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Control macroscopic stability; reduce micro-turbulence and energy loss

Turbulence generation of global intrinsic rotation is critical in ITER
— turbulent residual stress driven by VT', Vn produces a local torque

— interplay of turbulent torque and edge boundary conditions/effects
(Diamond et. al., NF’09)

Both achievable amplitude and flow structure are important

Free energy in flow gradient may drive its own instability and turbulence

— velocity shear drive Kelvin-Helmholtz instability in fluid

— in plasmas, flow shear may drive a negative compressibility mode
(Catto et al., '73; Matter & Diamond, ’88; Artun & Tang, 92 ... )

— observed in linear machines.

— largely ignored and unexplored in tokamaks

(presumably assumed hardly unstable due to magnetic shear effect)

First results of flow shear driven turbulence and transport from nonlinear
global GK simulations [with GTS code (Wang et al., PoP’06)] are reported
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Turbulence generated flow shows strong poloidal variation

e First order (in p;) plasma flow:

Arguments involved: i) flow within magnetic surface; ii) incompressible
e CTEM driven rotation: dominated by (m,n) = (1,0) and zonal mode (0,0)

e To test in experiments and to understand its impact on turbulence
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Nonlinear process for flow structure formation
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e Amplitudes of (1,0) and (0,0) components are comparable and much

larger than others

e Nonlinear toroidal mode couplings transfer energy of flow fluctuations

from small to large scale



Flow shear can drive drift wave unstable in tokamak

e Global GK simulation with kinetic electrons

e DIII-D-size geometry

e Ry/L1. = Ry/Lr. = Ry/L, =12 —-1TG and TEM are stable
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e Low-k mode (in same range of ITG mode)

e Smaller but almost constant growth rate
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toroidal mode number n

toroidal mode number n
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e significant finite k|

ky ~ b-VO(m —nq)

e asymmetry (impact on residual

stress generation)

e broad poloidal mode coupling
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e Nonlinear energy transfer to longer wavelength modes via toroidal mode
couplings

e Strong zonal flows and GAMs generation
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Flow shear turbulence can drive significant momentum
and energy transport

effective diffusivities (m2/sec)
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e Magnetic shear shows no suppression

effect on flow shear instability

in tokamak plasmas!
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Effects of g-profile structure — what happens at rational
surfaces with integer ¢g-number?

fluctuation intensity

fluctuation intensity
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Zonal flow shearing rate (in units ¢ fa)
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Fluctuations peak at lowest-order rational
surface ¢ = 2 (and ¢ = 3)
(only in nonlinear phase)

e Zonal flow shear shows corrugated structure

at the same location
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integer-q number

e Due to minimum Landau damping at k| = 0, ¢,,,, peaks at g(r) = m/n

o I(r)= > |dmnl?dmn(r) ~ Y dmn(r) assuming ¢y, ., same for all MRSs

e Example with ¢ = 1+ 2(r/a)?
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e Fluctuations peak at integer rational surfaces (rather than fractional!)

e Many spurious peaks at rational surfaces when using a subset of modes
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Peaked fluctuations and transport impact plasma profile
structure near integer rational surfaces
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e Local “corrugations” generated in all radial
change of electron temperature <ATe> . .
profiles near integer rational surface: V;, n.,

Te and T,L

e Potential impact:
— transport barrier formation near (integer)

rational surface (Waltz et. al., PoP’06)
— electron scale turbulence via

fa ' nonlinear ETG excitation
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Significant vg contribution to E). likely in ITER
10 1
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Mixing exptl. results compared to NC prediction
— significant disagreement both in magnitude &
in direction observed on DIII-D (with steep V'T3)

Poloidal flow generation by turbulence:
I1% ~ (1,7p)
(Pif-Pradalier et. el., PRL’09)
Nonlocal NC effect due to finite orbits:
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(Wang et. al., PoP’06;
Kolesnikov et. al., PPCF’10)

Examine characteristic dependence using large
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e Significant poloidal momentum generation observed in CTEM turbulence
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Strong correlation shown between poloidal and toroidal
flow generation

Correlation coeflicients:

e R[IIJF IS > 0.7

° R:@g,@qs] > 0.9
o R[(7), (i)] > 0.9
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Strong flow shear may drive its own instability in tokamaks
— low-k range as I'TG; smaller, almost constant growth rate; finite &
— saturation mechanism: nonlinear toroidal energy transfer to lower-k

and strong ZFs and GAMSs generation

Flow shear turbulence impacts plasma transport
— significant momentum & energy transport, including an intrinsic torque
— fluctuations peak at integer (not fractional) rational surfaces

— local “corrugations” generated in all plasma profiles near the surfaces

Turbulence driven toroidal flow shows strong poloidal variation

— dominated by (m,n)=(1,0) along with zonal components

— Nonlinear toroidal mode couplings play an important role in flow
structure formation

Significant poloidal momentum generation by CTEM turbulence, and in
strong correlation with toroidal flow generation
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