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Gyrokinetic simulation model

Anomalous poloidal flow driven by fluctuations
Fluctuation-induced plasma current generation
Interesting GAM structure and implications

Summary



G T S GTS

e Solving modern gyrokinetic equation in conservative form for f(Z,t)

of, 1
S+ =V (ZB"f) Zcfa,fb

(see, e.g., Brizard & Hahm, Rev. Mod. Phys. ’07)

e Using 0 f method (based on importance sampling) —df = f — fo

95 f,
ot

S 1 S l
_vZ (ZB*5f,) = ~= V- (71 B* fa0) +Zb:C (6f,)
— Jo = neoclassical equilibrium satisfying:

Ofa 5
(‘];50 + %VZ - (ZoB™ fa0) = Zc[fam fvo]

b
— fo = fsm for ions;  fo = fom or (14 ed®/T.)fsm for electrons

7 = ZO -+ Zl; Zl — drift motion associated with fluctuations 0P, 5ff||
(Wang et al,. PoP’06, PoP’10)




e Particle-in-cell approach — solving marker particle distribution F'(Z,w) in

extended phase space:

OF 1 S o .
> —I_B*VZ.(ZB F)-|-8—w(wF)—O, (5f—/dew

(1/B*)Vy - (ZB*F) = Z - V4 F; taking Z = {r,0,¢0,v), 1}
— Lagrangian equations in general flux coordinates for G.C. motion:
d ([ 0 0
L) — L=0 1
Lx,x;t) = (A+pB)-v—-H; H= pﬁBz/Q + uB + ® (Littlejohn PF’81)
— Weight equation
. 1—w [ 1
w = ——
Jo B~

Vz- (51B*fao)] + = _f0<w> [—%Vz : (le*faO)

to ensure incompressibility: (0/0w)w = 0!



Real space field solvers with field-line-following mesh

— retains all toroidal modes and full channels of nonlinear energy couplings

T 6 _z' 5 e .
%(@ —d) = TL?Z — :(; —integral form (Lee’83)
Zin; 0 _ . )
—V =V .9 =n; —n. —PDE form (Dubin et.al."83)

Fully kinetic electrons (both trapped and untrapped electron dynamics)

Linearized Fokker-Plank operator with particle, momentum and energy

conservation for i-i and e-e collisions; Lorentz operator for e-i collisions

Interaction with neoclassical physics with two options

i) include both turbulent and neoclassical physics self-consistently
ii) import GTC-NEO result of equilibrium E,. into GTS

Full geometry, global simulation



e Significant vy contribution to E,. likely in ITER

E, = —— 4+ —(ByV, — BV,
n66r+c(9t 10

e Large difference in poloidal flow between DIII-D exptl. and NC value in
low-collisionality regime with steep VT; (B. Grierson, 2013)
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e Associated E x B shear may significantly impact ITER confinement
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Nonlocal NC EQ in collisionless regime:
m;c cT;1 0lnn; Owy

)
Additional poloidal flow due to finite
orbits identified by GTC-NEO:

0 1n p; Ow;

4
B or Or

(Wang et.al., ’06; Kolesnikov et.al., ’10)
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Poloidal flow generation by turbulence((Diamond & Kim, '91;

Pif-Pradalier et.el., ’09; McDevitt et. al., 10)

torque induced by poloidal Reynolds stress: Hf"g ~ (U, 0p)

Examine characteristic dependence using large exptl. database:
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Fluctuation-induced torque is shown at right location &
in right direction for driving poloidal flow

poloidal momentum flux (a.u)
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Simulation incl. kinetic electron & NC phys.
e ECH-induced H-mode plasma
e anomalous Vy observed in r/a ~ 0.2 - 0.6
e mild heat transport produced by ITG

e significant poloidal RS produced
V- HE% — positive torque for Vy

e Poloidal torque density ~ Nt/ m”




v, effects on fluctuations & transport

e (ollisional zonal flow damping

e Strong v, dependence of I'TG driven y;

e Same behavior likely for ETG driven y.

— a possible origin for confinement
scaling observed in NSTX ~ 1/v, .

Amp. of linear modes ~ <50%> (a.u.)

5| —W/OE, NSTX low-k instibility
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e Collision effect on poloidal flow dissipation
— magnetic pumping induce viscous damping ~ v;; Vy
— viscous heating (kinetic energy — thermal energy)

— mean Vp determined by balance V - Hf}’g ~ v;i; Vo — v, dependence

Strong correlation shown between fluctuation driven Vj and Vj generation

Correlation coefficients: R[HEQS,HES] > 0.7; R[vg, vg] > 0.9;
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Plasma self-generated non-inductive current is of great importance

— NTM physics, ELM dynamics, overall plasma confinement

Bootstrap current J,,s — a well known non-inductive current

— driven by pressure and temperature gradients in toroidal geometry
— associated with existence of trapped particles

— predicted by neoclassical theory (see, e.g., Hinton & Hazeltine, ’76);

— discovered in experiments (Zarnstorff & Prager, '84)

Total current rather than local current density measured in exptls.
— ~ Jps £ 50 % in core;

— significant deviations seem to appear in edge pedestal

Current generation by turbulence is investigated using nonlinear global
gyrokinetic simulations with GTS code

— focus on electron transport dominated regime — CTEM turbulence

— neglect electromagnetic effect (Hinton et. al., PoP’04)
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e Nonlocal neoclassical equilibrium solution in collisionless regime:
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(Wang et. al., ’06)
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(JB) = (e/v||B5fd3v>

DIII-D size geometry;
RO/LTe = Ro/Ln = 6;
Ro/ Ly, = 2.4; initially rotation free;

mean E X B included

electrons carry most of current in +B

direction
ions carry small current in —B direction

fine radial scales presented in electron

current

Much weaker current generation by ITG
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Bootstrap current generation can be significantly
modified in the presence of turbulence

e New sim. incl. both turb. & NC physics simultaneously in CTEM regime
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e Results consistent with turb.-only sim.

e Total Jy; mainly carried by passing e~

e Turb. contr. dominated by trapped e~
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Fluctuation induced current is associated with nonlinear

electron flow generation

time (vu/LT )

electron momentum flux r:S
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(J1B) = e(n(u;| — ue))B)

e Electron flow generation by turb. residual

stress due to k| symmetry breaking

e Turbulence acceleration of electrons ?

Electron detrapping by drift wave turbulence

(McDevitt et. al. ’13)

Neoclassical
v =10"
v =102
v =107
— =107
Collisionless
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volume-integrated current J, (a.u.)

RO/LTe: RO/Ln:6

R 0/ LTe: R 0/ Ln:5

electron current
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Share similarity wth conventional bootstrap
current, but with different physics origins

e increases with Vp

e decreases with B,

e increases with magnetic shear dq/dr

e collisionality dependence

20
3
«©
— 15¢
= dg/dr=2.2
1<
o
3 10r
K electron current dg/dr=1.5
©
(@] 5t
é dg/dr=0.9
o
5 o
o \
>

ion current
750 100 150 200

time

16



Fluctuation intensity <ss™>
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e GAMs dominate over zero-w ZFs near r/a ~ 0.7 in L-mode phase

e Transport largely suppressed by GAMs locally with a max. VT; presented
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Dominant GAMs and possible implication (for discussion)

e No strong GAMs presented in I-mode phase & in sim. excluding NC phys.

delta n(r,theta) phi(r,theta)
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e GAMSs may play a dominant role over ZFs in edge as exptls. suggested

e GAM layer decouples inside & outside plasma —

rational reversals occur inside ¢ = 3/2 surface in C-MOD Ohmic L-mode?
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ITG fluctuation-induced poloidal Reynolds stress is shown to provide an
effective torque for driving anomalous poloidal flow observed in DIII-D

e At right location, in right direction and with needed amplitude
e Fluctuation induced torque weakly depends on v, in collisionless regime

e Collisionality dependence of anomalous Vjy likely from viscous damping

due to magnetic pumping
CTEM turbulence is found to drive a significant, quasi-stationary current
e Consistent results obtained between turb. sim. with and w/o NC physics
e Mainly carried by trapped electrons & driven by electron residual stress

e Similarity in characteristic dependence with neoclassical bootstrap current
(but with different physics origins)
— increases with Vp; — decreases with equilibrium 7, (and B,);

— increases with magnetic shear dq/dr; — collisionality dependence

Dominant GAM structures and impact /implications suggested for C-MOD
Ohmic L-mode phase
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