0

∂t
+

1
B∗∇Z · ( �̇Z0B

∗fa0) =
∑

b

C[fa0, fb0]

– f0 = fSM for ions; f0 = fSM or (1 + eδΦ/Te)fSM for electrons
�̇Z ≡ �̇Z0 + �̇Z1; �Z1 – drift motion associated with fluctuations δΦ, δ �A‖

(Wang et al,. PoP’06, PoP’10)
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GTS uses δf Particle-In-Cell approach

• Particle-in-cell approach – solving marker particle distribution F (Z,w) in
extended phase space:

∂F

∂t
+

1
B∗∇Z · ( �̇ZB∗F ) +

∂

∂w
(ẇF ) = 0; δf =

∫
wFdw

(1/B∗)∇Z · ( �̇ZB∗F ) =⇒ �̇Z · ∇ZF ; taking Z = {r, θ, φ, v‖, μ}
– Lagrangian equations in general flux coordinates for G.C. motion:

d

dt

(
∂

∂ẋi
L

)
− ∂

∂xi
L = 0, (1)

L(x, ẋ; t) = (A+ ρ‖B) ·v−H; H = ρ2
‖B

2/2 +μB+ Φ (Littlejohn PF’81)

– Weight equation

ẇ =
1 − w

f0

[
− 1
B∗∇Z · ( �̇Z1B

∗fa0)
]

+
w − 〈w〉
f0

[
− 1
B∗∇Z · ( �̇Z1B

∗fa0)
]

to ensure incompressibility: (∂/∂w)ẇ = 0!
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Major numerical and physical features

• Real space field solvers with field-line-following mesh

– retains all toroidal modes and full channels of nonlinear energy couplings

e

Ti
(Φ − Φ̃) =

δn̄i

n0
− δne

n0
−integral form (Lee′83)

−∇⊥ · Zini,0

BΩi
∇⊥Φ = n̄i − ne −PDE form (Dubin et.al.′83)

• Fully kinetic electrons (both trapped and untrapped electron dynamics)

• Linearized Fokker-Plank operator with particle, momentum and energy
conservation for i-i and e-e collisions; Lorentz operator for e-i collisions

• Interaction with neoclassical physics with two options
i) include both turbulent and neoclassical physics self-consistently
ii) import GTC-NEO result of equilibrium Er into GTS

• Full geometry, global simulation
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Can turbulence drive plasma current
or change bootstrap current?

• Plasma self-generated non-inductive current is of great importance

– NTM physics, ELM dynamics, overall plasma confinement

• Bootstrap current Jbs – a well known non-inductive current

– driven by pressure and temperature gradients in toroidal geometry

– associated with existence of trapped particles

– predicted by neoclassical theory (see, e.g., Hinton & Hazeltine, ’76);

– discovered in experiments (Zarnstorff & Prager, ’84)

• Total current rather than local current density measured in exptls.

– ∼ Jbs ± 50 % in core;

– significant deviations seem to appear in edge pedestal

• Current generation by turbulence is investigated using nonlinear global
gyrokinetic simulations with GTS code

– focus on electron transport dominated regime – CTEM turbulence

– neglect electromagnetic effect (Hinton et. al., PoP’04)
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Minor correction due to finite orbit neoclassical effect

• Nonlocal neoclassical equilibrium solution in collisionless regime:

Δui‖ � −mic

e

〈
I2

B2

〉
cTiI

eB

∂ lnni

∂ψp

∂ωt

∂ψp
.
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Earlier GK turbulence simulations excluding neoclassical
physics show significant quasi-stationary electron current

generation by CTEM fluctuations
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DIII-D size geometry;
R0/LTe

= R0/Ln = 6;
R0/LTi

= 2.4; initially rotation free;
mean E × B included

• electrons carry most of current in +B
direction

• ions carry small current in −B direction

• fine radial scales presented in electron
current

• Much weaker current generation by ITG
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Bootstrap current generation can be significantly
modified in the presence of turbulence

• New sim. incl. both turb. & NC physics simultaneously in CTEM regime
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• Turb. contr. dominated by trapped e−
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Fluctuation-induced current is associated with nonlinear
electron flow generation
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• Electron flow generation by turb. residual

stress due to k‖ symmetry breaking

• Turbulence acceleration of electrons ?

Electron detrapping by drift wave turbulence
(McDevitt et. al. ’13)
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Characteristic dependence of fluctuation-induced current
generation
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Share similarity wth conventional bootstrap
current, but with different physics origins

• increases with ∇p
• decreases with Bp

• increases with magnetic shear dq/dr

• collisionality dependence
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Optimized flow is of great importance in fusion plasmas

• Control macroscopic stability; reduce micro-turbulence and energy loss

• Turbulence generation of global intrinsic rotation is critical in ITER

– turbulent residual stress driven by ∇T , ∇n produces a local torque

– interplay of turbulent torque and edge boundary conditions/effects

(Diamond et. al., NF’09)

• Free energy in flow gradient may drive its own instability and turbulence

– velocity shear drive Kelvin-Helmholtz instability in fluid

– in plasmas, flow shear may drive a negative compressibility mode

(Catto et al., ’73; Matter & Diamond, ’88; Artun & Tang, ’92 ... )

– observed in linear machines.

– largely ignored and unexplored in tokamaks

(presumably assumed hardly unstable due to magnetic shear effect)

• First results of flow shear driven turbulence and transport from nonlinear
global GK simulations [with GTS code (Wang et al., PoP’06)] are reported
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Strong flow shear can drive micro-instability in tokamak

• Global GK simulation with kinetic electrons • DIII-D-size geometry

• R0/LTi
= R0/LTe

= R0/Ln = 1.2 – ITG and TEM are stable
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Distinct linear features of flow shear instability

50 60 70 80 90 100
20

25

30

35

40

45

poloidal mode number m

to
ro

id
al

 m
od

e 
nu

m
be

r 
n

flow shear mode

40 60 80 100 120
20

30

40

50

60

70

80

90

poloidal mode number m

to
ro

id
al

 m
od

e 
nu

m
be

r 
n ITG (with adiabatic electrons)

• significant finite k‖
k‖ ∼ b̂ · ∇θ(m− nq)

• stronger Landau damping
→ increase instability threshold
R0/Lωt

> R0/LTi
(for ITG)

R0/Lωt
> R0/LTe,n (for TEM)

• asymmetry (impact on residual
stress generation)

60 80 100 120 140 160 180 200
40

60

80

100

120

140

poloidal mode number m

to
ro

id
al

 m
od

e 
nu

m
be

r 
n CTEM

13



Nonlinear toroidal mode couplings play a key role to
cause flow shear turbulence saturation
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• Nonlinear energy transfer to longer wavelength modes via toroidal mode
couplings

• Strong zonal flows and GAMs generation
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Flow shear turbulence can drive significant momentum
and energy transport
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• Observation of turbulent intrinsic torque
in co-current direction

• Limitation on de-stiffness seen in gyro-
fluid simulation (Jhang, IAEA FEC ’12)
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Effects of q-profile structure
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• Magnetic shear shows no suppression
effect on flow shear instability
in tokamak plasmas!
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Effects of q-profile structure – what happens at rational
surfaces with integer q-number?
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• Fluctuations peak at lowest-order rational
surface q = 2 (and q = 3)
(only in nonlinear phase)

• Zonal flow shear shows corrugated structure
at the same location
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Why fluctuations peak at lowest-order rational surfaces
with integer-q number – a theoretical explanation

• Due to minimum Landau damping at k‖ = 0, φm,n peaks at q(r) = m/n

• I(r) =
∑
m,n

|φm,n|2dm,n(r) ∼ ∑
m,n

dm,n(r) assuming φm,n same for all MRSs

• Example with q = 1 + 2(r/a)2
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• Fluctuations peak at integer rational surfaces (rather than fractional!)

• Many spurious peaks at rational surfaces when using a subset of modes
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Peaked fluctuations and transport impact plasma profile
structure near integer rational surfaces
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• Local “corrugations” generated in all radial
profiles near integer rational surface: Vt, ne,
Te and Ti

• Potential impact of profile corrugations:
– transport barrier formation near (integer)

rational surface (Waltz et. al., PoP’06)
– electron scale turbulence via

nonlinear ETG excitation

19



Summary

CTEM turbulence is found to drive a significant, quasi-stationary current

• Consistent results obtained between turb. sim. with and w/o NC physics

• Mainly carried by trapped electrons & driven by electron residual stress

• Similarity in characteristic dependence with neoclassical bootstrap current

(but with different physics origins)

– increases with ∇p; – decreases with equilibrium Ip (and Bp);
– increases with magnetic shear dq/dr; – collisionality dependence

Strong flow shear may drive its own instability and turb. transport in tokamak

• Low-k range as ITG; smaller but almost constant growth rate; finite k‖

• Saturation via nonlinear toroidal energy transfer to lower-k modes

and strong ZFs and GAMs generation

• Significant momentum & energy transport, including an intrinsic torque

• Fluctuations peak at integer (not fractional) rational surfaces

• local “corrugations” generated in all plasma profiles near the surfaces
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