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Objective:
• Simulate collective processes and transverse dynamics of intense charged 

particle beam propagation through an alternating-gradient quadrupole focusing 
field using a compact laboratory Paul trap.

Approach:
• Investigate dynamics and collective processes in a long one-component charge 

bunch confined in a Paul trap with oscillating wall voltage
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Institute of Physics Conference Proceedings 606, 576 (2002).

).()( 00 tVTtV =+

Paul Trap Simulator Experiment



Introduction

• Purpose: simulate nonlinear dynamics of intense beam propagation over large 
distances through alternating-gradient transport systems.

Okamoto and Tanaka, Nucl. Instrum. Methods A 437, 178 (1999). Davidson, et al., Phys. Plasmas 
7, 1020 (2000).

• Applications: heavy ion fusion, spallation neutron sources, and nuclear waste 
treatment.

• PTSX will explore physics issues such as:

•Beam mismatch and envelope instabilities,

•Collective wave excitations,

•Chaotic particle dynamics and production of halo particles,

•Mechanisms for emittance growth,

•Compression techniques,

•Effects of distribution function on stability properties.



Introduction

• PPPL

PTSX

• University of Maryland Electron Ring (UMER) (M. Reiser, P. 
O’Shea, et al.)

Simulate intense beams in storage rings

• University of Denmark, Aarhus (M. Drewsen, et al.)

Beam crystallization

Active area of research:



Alternating Gradient Focusing Systems
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Theoretical Model and Assumptions

• Consider a thin (rb << S) intense nonneutral ion beam (ion charge = +Zbe, rest 
mass = mb) propagating in the z-direction through a periodic focusing quadrupole 
field with average axial momentum γbmbβbc, and axial periodicity length S.

• Here, rb is the characteristic beam radius, Vb = βbc is the average axial velocity, 
and (γb-1)mbc2 is the directed kinetic energy, where γb = (1-βb

2)-1/2 is the 
relativistic mass factor.

• The particle motion in the beam frame is assumed to be nonrelativistic.



• Introduce the scaled “time” variable

and the (dimensionless) transverse velocities

• The beam particles propagate in the z-direction through an alternating-gradient 
quadrupole field

with lattice coupling coefficient defined by

• Here,

where S = const. is the axial periodicity length.

Theoretical Model and Assumptions
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• Neglecting the axial velocity spread, and approximating , the applied 
transverse focusing force on a beam particle is (inverse length units)

over the transverse dimensions of the beam (rb << S).

• The (dimensionless) self-field potential experienced by a beam ion is

where φ (x, y, s) is the space-charge potential, and                                      is the 
axial component of the vector potential.

• The corresponding self-field force on a beam particle is (inverse length units)

Theoretical Model and Assumptions
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• Transverse particle orbits x(s) and y(s) in the laboratory frame are determined 
from

• The characteristic axial wavelength λq of transverse particle oscillations induced

by a quadrupole field with amplitude

• The dimensionless small parameter ε assumed in the present analysis is

which is proportional to the strength of the applied focusing field.

Theoretical Model and Assumptions
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• The laboratory-frame Hamiltonian for single-particle motion in 
the transverse phase space (x, y, x', y') is

• The Vlasov equation describing the nonlinear evolution of the distribution 
function fb (x, y, x', y', s) in laboratory-frame variables is given by

Theoretical Model and Assumptions
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• The self-field potential ψ (x, y, s) is determined self-consistently in terms of the 
distribution function fb (x, y, x', y', s) from

• Here, is the number density of the beam 
ions, and the constants Kb and Nb are the self-field perveance and the number of 
beam ions per unit axial length, respectively, defined by

Theoretical Model and Assumptions
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• To ensure the transverse confinement of the beam, the confining force must 
overcome the repulsive self-force of the beam.

Theoretical Model and Assumptions
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• To prevent instabilities, the vacuum phase advance per lattice period, S, ought to 
be less than 90 degrees.
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(s ~ 0.2 for SNS storage ring, and s ~ 0.15 Fermilab’s Tevatron accelerator at the injection phase.)



Paul Traps

( ) ( ) ( )222
2
0

2
0

00 2
2

2cos zyx
zr

tfVU
trap −+

+
+= πφ x

( )tfV π2cos0

0U

[ ] 0
2

)2cos(22

2

=
















−
++

















z
y
x

qa
z
y
x

d
d τ
τ

( ) ( ) ( ) ( ) ft
zrfm

eVq
zrfm

eUa πτ
ππ

=
+

=
+

=
2
0

2
0

2
0

2
0

2
0

2
0

22
4

22
8

R. Blümel, et al., Phys Rev A, 
40 808 (1989)



Cylindrical Paul Traps

Drewsen and Brøner, Phys. Rev. A, 62, 045401, 2000.

• r0 = 3.5 mm

• z0 = 5.4 mm

• ~ 1000 24Mg+ ions



Paul Trap Simulator Configuration

(a) (b)

100 kHzVoltage oscillation frequency
400 VEnd electrode voltage
400 VMaximum wall voltage
1 cmPlasma column radius
10 cmWall electrode radius
2 mPlasma column length
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Transverse Hamiltonian for Particle Motion
in a Paul Trap

Transverse Hamiltonian (dimensional units) for a long charge bunch in a Paul 
trap with time periodic wall voltages bygiven  is )()( 00 tVTtV =+

where the applied potential )0( wrr ≤≤
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Waveform Examples
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• The radial confining force is characterized by the average oscillation 
frequency, ωq, of a particle in the confining field defined by (smooth 
focusing approximation)

• Here, V0 max is the maximum value of V0(t) and f = 1/T is the frequency.

• The quantity ξ is defined by
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• Requirement for radial confinement

• For validity of smooth focusing approximation and to avoid the envelope 
instability, choose

which corresponds to a vacuum phase advance σv < 72°.

• Combining the inequalities gives (for cesium)

where n is in cm-3, V0 max is in Volts, and f is in Hz.
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Constraints on Parameter Space

f
f

Vn <×< max 0821 1046.1 4.46 ξ

• Here, s = ωp
2/2ωq

2

• s << 1 implies 
“emittance-dominated” 
beams.

• s ~ 1 implies “space-
charge-dominated” 
beams.
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Waveform Examples

• “Carrier” waveform is arbitrary.

• Individual electrodes will eventually be allowed to have different 
waveforms.



Planned experimental studies include:

• Beam mismatch and envelope instabilities.

• Collective wave excitations.

• Chaotic particle dynamics and production of halo 
particles.

• Mechanisms for emittance growth.

• Effects of distribution function on stability properties.

Plasma is formed using a cesium source or a barium coated platinum 
or rhenium filament.  Plasma microstate will be determined using
laser-induced fluorescence (Levinton, FP&T).

Paul Trap Simulator Experiment



PTSX Apparatus

Paul Trap Simulator Experiment vacuum chamber.

• Laboratory preparation, 
procurement, assembly, 
bakeout, and pumpdown of 
PTSX vacuum chamber to

2002). (May,Torr  1025.5 10−×



PTSX Dump Electrode

Paul Trap Simulator Experiment electrodes.

• 8 inch diameter stainless 
steel gold-plated electrodes 
are supported by aluminum 
rings, teflon, and vespel 
spacers.



PTSX Inject and Trap Electrodes

2 m

40 cm



PTSX Ion Source

1.25 in

Aluminosilicate cesium source Pierce electrode Acceleration/deceleration grid

11 A

1100 C

67.5 opening 
angle

85% transparent 
electroformed 
copper mesh



PTSX Ion Source

Paul Trap Simulator Experiment cesium source.

• Aluminosilicate cesium 
source produces up to      
30 µA of ion current when 
a 200 V acceleration 
voltage is used.



PTSX Ion Injection

Computer generated composite image of cut-away view of electrodes surrounding ion source.

• The electrodes oscillate with the voltage ±V0(t) during ion injection.
• The ion source acceleration voltage is turned off as the electrodes are 

switched to a constant voltage to axially trap the ions.
• The 40 cm long electrodes at the far end of the trap are held at a constant 

voltage during injection to prevent ions from leaving the far end of the 
trap.



PTSX Faraday Cup Diagnostic

Paul Trap Simulator Experiment Faraday cup.

• Faraday cup with sensitive 
electrometer allows 20 fC 
resolution.

• Linear motion feedthrough 
with 6" stroke allows 
measurement of radial 
density dependence.  1 mm 
diameter aperture gives 
fine spatial resolution.

• Copper shield has been 
modified to further reduce 
impact of stray ions.



PTSX Faraday Cup Diagnostic

1 cm
1 mm



PTSX Electrode Driver

Paul Trap Simulator Experiment electrode driver circuit.

• Electrode driver 
development using high 
voltage power op-amp to 
apply 400 V, 100 kHz 
signals to electrodes 
(February, 2002).

• 8 op-amps are used to 
drive the 12 electrodes.



Sample Applied Waveforms

f = 133 kHz

η = 0.5



Initial Results: Radial Profile

Current collected on Faraday cup versus radius.

• Experiment - stream Cs+

ions from source to 
collector without axial 
trapping of the plasma.

• V0(t) = V0 max sin (2π f t)
• V0 max = 387.5 V
• f = 90 kHz

• Vaccel = -183.3 V
• Vdecel = -5.0 V

Ion source parameters:

Electrode parameters:



Initial Results: Instability of Single Particle Orbits
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Initial Results: Lifetime
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• Plasma signal is extracted from background 
coupling to short electrodes.

• Extracted plasma signal.

Plasma lives for ~45 seconds.

4500 km beamline



Conclusions

• Axially trap ions.

• Characterize trapped plasma properties such as density profile and lifetime.

• Optimize injection for well-behaved plasmas.

• Optimize hardware and software systems for precise control.

• Develop barium ion source and laser system for use in a Laser-Induced-
Fluorescence diagnostic system.

• Computer simulation of injection, trapping, and dumping.

Future Plans:


