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ABSTRACT 

Aliasing artifacts are eliminated from computer generated images of textured polygons by equivalently 
filtering both the texture and the edges of the polygons. Different filters can be easily compared 
because the weighting functions that define the shape of the filters are pre-computed and stored in lookup 
tables. A polygon subdivision algorithm removes the hidden surfaces so that the polygons are rendered 
sequentially to minimize accessing the texture definition files. An implementation of the texture 
rendering procedure is described. 
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i. INTRODUCTION 

Sampling converts a function into a sequence 
of discrete values so the function can be 
reproduced at a finite resolution. If the 
sampling rate is insufficient for the function, 
then the discrete values will contain aliasing 
artifacts. The most common aliasing artifacts in 
computer generated images are jagged edges and 
Moire patterns. Animated sequences can also 
suffer from temporal aliasing artifacts such as 
strobing and false motion (e.g., wagon wheels 
that appear to spin backwards). 

There are two solutions to the aliasing 
problem in computer graphics: increasing the 
sampling rate and filtering the original function. 
Increasing the sampling rate means computing and 
displaying the image at a higher resolution. 
Filtering the original function means blurring the 
image before sampling. The two approaches are not 
mutually exclusive. Catmull and Crow point out 
that if the only goal is to eliminate aliasing, 
then filtering the original function is better 
than increasing the sampling rate (4,5). 
Furthermore, it is often impossible to increase 
the sampling rate without more costly display 
technology. 
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Filtering was introduced to the computer 
graphics literature by Catmull in (3) and was 
studied comprehensively by Crow in (5). Since 
then, several researchers have made filtering an 
integral part of their synthetic imaging systems. 
These systems can be classified by the type of 
data they display: 

i. Continuous functions (parametric data): 
1. Crow (5) (parabolas) 

2. Objects (polygonal or patch data): 
i. Catmull (3) (patches) 
2. Crow (5) (polygons) 
3. Crow (6) (vectors) 
4. Catmull (4) (polygons) 
5. Whitted (9) (polygons) 

3. Textures (pixel data): 
1. Catmull (3) (on patches) 
2. Blinn and Newell (2) (on patches) 
3. Crow (6) (characters) 
4. Blinn (1) (on patches) 

Most of the above implementations that filter 
only edges use an unweighted filter (i.e., a 
filter with a weighting function that is constant 
throughout the convolution mask). This is far 
better than no filter at all, but not as good as a 
weighted filter. Unweighted filters have been 
used to avoid the computational expense of 
weighting functions. Researchers who have used 
weighted filters for the texture did not use the 
same filter for the edges of the surfaces. 

The texture and the edges of each surface 
should be filtered separately and equivalently to 
produce correct renderings. The texture should be 
filtered first to remove excessively high 
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frequencies that could cause aliasing in the form 
of Moir~ patterns. Then the edges of surfaces 
should be filtered to eliminate the excessively 
high frequencies that could cause aliasing in the 
form of "jaggies." Of the implementations listed 
above that include texturing, only Catmull's (3) 
applies equivalent filters to both the texture and 
the edges. He uses unweighted filters to display 
environments of textured patches. 

2. IMPLEMENTATION 

This paper describes the implementation of 
two filtering processes used for displaying 
textured polygons. Both the texture filter and 
the edge filter are based on a polygon subdivision 
hidden surface algorithm, and both procedures use 
pre-computed lookup tables to define any desired 
filter shape. 

2.1 DATA REPRESENTATION 

Objects in this texture rendering system are 
defined by planar polygons. These polygons may be 
concave, may contain holes, and may be coplanar 
with other polygons in the environment to create 
detail faces within larger faces. Each polygon is 
assigned a texture which completely covers its 
surface. A texture is a two-dimensional array of 
texture definition points. The color of each 
point is represented by either one intensity 
value, producing a gray scale texture, or three 
intensity values, producing a full color texture. 

The construction of the database, including 
the creation and assignment of textures to 
polygons, is handled by an interactive geometric 
modeling package which is described by Feibush 
(7). The textures can be generated by any of 
several methods, including optical scanning or 
synthetic airbrushing. In practice, several 
techniques are usually combined for each texture. 

The word "pixel" (picture element) must be 
clearly defined. A pixel is often thought of as a 
rectangular block whose width is equal to the 
distance between centers of adjacent blocks. In 
this paper, however, a pixel is defined as an 
infinitesimal point having an intensity value. 

2.2 COORDINATE SYSTEMS 

Three coordinate systems are used: 

i. Texture definition space. 
2. Object definition space. 
3. Image display space. 

The first coordinate system is a 
two-dimensional space for defining textures. The 
textures are created and stored on the X - Y plane 
shown in Figure la. The second coordinate system 
is a three-dimensional space used for defining the 
polygons. When a texture is assigned to a 
polygon, a matrix is constructed that transforms 
the polygon from its location in object space to 
the X - Y plane in texture space, as shown in 
Figure lb. The third coordinate system is a 
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three-dimensional space used for displaying the 
object. A single matrix is used to transform the 
polygons from object space to image space and 
create the perspective distortion, as shown in 
Figure 16. 

Also shown in the figure are two rows of 
display pixels which are drawn as points in 
accordance with the above definition of the term 
"pixel." These display pixels are initially 
defined in image space and can be transformed to 
object space (care must be taken in reversing the 
perspective distortion), and then to texture 
definition space, as shown in the figure. 
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2.3 HIDDEN SURFACE ALGORITHM 

Most researchers use a scanline 
hidden surface algorithm to determine the 
contribution of each polygon in the object to the 
display pixels. In a scanline algorithm, all the 
polygons contributing to the color of a pixel are 
processed simultaneously. The color of each pixel 
can therefore be computed in a single pass. An 
alternative solution presented here is to use a 
polygon subdivision hidden surface algorithm to 
compute the visible portions of all the polygons 
before computing the color of the display pixels. 
The color of each pixel is built up piecemeal from 
the visible portions of each contributing polygon. 
The polygon hidden surface algorithm developed by 
Weiler (8) has been implemented. 

Separating the hidden surface removal from 
the filtering process has a significant advantage 
over approaches that do both tasks simultaneously. 
Rendering a textured polygon involves accessing 
its texture definition file. A scanline algorithm 
requires simultaneous access to the texture files 
of all the polygons that are visible on each 
scanline. The storage problems this entails can 
not be taken lightly even in a virtual memory 
machine, particularly if the textures are high 
resolution color images. The polygon subdivision 
hidden surface algorithm produces a list of 
visible polygons defined at machine precision so 
that the polygons can be rendered sequentially. 
Hence only one texture file has to be accessible 
at a given time, and each texture file is 
processed completely before another one is needed. 

2.4 TEXTURE FILTERING 

Whenever a polygon is displayed in 
perspective and is not parallel to the picture 
plane, the amount of blurring required to avoid 
aliasing varies across the polygon and is 
different in the horizontal and vertical 
directions. The method described in this paper 
produces sufficient blurring at each display pixel 
by selecting specific texture definition points 
that correspond to the pixel and then filtering 
the points to determine the color of the pixel. A 
description of the procedure follows: 

i. For a given view of the object, use the 
polygon subdivision hidden surface 
algorithm to make a list of the portions 
of the polygons that are visible in image 
space. The visible portions are called 
display polygons. 

2. Working with one display polygon at a 
time, make a list of all the pixels that 
contribute to the display of the polygon. 
A convolution mask, whose shape is 
determined by the weighting function of 
the filter, is centered at each display 
pixel. Each pixel has a bounding 
rectangle, which is the smallest 
rectangle that completely bounds the 
pixel's convolution mask. The bounding 
rectangles may overlap depending on the 
size and shape of the convolution masks. 
List every display pixel whose bounding 

rectangle is completely or partially 
within the polygon, as shown in Figure 
2a. Also save a list of the 
intersections of each bounding rectangle 
with the polygon. 

3. For each display pixel, transform its 
bounding rectangle from image space to 
object space and then to texture 
definition space. The rectangle can be 
transformed to texture definition space 
because its vertices have 
three-dimensional coordinates coplanar 
with the display polygon. The rectangle 
in image space transforms to a 
quadrilateral in texture space, as shown 
in Figure 2b. The texture definition 
points within this quadrilateral 
contribute to the color of the display 
pixel. To simplify the selection of 
these points, a rectangle is constructed 
around the bounding quadrilateral. This 
rectangle includes some texture 
definition points that do not contribute 
to the color of the pixel, but these 
extra points will be eliminated from the 
filtering in step 6. 

4. Transform the parent polygon of the 
current display polygon from object space 
to texture definition space. Clip the 
rectangle around the convolution mask 
quadrilateral against the parent polygon. 
The texture definition points within this 
area will be filtered, as in Figure 2c. 

5. Transform each texture point that will be 
filtered to object space and then to 
image space, as shown in Figure 2d. 

6. Eliminate the extra points selected 
in step 3 by clipping the transformed 
texture points against the bounding 
rectangle of the convolution mask in 
image space, as shown in Figure 2e. 

7. Filter the selected texture points by 
computing the weighted average of their 
color values. Points near the center of 
the convolution mask are weighted more 
heavily than those near the edge. The 
cone shown in Figure 2f represents one 
possible weighting function. The 
weighting function is computed at a 
number of locations and the values are 
stored in a two-dimensional lookup table. 
The location of each transformed texture 
point within the convolution mask is used 
as an index to the lookup table. The 
color values of all the texture 
definition points are multiplied by their 
respective values in the lookup table and 
sun, ned together in a weighted average. 
When the transformed texture points do 
not coincide precisely with the discrete 
locations at which the weighting function 
is calculated, the nearest value is used. 

This completes the texture filtering. The 
edges of the polygons are filtered next to 
complete the rendering procedure. 
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TEXTURE FILTERING FIGURE 2 
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illustrate the texture calculation 
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2f. Compute the weighted average of the 
selected points. 
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2.5 EDGE FILTERING 

The intensity of a pixel whose convolution 
mask is completely within one display polygon is 
determined just by the texture filter. The 
intensity of a pixel near an edge of a polygon is 
only partly determined by the texture filter 
because its convolution mask covers more than one 
display polygon. The intensity of a pixel 
computed by the texture filter for one polygon is 
weighted by the percentage of the total intensity 
of the pixel that is contributed by that polygon. 
The total intensity of a display pixel is built up 
sequentially as each polygon is rendered by 
accumulating the partial intensities in a frame 
buffer. 

The contribution of a polygon to a pixel is 
determined by filtering its edges with the same 
weighting function that was used for the texture 
filter. But unlike the texture, which is defined 
by discrete points, the edges of the polygon are 
defined by a continuous function. Edge filtering 
is therefore an analytic problem. The cone above 
the convolution mask shown in Figure 3a represents 
one possible weighting function for the filter. 
The value of the weighting function at any point 
in the convolution mask is the distance from the 
point to the surface above it. The contribution 
of a polygon to the pixel is the percentage of the 
volume of the entire cone that is above the 
polygon, as shown by the shaded volume in Figure 
3a. The calculation of this volume is described 
below. 

i. Clip the display polygon against the 
bounding rectangle of the convolution 
mask, as shown in Figure 3b. The points 
of intersection of each polygon edge with 
the bounding rectangle are already known 
from step 2 above. The clipped polygon 
may be concave and may contain holes. 

2. For each vertex of the clipped polygon, 
construct a triangle with the following 
sides (as shown in Figure 3c): 

i. BASE is the line segment between the 
current vertex and the next vertex 
(going clockwise around the polygon). 

2. SIDE1 is the line segment between the 
current vertex and the pixel. 

3. SIDE2 is the line segment between the 
next vertex and the pixel. 

3. Calculate the volume above the polygon 
from the volumes above all the triangles 
constructed in step 2, as shown in Figure 
3c. The volume above a single triangle 
is added to the total if the cross 
product of SIDE1 and SIDE2 is negative; 
it is subtracted from the total if the 
cross product is positive. 

The task of finding the volume above an 
arbitrary polygon has now been simplified 
to finding the volume above a series of 
triangles, each having one vertex at the 
pixel. The problem can be simplified 
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further. For each triangle, the 
perpendicular from the pixel to BASE (or 
to its extension) forms two right 
triangles. The volume above the original 
triangle is the sum of the volumes above 
the two right triangles if the 
perpendicular lies within the triangle, 
as shown in Figure 3d; it is the 
difference of the volumes if the 
perpendicular lies outside of the 
triangle, as shown in Figure 3e. 

5. The problem has now been simplified to 
finding the volume above a group of right 
triangles. The base and height of each 
triangle are used as indices to a lookup 
table that contains the volume above this 
triangle for the given weighting 
function. Care must be taken in 
computing the lookup table so that areas 
inside the bounding rectangle but outside 
the convolution mask have no volume above 
them. Only the shaded area of Figure 3f 
has volume above it. 

Each filter shape needs only one lookup 
table, regardless of the filter's absolute size. 
The filter size can be changed by scaling the 
indices to the lookup table. 

The organization of the lookup table assumes 
that the filter function is circularly synmnetric. 
For a filter that is not circularly symmetric, one 
more parameter describing the location of the 
right triangles (such as a polar sweep angle) is 
required. A four parameter lookup table would 
give the volume above the original triangle 
without constructing the two right triangles. The 
X and Y positions of the two vertices of BASE of 
the original triangle would be used as the indices 
to the four parameter lookup table. This further 
simplifies the filtering computation but requires 
significantly more table storage. 

3. EXAMPLES 

A polygon textured with alternating red and 
white vertical stripes has been rendered by the 
system described in this paper. Due to the 
rotation and perspective transformations, the 
number of texture definition points that were 
filtered for each display pixel varied 
considerably. The images were computed at a 
resolution of 512 x 512 and displayed on a 24-bit 
color frame buffer. 

The five images of the polygon demonstrate 
the effectiveness of different filters, as shown 
in Figures 4a-e. Figure 4a shows the polygon in 
texture definition space. In Figure 4b this 
polygon is displayed in image space with no 
filtering. In Figure 4c it is displayed using an 
unweighted filter with a square convolution mask 
whose sides are equal to the distance between 
adjacent display pixels. In Figure 4d the polygon 
is displayed using a filter with a Gaussian 
weighting function that has a standard deviation 
equal to the distance between adjacent display 
pixels. The convolution mask is a circle whose 
radius is equal to twice the standard deviation of 

298 



EDGE FILTERING 
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Z i 3a. The intensity computed by the texture 
filter is weighted by the ratio of 
the shaded volume to the total volume 
of the cone. 
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3b. Clip the polygon to the bounding 
rectangle of the pixel's convolution 

mask. 
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3c. For each vertex of the clipped polygon, construct the triangle formed by the vertex, 
the next vertex (going clockwise), and the pixel. From the volumes above these 
triangles, calculate the volume above the clipped polygon as shown in Figures 3d-f. 

3d. For each triangle, construct the perpendicular from the pixel 
to BASE. If the perpendicular is inside the triangle, then 
the volume above the triangle is the sum of the volumes above 
the two right triangles formed by the perpendicular. 

3e. If the perpendicular is outside the triangle, then the volume 
above the triangle is the difference of the volumes above the 
two right triangles formed by the perpendicular. 

f 
3f. Find the volume above each 

right triangle by using its 
height (h) and base (b) as 
indices to a lookup table. 
The value stored in the 
lookup table includes only 
the volume above the shaded 
portion of the triangle. 

J 
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Figure 4a. Texture definition. Figure 4b. No filter. 

!si 

Figure 4c. Unweighted filter. Figure 4d. Gaussian filter. 

Figure 4e. Hardware magnification. Figure 5. House. 
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the Gaussian. 

Displaying the polygon with no filtering is 
completely unsatisfactory due to the jaggedness of 
not only the edges of the polygon but also the 
stripes in the texture. Using an unweighted 
filter is better and nearly satisfactory along the 
edges, but Moir~ is still evident in the center of 
the polygon. The weighted filter, however, 
produces an excellent image. In the hardware 
magnification shown in Figure 4e, the polygon is 
inclined slightly more than in Figures 4b-d to 
enhance the visibility of the filtering. Notice 
that the filtering along the left edge of the 
polygon is equivalent to the filtering along the 
stripes of the texture. 

The final image, Figure 5 shows the front 
facade of an imaginary house that has been 
rendered by the system described in this paper. 
It demonstrates an application of the system to a 
complex database composed of many polygons and 
textures. The textures were extracted from 
optically scanned photographs of real objects. 
The background was created by assigning an 
optically scanned photograph of a real site to the 
rearmost polygon in the environment. 

4. LIMITATIONS 

It is possible to obtain views where textures 
are magnified beyond their original resolution 
(i.e., zooming into a texture). During the 
texture filtering process, the area of the texture 
definition that corresponds to a display pixel 
will contain only a few texture definition points. 
To avoid reproducing these texture definition 
points as large square areas, the color values of 
the closest texture definition points are 
bilinearly interpolated. 

Bilinear interpolation of the texture 
definition points is also necessary when the edges 
of two polygons are very close to each other, but 
do not actually touch. The hidden surface 
algorithm will detect the narrow slot between the 
polygons, so texture definition points of the 
polygon seen through the slot should be selected 
for filtering. If no texture definition points 
from the background polygon fall within the slot, 
then the nearby texture definition points are 
bilinearly interpolated. 

More blurring is required to avoid aliasing 
if there are high frequency components in the 
texture definition. Aliasing that is not 
noticeable in a static image may become visible if 
the image is part of an animated sequence, so that 
additional blurring is needed. 

5. CONCLUSIONS 

Two filtering processes, one for the textures 
and one for the edges, are necessary for 
displaying textured polygons without introducing 
aliasing artifacts. A weighted filter, such as 
the Gaussian used in the examples, produces more 
realistic images than an unweighted filter or 
no filter at all. 

A polygon subdivision hidden surface 
algorithm is superior to a scanline hidden surface 
algorithm for displaying textured polygons. By 
making a list of all the visible portions of the 
polygons before computing the color of the display 
pixels, the polygons can be filtered sequentially 
to minimize accessing each of the texture 
definition files. 

Complex filters no longer have to be 
considered prohibitively expensive. If the 
filter's weighting function is stored in a lookup 
table instead of being computed at each pixel, an 
image can be computed in the same amount of time 
regardless of the complexity of the filter. The 
filter can be changed just by using a different 

lookup table. 
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