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Autoresonant (Nonstationary) Excitation of the Diocotron Mode in Non-neutral Plasmas
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We report on the autoresonant (nonlinear phase locking) manipulation of the diocotron mode in a
non-neutral plasma. Autoresonance is a very general phenomena in driven nonlinear oscillator and
wave systems, and allows us to control the amplitude of a nonlinear wave without the use of feedback.
These are the first controlled laboratory studies of autoresonance in a collective plasma system.
[S0031-9007(99)09167-X]
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An important goal of nonlinear dynamics is the excita-state of a pure-electron plasma column interacting with its
tion and control of nonlinear waves and oscillations. Au-image charge (the diocotron mode) [16]. The diocotron
toresonance (nonlinear phase locking) is one method ahode results from the collective action of the plasma on
achieving this goal. Autoresonance is the natural tendencigself; previous observations of autoresonance have beenin
of a weakly driven nonlinear system, under certain condisingle particle systems. As there exists a one-to-one corre-
tions, to stay in resonance with its drive even if the paramespondence [17] between the relevant plasma dynamics and
ters of the system vary in time and/or space. For exampléwo-dimensional, inviscid incompressible fluid dynamics,
consider a system in which the oscillation frequency in-autoresonance should also occur in vortex dynamics.
creases with oscillation amplitude. Assume that the sys- The pure-electron plasma is confined in a Penning-
tem is initially phase locked to its drive. In autoresonanceMalmberg trap [18]. The plasma forms a cylindrical col-
increasing the drive frequency will cause a correspondingmn centered inside a metallic, cylindrical trap wall (see
increase in the oscillation amplitude, while decreasing thé-ig. 1). Longitudinal confinement is provided by appro-
drive frequency will cause the oscillation amplitude to de-priately biasing wall segments at the trap ends. Radial
crease. In some cases, the system need not start phasmfinement is provided by an axial magnetic fiBld The
locked to become phase locked; if the drive frequency i€ X B drifts which result from the plasma’s self-electric
swept slowly through the linear resonant frequency, the
system will phase lock automatically. The occurrence of
automatic phase locking is not self-evident, as the systenr
in a Hamiltonian picture, has to cross the separatrix be-
tween streaming and trapped orbits.

The autoresonance concept dates back to McMillar
[1] and Veksler [2] and was further developed by Bohm
and Foldy [3] for particle accelerators. The term “phase
stability principle” was used to describe the phenomenor
in these early studies. The synchrotron, synchrocyclotror
[4], and other, later acceleration schemes [5,6] all are
based on autoresonance. Recently, the effect has bes
studied theoretically in atomic and molecular physics [7,8],
nonlinear dynamics [9], and nonlinear waves [10].

“Jumps” have long been studied in nonlinear dynamics
[11]. The swept, or nonstationary excitation of oscillators
has also been studied. The linear case was solved exact
[12], and Mitropolskii [13] has studied the nonlinear case.
None of these studies uncover the threshold and scaling e
fects discussed here. Entrainment in self-excited system
like van der Pol oscillators [14] bears some resemblance to

the results discussed here, as do effects noted in computgi®: 1. End view of the trap showing the confining wall at
- w, the pickupVy and driveVp sectors, the plasma a distance
modeling of p_Ianetary sys_tems [15]. . D from the trap center, the self-electric fidij the self-rotation
Here, we discuss the first direct experimental observagrift £y, the plasma image, the image electric fi#ld and the
tions of autoresonant manipulation of the off-axis rotationdiocotron drift at frequency.
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field cause the plasma to rotate around itself. In global
thermal equilibrium, the plasma rotates rigidly with fre-
quencyfr; in the partially equilibrated plasmas used in this
work the plasma’s self-rotation rate is only approximately
constant. If the plasma is moved off center, it undergoes
an additionalE; X B drift from the electric field of its im-
age. As this drift always points azimuthally, the plasma
orbits around the trap center. This motion, at frequency
f, is called the diocotron mode and is very stable and can™ T
last for hundreds of thousands of rotations.

Assuming that the plasma column’s charge per unit
length is A, the electric field of its imagek;, is ap-
proximately radial and constant across the plashas=
2AD/[R%(1 — D*/R2)] (cgs Gaussian units). Hem,

90
0 A . R 1

Frequency
(kHz)

L] ]
20 ) .‘“?n

] 2 i [l n I 1 n 1 1 1 n

is the wall radius, and is the distance that the plasma 0.00 0.01 0.02 0.03 0.04 0.05
column is off center, i.e., the mode amplitude. The dio- Time (s)
cotron mode frequency follows by equating2= fD to
cE; X B/B?, giving FIG. 2. Autoresonant response to a swept drive. (a) Signal
received on the pickup sector. (b) Relative phase between
f=fo 1 _ (1) the mode and the drive. The phase is found by correlating
1 — DZ/R\% the received signal with the drive signal in a small window

5 . slid over the data. At the very beginning and end the relative
Here, fo = wo/2m = cA/mBRy, is the linear resonant phase probably oscillates betweeh dhd 360, however, the
frequency. Note that the mode frequency increases withscillations are too fast to be fully detected by the correlation

mode amplitude [19,20]. Experimentally, we can deterfoutine. See Fig. 4(b) for a more accurate result. (c) Drive

mine both the mode frequency and amplitude by measur?l{jegsﬁracﬁns’ogﬂ d"r';‘;)a’lsmggsé’;g?atgg‘f?éqrﬁgggzgt ( frequency
ing the image charge at a particular angle on the trap wa

as a function of time. More precisely, we measure the

time dependence of the surface charge on an azimuthlhs frequency components at both the drive frequency and
sector like the one labeled, in Fig. 1. The mode can the linear diocotron mode frequency. The mode is not

be driven by applying a signal to a second, driving sectowell phase locked to the drive. As the drive frequency

Vp [21]. This driving signal creates electric fields which increases, the amplitude grows slowly and the phase lock-
induce additional drifts. As we generally use weak drivinging improves. After the drive frequency passes the linear
signals, these drifts are much smaller than the rotation angksonant frequency, the amplitude grows autoresonantly.
diocotron drifts. Nevertheless, because of phase lockingfThe system is phase locked and only one frequency is
these drifts are sufficient for efficient control of the dio- present. Finally, the amplitude grows large enough to send

cotron mode. the plasma into the wall, the mode frequency drops pre-
The experiments reported here were doneBat  cipitously, and phase locking fails abruptly.
1485 G in a trap with wall radiusk,, = 1.905 cm. The As illustrated in Fig. 3, autoresonance can also be used

plasma density was approximatelyx 10’ cm 3, tem- to decrease the mode amplitude by sweeping the drive
peratureT = 1 eV, and plasma radiu®.6 cm. The frequency downwards. Here tle5 V p.-p. drive is re-
measured linear diocotron frequency was approximatelpeatedly swept up and down betwe2h and 31 kHz.
28 kHz. The plasma was confined within negatively The mode amplitude grows when the drive frequency is
biased cylinders separated by.25 cm. Finite length and swept upwards and damps when the drive frequency is
radius effects, discussed in Ref. [22], increase the lineaswept downwards. Notice that only the drive frequency
frequency from that given by Eq. (1) by approximatelyis present in the autoresonant region when the drive fre-
50% and also modify the dependence Bbn We have quency is above the linear frequency, while the drive and
obtained similar autoresonance effects for plasmas dhe linear mode frequencies are present when the drive fre-
different lengths and radii, confined by magnetic fields ofquency is below the linear frequency.
different strengths. The experiments shown in Figs. 2 and 3 occur over a
The mode can be autoresonantly excited to high amplishort enough time period that changes in the system pa-
tude by applying a swept oscillating signal to the drivingrameters are relatively unimportant; autoresonance occurs
sectorVp. A typical result is shown in Fig. 2, where a because the drive frequency varies. Autoresonance also
sinusoidal signal of amplitud@.8 V p.-p. is swept from occurs when the drive frequency is constant but the sys-
20 kHz (well below the linear resonant frequency) totem parameters change. For example, in our experiment
45 kHz (well above the linear resonant frequency) inplasma expansion causes the linear diocotron frequency to
0.05 s. In the beginning, the mode amplitude is small anddrop [22] by about 14% in 0.5 s. If the system is driven
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(@, L 2 2 & & per second), there is a threshold drive amplitude

I Below this threshold, the maximum mode amplitude is
relatively small and increases with the drive amplitude;
above this threshold the mode amplitude follows the drive
frequency to high amplitude and is independent of the
drive amplitude. As shown in Fig. 5, the threshold is
very sharp. Lower chirp rates have lower drive amplitude
thresholds. Theoretically,

o VaOC.AOJS, (2)

0.00 0.05 .0'10 0.15 0.20 and is in excellent agreement with the data, as shown in
Time (s) Fig. 6. The data shown here were taken at very high Q;
FIG. 3. Autoresonant response to a sawtooth swept drivet.h_e same threshold and scaling phenomena were observed
(a) Signal received on the pickup sector. (b) Drive frequencywith Q’s as low as 60.
(solid line), measured linear resonant frequency (dashed line), The existence of this threshold reflects the condition
and measured excitation frequencie. ( in the associated Hamiltonian problem that there must
exist a stable, phase locked, quasiequilibrium as the mode

by a constant frequency which is initially below linear @MPplitude grows. The derivation of Eq. (2) is lengthy
resonance, the mode grows autoresonantly when its linedd the details will be presented elsewhere. A similar
resonant frequency drops through the drive frequency. A&nalysis in an analogous problem is given in Ref. [23].
typical example is shown in Fig. 4, where the drive fre-Briefly, we descr_lbe t_he mode by an approximate, isolated-
quency i27.4 kHz and the drive amplitude 504 V p.-p. resonan(i(/az Hamiltonian [24H (1, 6;1) = —wo(r)In(l —

The initial linear diocotron frequency 8.4 kHz. Au- 1)+ 2€l/°cod6 — ). T?e Hamiltonian is a function
toresonant growth occurs only after the linear mode fre®f the action/ = (D/R)% and the plasma rotation
quency has dropped to the drive frequencyt, at0.11s. ~ andled; e and¢ = [Q(z)dr are the normalized dipole
The envelope of the phase locking curve, as well as many

details hidden in Figs. 2—4, is well understood within the
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associated Hamiltonian picture, described briefly below,§ g L (©)
and will be elucidated in a future paper. % Eosk h
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Time (s) FIG. 5. Autoresonant response near threshold. (a) Mode

amplitude as a function of time for drive amplitudes®60,

FIG. 4. Response to a constant frequency drive. Autoresod.144, 0.152, and0.200 V p.-p. (b) Maximum mode amplitude
nance occurs because the system’s linear resonant frequenag a function of drive amplitude. Near the drive threshold
drops as the plasma expands. (a) Signal received on the pickwpltage0.150 V p.-p., the response is bimodal; some shots stay
sector. (b) Relative phase between the mode and the drivédow, while other shots go to high amplitude. (c) The fraction of
(c) Drive frequency (solid line), measured linear resonant freshots near threshold that go to high amplitude. All data taken
guency (dashed line), and measured excitation frequene)es ( at a chirp rate ofl.7 X 103 Hz/s.
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2 Ty in a non-neutral plasma. As autoresonance is a general

2 10 3 3 property of nonlinear oscillators and waves, it should occur

ﬁ - in many other systems. For example, we plan to search for

s I autoresonant phenomena in higher order modes like the
—_ 1 E 3 elliptical diocotron modef = 2 or Kelvin mode).
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