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Optimized flow is of great importance in fusion plasmas

• Control macroscopic stability; reduce micro-turbulence and energy loss

• Turbulence generation of global intrinsic rotation is critical in ITER

– turbulent residual stress driven by ∇T , ∇n produces a local torque

– interplay of turbulent torque and edge boundary conditions/effects

(Diamond et. al., NF’09)

• Both achievable amplitude and flow structure are important

• Free energy in flow gradient may drive its own instability and turbulence

– velocity shear drive Kelvin-Helmholtz instability in fluid

– in plasmas, flow shear may drive a negative compressibility mode

(Catto et al., ’73; Matter & Diamond, ’88; Artun & Tang, ’92 ... )

– observed in linear machines.

– largely ignored and unexplored in tokamaks

(presumably assumed hardly unstable due to magnetic shear effect)

• First results of flow shear driven turbulence and transport from nonlinear
global GK simulations [with GTS code (Wang et al., PoP’06)] are reported
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Turbulence generated flow shows strong poloidal variation

• First order (in ρi) plasma flow:
V = ω(ψ)Rφ̂+K(ψ)B; Vφ(ψ, θ) = ω(ψ)R(ψ, θ) +K(ψ)Bφ(ψ, θ)
Arguments involved: i) flow within magnetic surface; ii) incompressible

• CTEM driven rotation: dominated by (m,n) = (1, 0) and zonal mode (0,0)

• To test in experiments and to understand its impact on turbulence

Toroidal
Component
of Plasma
Flow Vφ

(E. Feibush)
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Nonlinear process for flow structure formation
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• Amplitudes of (1,0) and (0,0) components are comparable and much
larger than others

• Nonlinear toroidal mode couplings transfer energy of flow fluctuations
from small to large scale
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Flow shear can drive drift wave unstable in tokamak

• Global GK simulation with kinetic electrons • DIII-D-size geometry

• R0/LTi
= R0/LTe

= R0/Ln = 1.2 – ITG and TEM are stable
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• Low-k mode (in same range of ITG mode)

• Smaller but almost constant growth rate
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Distinct linear features of flow shear instability
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• significant finite k‖
k‖ ∼ b̂ · ∇θ(m− nq)

• asymmetry (impact on residual
stress generation)

• broad poloidal mode coupling

60 80 100 120 140 160 180 200
40

60

80

100

120

140

poloidal mode number m

to
ro

id
al

 m
od

e 
nu

m
be

r 
n CTEM

6



Nonlinear toroidal mode couplings play a key role to
cause flow shear turbulence saturation
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• Nonlinear energy transfer to longer wavelength modes via toroidal mode
couplings

• Strong zonal flows and GAMs generation
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Flow shear turbulence can drive significant momentum
and energy transport
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• Observation of turbulent intrinsic torque
in co-current direction
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Effects of q-profile structure
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• Magnetic shear shows no suppression
effect on flow shear instability
in tokamak plasmas!
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Effects of q-profile structure – what happens at rational
surfaces with integer q-number?
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• Fluctuations peak at lowest-order rational
surface q = 2 (and q = 3)
(only in nonlinear phase)

• Zonal flow shear shows corrugated structure
at the same location
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Why fluctuations peak at lowest-order rational surfaces
with integer-q number – a theoretical explanation

• Due to minimum Landau damping at k‖ = 0, φm,n peaks at q(r) = m/n

• I(r) =
∑
m,n

|φm,n|2dm,n(r) ∼ ∑
m,n

dm,n(r) assuming φm,n same for all MRSs

• Example with q = 1 + 2(r/a)2
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• Fluctuations peak at integer rational surfaces (rather than fractional!)

• Many spurious peaks at rational surfaces when using a subset of modes
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Peaked fluctuations and transport impact plasma profile
structure near integer rational surfaces
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• Local “corrugations” generated in all radial
profiles near integer rational surface: Vt, ne,
Te and Ti

• Potential impact:
– transport barrier formation near (integer)

rational surface (Waltz et. al., PoP’06)
– electron scale turbulence via

nonlinear ETG excitation
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Poloidal flow generation

• Significant vθ contribution to Er likely in ITER

Er =
1
ne

∂p

∂r
+

1
c
(Bθut −Btuθ)

• Mixing exptl. results compared to NC prediction
– significant disagreement both in magnitude &
in direction observed on DIII-D (with steep ∇Ti)

• Poloidal flow generation by turbulence:

ΠRS
r,θ ∼ 〈ṽrṽθ〉

(Pif-Pradalier et. el., PRL’09)

• Nonlocal NC effect due to finite orbits:

〈uθ〉 = uθ,0−1
2

〈
ρ2

iθ

〉 Bθ

B

〈
I
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〉
∂ ln pi

∂r

∂ωt

∂r

(Wang et. al., PoP’06;
Kolesnikov et. al., PPCF’10)

• Examine characteristic dependence using large
exptl. database: (uexp

θ − uth
θ ) vs. δñ, ∇ωt, ∇p
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Poloidal flow generation by turbulence
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• Significant poloidal momentum generation observed in CTEM turbulence
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Strong correlation shown between poloidal and toroidal
flow generation

Correlation coefficients:

• R[ΠRS
r,θ ,Π

RS
r,φ ] > 0.7

• R[ṽθ, ṽφ] > 0.9

• R[〈ṽθ〉, 〈ṽφ〉] > 0.9
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Summary – Shear Flow Driven Turbulence & Transport
in Tokamaks; and Turbulence-generated Flow Structure

• Strong flow shear may drive its own instability in tokamaks

– low-k range as ITG; smaller, almost constant growth rate; finite k‖
– saturation mechanism: nonlinear toroidal energy transfer to lower-k

and strong ZFs and GAMs generation

• Flow shear turbulence impacts plasma transport

– significant momentum & energy transport, including an intrinsic torque

– fluctuations peak at integer (not fractional) rational surfaces

– local “corrugations” generated in all plasma profiles near the surfaces

• Turbulence driven toroidal flow shows strong poloidal variation

– dominated by (m,n)=(1,0) along with zonal components

– Nonlinear toroidal mode couplings play an important role in flow

structure formation

• Significant poloidal momentum generation by CTEM turbulence, and in
strong correlation with toroidal flow generation
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