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Abstract

Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma

by

Erik Peter Gilson

Doctor of Philosophy in Physics

University of California at Berkeley

Professor Joel Fajans, Chair

We performed experiments that explore the e®ects of a quadrupole magnetic ¯eld on a pure

electron plasma con¯ned in a Malmberg-Penning trap. Our simple model describes the

shape of the plasma and shows that a certain class of resonant electrons follows trajectories

that take them on large radial excursions, leading to enhanced transport. The quadrupole

¯eld destroys the cylindrical symmetry of the system, but our model predicts that if the

electrons are not resonant with the quadrupole ¯eld, then di®usion will not be greatly

enhanced. Our experimental results show that the plasma's shape agrees with our model,

but that the di®usion does not. The plasma has the shape of a °ux tube if the bulk

rotation of the plasma is slower than the axial bounce motion. The plasma is cylindrical

if the bulk rotation is faster than the axial bouncing. The measured di®usion scales as the

square of the quadrupole ¯eld strength as expected. Some predictions of our model prove

to be only approximate. The location of the resonance in parameter space scales roughly

inversely with the length and proportional to the temperature of the plasma. Further, the

temperature we use in ¯tting the data di®ers from an independently measured temperature

by a factor of four. In addition to being an example of resonant particle transport, this e®ect

is important for experiments that plan to use magnetic quadrupole neutral atom traps to

con¯ne antihydrogen created in double-well positron/antiproton Malmberg-Penning traps.

Professor Joel Fajans
Dissertation Committee Chair
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Chapter 1

Introduction

We have applied an axially invariant, transverse, quadrupole magnetic ¯eld to a

pure electron plasma con¯ned in a Malmberg-Penning trap in order to study the e®ect of

the quadrupole ¯eld on the shape of the plasma and on transport in the plasma. The shape

of the plasma follows the surface of a magnetic °ux tube if the bulk rotation of the plasma

is slow compared to the axial bounce time of the electrons. The plasma is a cylinder when

the rotation is fast compared to the bounce time. Measurements of the radial transport

show a resonant behavior that is not in complete agreement with our model of the e®ect,

but it is consistent with many of the predicted scalings.

There are two primary motivations for this work: antihydrogen research and res-

onant particle transport. The work I present in this thesis is relevant to antihydrogen

experiments by the ATHENA and ATRAP collaborations at CERN because it helps them

to understand whether the quadrupole ¯eld will have a deleterious e®ect on their experi-

ment. This work is also broadly relevant to long timescale con¯nement issues in nonneutral

plasma physics; resonant particle transport is a possible explanation of the ¯nite lifetimes

of plasmas in Malmberg-Penning traps at low base pressures.

1.1 Antihydrogen

Antihydrogen experiments at CERN by the ATHENA [1] and ATRAP [2] collab-

orations may be complicated by the e®ects of a quadrupole magnetic ¯eld on a Malmberg-

Penning trap. To create antihydrogen atoms, both collaborations intend to accumulate and

cool antiprotons and positrons in Malmberg-Penning traps [3]. The antiprotons come from
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the CERN accelerator and the positrons come from radioactive decays. These particles

will then be allowed to mix in a recombination region to make antihydrogen. The neutral

antihydrogen atoms will not be con¯ned by the Malmberg-Penning trap; magnetic ¯elds

with gradients are needed to con¯ne neutral atoms. Neutral atoms with nonzero magnetic

moments experience a force in a magnetic ¯eld with a gradient, ~F = (~¹ ¢ ~r) ~B.
The question addressed in this thesis is whether the quadrupole ¯elds used to con-
¯ne antihydrogen will ruin the con¯nement properties of the Malmberg-Penning
traps.

If so, then the constituent antiprotons and positrons may not live long enough to reach the

recombination stage of the experiment; the experiment will be over before it begins. Both

collaborations have trapped antiprotons and positrons, and perhaps at the same time [4],

but have not observed recombination.

Important tests of physical theories can be made with antimatter. Antihydrogen

atoms have been seen in the PS210 experiment at CERN [5] traveling near the speed of

light, making them di±cult to study. Energetic antiprotons from the main accelerator

pass through a chamber where electrons and positrons are created from the vacuum by

pair production. A small number of positrons are captured by the antiprotons to form

antihydrogen.

There is great interest in antimatter measurements. If one could trap antihydrogen

atoms at rest in the lab, detailed spectroscopic measurements could be made. A compar-

ison of the hydrogen spectrum and the antihydrogen spectrum is an excellent test of the

CPT (Charge conjugation, Parity, Time reversal) symmetry of the Standard Model [6, 7].

QED calculations of the hydrogen spectrum are among the most precise calculations in

physics and in excellent agreement with observations. In addition to being a test of CPT

invariance, antihydrogen could be used to test the WEP (Weak Equivalence Principle) in

General Relativity [8]. The WEP is often simply stated as the equivalence of inertial and

gravitational mass.

1.2 Resonant Particle Transport

1.2.1 Nonneutral Plasmas

The excellent con¯nement properties of Malmberg-Penning traps may be under-

stood, via Noether's theorem, as a result of the cylindrical symmetry of the system, which
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implies that the canonical angular momentum is conserved. For a strongly magnetized

plasma, the canonical angular momentum is proportional to the mean square radius of the

plasma [9]. Thus, for a single electron to reach the wall, the other electrons have to move

signi¯cantly closer to the axis. A trap asymmetry ruins the conservation of canonical an-

gular momentum, allowing radial transport and leading to plasma loss [10]. If an electron

is resonant with such an asymmetry, the transport could be greatly enhanced.

The two relevant motions of the electrons' guiding centers for discussing resonant

particle transport are the axial bouncing motion and the ~E £ ~B rotation of the plasma

about the axis of the trap. The time it takes the electron to travel the length of the trap is

tb and the ~E £ ~B angular rotation frequency is !E . If the bounce and rotation motions are

commensurate with a spatially localized trap asymmetry that causes radial transport, as in

Figure 1.1 , then an electron will repeatedly experience this radial transport; the electron

Figure 1.1: This Figure shows a simple illustration of a resonance between a spatially
localized perturbation (black dot), !E and tb. !Etb is such that the electron returns to the
perturbation. The e®ect of the perturbation is enhanced.

is resonant with the perturbation and is quickly lost to the wall of the trap. If the electron

is not resonant with the perturbation, then the e®ect of the perturbation tends to average

out and it does not greatly enhance transport.

Resonant particle transport has been suggested as a reason that the plasmas in

Malmberg-Penning traps do not last inde¯nitely. Trap asymmetries certainly have been

shown to a®ect transport [11, 12, 13], but no one has identi¯ed a speci¯c mechanism for

resonant particle transport that completely agrees with experimental observations.

Much work has been done on the topic of resonant particle transport in Malmberg-

Penning traps [14, 15, 16, 17, 18]. Eggleston and O'Neil [18] describe a theory for the e®ects
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of scalar ¯eld perturbation, Á(~r; t), in a Malmberg-Penning trap. However, the results are

not in agreement with observations made by Kriesel and Driscoll [12, 13]. Kriesel and

Driscoll's work shows transport caused by the perturbation, but the transport does not

scale with the perturbation strength as predicted by Eggleston and O'Neil. Kriesel and

Driscoll report transport that scales like V(!Etb)2 for ¼=10 < !Etb < ¼, where V is a

measure of the strength of the perturbation. The transport scales like V2, independent
of !Etb, for ¼=140 < !Etb < ¼=10. Eggleston and O'Neil do not predict the V scaling.

Moreover, the data show no direct evidence of resonant particle transport in the sense that

there is no evidence that the transport decreases again for !Etb > ¼. There is no resonant

peak shown in their data. For the mµ = 1 asymmetry they applied, one naively expects the

resonance to be at !Etb = ¼.

Experiments by Cluggish, Danielson and Driscoll [19] demonstrate the existence

of bounce resonant e®ects in nonneutral plasmas in the context of plasma heating. The

plasma is heated greatly when the heating signal's frequency approaches 2¼=tb from below.

This experiment deals with neither the ~E £ ~B motion of the electrons nor transport, but

only axial bounce motion.

1.2.2 Tandem Mirror Machines

Outside of the nonneutral plasma community, the subject of quadrupole ¯eld in-

duced transport appears in studies of tandem mirrors machines. Cohen, Ryutov, and Stu-

pakov developed models of transport based on kinetic theory [20, 21, 22, 23]. Chirikov

developed a model based on discreet mappings [24]. Figure 1.2 shows the magnet coil and

°ux tube con¯guration for a tandem mirror machine. There is a long, central, region where

the axial ¯eld is uniform. There are mirror ¯elds at the ends. To plug the loss cone, baseball

coils on the ends contain high density plasmas that provide electrostatic con¯nement for

the ions in the central region. The central region may be made long enough so that energy

needed to maintain the end plasmas is small compared to the expected amount of energy

to be generated in the central region.

There are several similarities between the tandem mirror system and our system.

Both systems have particles that bounce axially. In the tandem mirror, ions that are outside

of the loss cone bounce between the mirror ¯eld. Ions that are inside the loss cone bounce

between the electrostatic barriers created by the endcap plasmas. In our system, electrons



5

Figure 1.2: In the tandem mirror con¯guration, two baseball coil magnetic well traps cap
the ends of a standard magnetic mirror machine. A high density plasma in the endcaps
provides axial con¯nement for ions in the central mirror.

bounce between the electrostatic potentials of the con¯nement gates of the trap. Both

systems have a bulk azimuthal rotation. In the tandem mirror, ambipolar radial transport

creates a radial electric ¯eld. In our system, the nonneutral plasma has a radial self electric

¯eld.

The tandem mirror system has important di®erences from ours. Both electrons and

ions are present in the tandem mirror machine, while we have only electrons. The quadru-

pole ¯eld exists only at the ends of the tandem mirror machine and the two quadrupole

¯elds that the ions see are rotated by 90± with respect to one another. In our experiment,

the quadrupole ¯eld is axially invariant, covering the entire machine. In principle then, our

system ought to be simpler to study and analyze.

1.3 Results

Our results show that both the shape of the plasma and the transport depend on

whether !Etb is greater than or less than 1. The shape of the plasma is as we predict.

For !Etb ¿ 1, the electrons follow the magnetic ¯eld lines and the plasma has an elliptical

shape sometimes called a \twisted bowtie"; the plasma cross section is circular at the

axial midpoint, z = 0, and is elliptical at the ends, but with the ellipses rotated by 90±.

For !Etb À 1, the plasma smears into a cylinder. As for transport, the quadrupole ¯eld

increases transport resonantly, not monotonically. The measured properties of the transport

agree with some, but not all, of the predictions of a simple model of the e®ect. The

location of the resonance in parameter space moves accordingly as we change the length
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and temperature of the plasma. The strength of the transport scales like the square of

the perturbation strength. The simple model does not accurately predict the absolute

location of the resonance in parameter space and the scaling of the maximum di®usion with

temperature is in the wrong direction. We need a better theory of quadrupole induced

transport to completely describe the experimental observations.

We believe the data provide a conclusive demonstration of resonant particle trans-

port in a Malmberg-Penning trap. Quadrupole ¯elds are not the sole cause of plasma loss

in these traps, but the ¯elds' simplicity o®ers a relatively simple system in which to study

resonant particle transport. Quadrupole ¯eld e®ects are likely present in all Malmberg-

Penning traps because of imperfections in the magnet coils. Thus, the results I present in

this dissertation are relevant to all who use Malmberg-Penning traps. We see evidence of

¯eld errors in our trap as we can actually reduce transport with the application of suitable

quadrupole ¯elds.

The implications for antihydrogen research are important. The planned operating

parameters of the ATHENA and ATRAP collaborations are in a portion of parameter

space where transport is enhanced. Thus, the antihydrogen experiments will face serious

problems con¯ning antiprotons and positrons because of transport due to quadrupole ¯elds.

Even if the parameters are such that they are o® resonance, transport may still lead to

excessive plasma loss. In our work, we only need to apply relatively weak quadrupole ¯elds

of 20 mG/cm to see a large e®ect on transport. At the edge of the plasma, the quadrupole

¯eld strength is about 20 mG which is much smaller than the typical axial ¯eld of 100 G we

use. And still, di®usion is two times greater than the background di®usion. In antihydrogen

experiments, quadrupole ¯elds with strengths comparable to axial ¯eld strengths will be

used.

1.4 Outline

Chapter 2. I describe the Malmberg-Penning trap, diagnostics and modi¯cations made to

the machine for this experiment.

Chapter 3. I present the results of measurements of the shape of the plasma and compare

the results to our expectations.

Chapter 4. I study transport caused within the plasma by the application of the quadru-
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pole ¯eld.

Chapter 5. I summarize the work presented in this thesis and describe future directions

of research.

Appendix A. I describe the CCD camera system.

Appendix B. I present the LabVIEW programs we wrote to control the experiment.
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Chapter 2

Experimental Apparatus

2.1 Malmberg-Penning Trap

We performed the quadrupole magnetic ¯eld experiments in a Malmberg-Penning

trap at U.C. Berkeley, a trap designed to create and trap pure electron plasmas. This

chapter describes the trap used for this research; I discuss typical parameters, diagnostic

techniques and modi¯cations made to the machine speci¯cally for this research. The generic

Malmberg-Penning trap is designed to con¯ne charged particles with one sign of charge.

Note that it may be possible to con¯ne particles of both signs simultaneously [25, 26] , as

is relevant to the antihydrogen experiments [2, 27].

Basic Concept

A Malmberg-Penning trap consists of a series of three or more collimated, cylin-

drical, conducting rings immersed in a strong axial magnetic ¯eld, Bz. Figure 2.1 shows a

schematic of a trap with three rings. We apply a large negative voltage, ¡Vo, to the two
rings on the ends, while we ground the central ring. In the case of more than three rings, we

may apply ¡Vo to any two nonadjacent rings and ground the rest. With a strong enough
applied voltage and a su±ciently strong magnetic ¯eld, we trap a column of electrons in

this device in the region spanned by the grounded ring(s). The axial magnetic ¯eld provides

radial con¯nement while the electric ¯eld of the end rings provides axial con¯nement.
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Figure 2.1: A schematic drawing of the machine showing the con¯nement gates (with a
portion cut away to reveal the interior), the ¯lament, the axial ¯eld, the plasma, and the
phosphor screen. These are the essential components necessary to create, trap, manipulate,
and diagnose a pure electron plasma.

Inject Hold Dump Cycle

The source of electrons is thermionic emission from a spiral wound tungsten ¯l-

ament. To control the creation, manipulation, and destruction of a plasma, we set the

voltages on the end rings to ground to allow the axial passage of electrons, or we restore

the voltages to ¡Vo to prevent the axial passage of electrons. Therefore, we also call the
rings gates. We call the con¯nement gate closest to the ¯lament the inject gate and we call

the con¯nement gate furthest from the ¯lament the dump gate.

Figure 2.2 shows the typical sequence of events for the creation, manipulation, and

destruction of a plasma. When the trap is empty and the inject and dump gates are closed,

there are only electrons near the ¯lament. To begin injection, we set the inject gate to

ground and electrons ¯ll the trap. Restoring the inject gate to ¡Vo pinches o® the electron
column, leaving a trapped plasma. We can now perform any manipulations of the plasma

we like. Setting the dump gate to ground allows the plasma to leave the trap and strike the

phosphor screen.

Since a spiral ¯lament emits the electrons, we may think of the plasma as having

a spiral cross section. However, we prefer plasmas with smooth radial pro¯les. We hold

the inject gate open for at least (10 + tinject) milliseconds to allow instabilities and other

transport to ¯ll in the initial spiral shaped plasma, leading to a smooth radial pro¯le. Then,
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Figure 2.2: (a) An empty trap with ¡Vo applied to the inject and dump gates. (b) The
voltage on the inject gate set to ground, allowing electrons into the trap. (c) The voltage
on the inject gate is restored to ¡Vo to trap the plasma. (d) The voltage on the dump gate
is set to zero to dump the plasma onto the phosphor screen. (e) We are left again with an
empty trap, ready to repeat the cycle.
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we ramp the voltage on the inject gate slowly to ¡Vo. The parameters tinject and tramp are
proportional to the axial magnetic ¯eld because the time scales of the relevant dynamics to

¯ll in the spiral shaped plasma scale with the axial ¯eld.

We would like tinject and tramp to be as short as possible while still giving well

behaved plasmas. If tinject is too long, we simply waste time. If tramp is too long, we

miss the early evolution of the plasma. We ¯nd that if either parameter is too short,

di®erent types of maladies arise. The plasma may have spiral structure inherited from the

¯lament. Sometimes dense cores form with di®use halos. And often, a substantial ` = 1

diocotron mode is created. An ` = 1 diocotron mode is the result of an o® axis plasma

interacting with its image charge. The image charge produces an electric ¯eld that is almost

completely radial and this radial ¯eld creates an azimuthal drift of the plasma about the

trap axis. Lengthening tinject and tramp solves all of these problems.

The injection, holding, and dumping of a plasma is a process that is reproducible

to better than 1%. Therefore, in addition to in situ real time measurements, we can measure

the time evolution of plasma parameters by simply holding di®erent plasmas for di®erent

times. The reproducibility implies that measurements from di®erent plasmas held for dif-

ferent times are roughly equivalent to measurements in one plasma at di®erent times. This

is important for measurements that are destructive, requiring that we dump the plasma.

Guiding Center Drifts

There are two motions of the electrons' guiding centers that are important for

this research. The ¯rst is the motion of the electrons along the axial magnetic ¯eld lines.

We refer to this as the bounce motion. For a plasma of length L, we make the de¯nition,

tb = L=vz. For a thermal electron, vz =
p
kT=m.

The second motion is the ~E£ ~B rotation of the electron column about the symmetry
axis. The plasma has a net charge and thus a nonzero electric ¯eld directed radially inwards.

The guiding centers therefore have a drift in the ¡r̂ £ ẑ = µ̂ direction. For strongly

magnetized plasmas, the guiding center drift velocity is approximately ( ~E £ ~B)=B2 [28].

One may think of this rotation as giving the plasma the correct velocity so that the ~v £ ~B

force can balance the radial electric force. This rotation has the rotation frequency, ! ¼
!E = E=Br. For a plasma with constant density, E = ner=2¼²o and so !E = ne=2¼²oB.

For a plasma ¯nite temperature plasma, ! has contributions from both the ~E£ ~B drift and
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the diamagnetic drift. The diamagnetic drift is a °uid drift and not a guiding center drift,

so it is not important for the work in this thesis and we ignore it.

There are several ways to vary !E and tb; vary Bz, L, n, or kT . In practice, the

simplest parameter to vary is Bz. Varying L is straightforward as well; we choose various

gates to be the inject and dump gates. We can decrease the density by waiting because

the density naturally decreases as a function of time. It is more di±cult to increase the

initial density because the ¯lament is already set to provide the maximum density. We

could achieve further density increases by stacking techniques [29]. We can increase the

temperature by applying a noise signal to the wall of the trap, but we are more interested

in cooling the plasma and this is di±cult to do without adding a background gas against

which the plasma can cool. These plasma parameters are not independent, and so after

setting machine parameters, we measure all parameters and calculate !E and tb.

Vacuum System, Main Magnet & Steering Coils

The experiment sits inside of an ultra high vacuum chamber where we maintain

the pressure at approximately 4 £ 10¡10 Torr. The exterior of the vacuum chamber has

the copper wires of the large solenoidal magnet wound directly on it. There are no direct

measurements of the axial ¯eld, and so we model the magnet coils as a collection of ¯nite

length solenoids of assorted radii. This model shows that we get a magnetic ¯eld of 7.9 G/A.

With our power supply delivering 200 A, the magnet produces 1580 G. The magnetic ¯eld

in the region over which the experiment itself sits is uniform to within 0.1%. There are two

pair of Helmholtz-like coils to correct for the possible misalignment of the trap with respect

to the main magnet, and to account for the transverse component of the Earth's magnetic

¯eld. I discuss these coils in more detail below when I discuss quadrupole magnetic ¯elds.

The copper wires of the main magnet are hollow so that we may cool them with

water from a cooling tower on the roof of the building. The temperature of this water

varies diurnally, seasonally and with the weather. A typical variation from morning until

midafternoon is 10 ±F. For Bz < 400 G, the magnet does not heat the water signi¯cantly.

But at Bz = 1500 G, the magnet heats the water by 20
±F. The temperature of the system

is determined by both the temperature of the in°owing water and the heat generated by

the main magnet. This temperature variation can cause thermal expansion and can be

important for correctly tuning machine parameters. We therefore strive to minimize this
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temperature variation either by minimizing the duration of experiments or by retuning the

system on a shorter timescale than the temperature variations.

Filament

A tungsten ¯lament1 wound into a planar spiral with 12 turns and a diameter of

0.970} produces electrons by thermionic emission. The ¯lament wire is 0.014} in diameter.

Approximately 6 Amperes and 13.84 Volts drive the ¯lament and it glows white hot. Optical

pyrometer measurements indicate the ¯lament temperature is » 1600 ±C. As I describe

below, we must attempt to minimize this light pollution. Testing of the ¯lament shows

that increasing the current beyond 6 A only increases the light output and does not lead to

denser plasmas because the ¯lament emission becomes space charge limited.

The ¯lament sits inside a grounded copper ring of its own at the end of the series

of collimated copper rings used for con¯ning the plasma. We hold the ¯lament in place by

crimping its ends into hollow stainless steel posts. Behind the ¯lament is a stainless steel

disk that is welded to the center stainless steel post. Since the current is set to °ow through

the ¯lament from the outer edge down to the center, this disk is at a lower potential than

the body of the ¯lament. Therefore, the disk serves to re°ect electrons back into the trap

that would otherwise head in the wrong direction.

We place a bias voltage on the center post of the ¯lament to enable or suppress

the electrons from leaving the region near the ¯lament and entering the trap. We apply

a positive voltage of +10 V to suppress injection. The enabling voltage ranges from 0 to

-40 V. A bias voltage less than the voltage across the ¯lament allows us to inject plasmas

that have a smaller radius than the ¯lament's radius. However, the voltage mismatch that

occurs between the ¯lament and the natural space charge of the injected plasma heats these

plasmas.

Parameters Values

Table 2.1 shows ¯xed values, typical values, and value ranges for the various ma-

chine parameters.

1Manufactured by R.D. Mathis Co., Long Beach, CA.
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Parameter Value

rwall 1:905 cm

p 4£ 10¡10 Torr
L 2¡ 34 cm
Bz 40¡ 1500 G
­ 0:7¡ 2:6£ 109 rad s¡1
!p max 2£ 108 rad s¡1
!E 0:4¡ 4:0£ 106 rad s¡1
rL 1 mm

thold 4¹s¡ 10 s
tb 0:7 ¹s

º¡1ee 3 ms

nmax 2£ 107 cm¡3
kT 1 eV

¸D 0:5 mm

Table 2.1: This table shows typical parameters and parameter ranges accessible in the U.C.
Berkeley Malmberg-Penning trap.

2.2 Diagnostics

Diagnostics fall into two categories, destructive and nondestructive. In a destruc-

tive measurement, we must destroy the plasma by dumping it in order to make the measure-

ment. In a nondestructive measurement, we make the measurement without disturbing the

plasma. The wall of the trap itself is one diagnostic and may be used either destructively

or nondestructively. We detect the image charge on the wall that the plasma induces. A

phosphor coated glass substrate is the second diagnostic. Dumping the plasma onto the

phosphor produces an image whose brightness is proportional to the z integrated plasma

density. A CCD camera that looks through a viewport into the vacuum chamber images

this light.
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2.2.1 The Wall

The electrons induce image charges on the walls and since the copper gates have

a ¯nite capacitance to ground, there is a corresponding voltage proportional to this image

charge. We read this voltage directly if the gate is not grounded.

We divided two of the gates in the machine into electrically isolated azimuthal

sectors for measuring the angular dependence of the image charge. The sectored gates are

useful in the nondestructive mode for measuring the frequencies of various azimuthal modes

of the plasma. Note that the wall of the trap may also be used to drive plasma modes in

addition to detecting them [30, 31, 32].

Alternatively, we can use the wall as a Gauss' Law probe, a destructive technique

that gives the total charge that resides within the gate being measured. When we dump the

plasma, the image charge on the wall returns to ground and we measure the corresponding

voltage. We use this technique with the sectored gate to measure the shape of the plasma.

2.2.2 The Phosphor

We have a glass substrate2 coated with indium tin oxide for electrical conductivity,

phosphor (P-43) for light emission, and ¯nally aluminum for blocking unwanted light. We

use the phosphor screen in two modes of operation, as a charge collection plate and as an

imaging device. When we use the phosphor as a charge collection plate, we simply dump

the plasma and read the voltage produced on the phosphor due to its capacitance to ground.

When we use the phosphor as an imaging device, we accelerate the electrons with a high

voltage into the phosphor coated screen, as in a television or in an oscilloscope. We apply

16 kV to the phosphor screen to accelerate electrons out of the trap and form an image that

is a z integrated, pancaked, version of the plasma. The CCD camera records an image of

this light.

Background Subtraction

Because of the bright light emitted from the ¯lament, we take an image with no

plasma present to subtract from subsequent images when there is a plasma present. Figure

2.3 shows a typical background image. By subtracting the background image, we measure

only light that comes from electrons striking the phosphor screen. Figure 2.4 shows a

2Manufactured by Grant Scienti¯c, Gilbert, SC.
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Figure 2.3: An image of the background light, with no plasma present. We subtract this
image from other images so that we have only the light from the plasma striking the phos-
phor. Note the pinholes that are places where the aluminum has been lost. The image
analysis software replaces these bright spots with an average of their nearest neighbors.

background image, an image of a plasma before subtracting the background, and the ¯nal

image after background subtraction. Note the pinhole defects in the phosphor in Figures

2.3 and 2.4. These are spots where the aluminum layer has been reduced. Figure 2.4 shows

that background subtraction is e®ective at removing these defects from the plasma images.

To ensure that the pinholes to not a®ect the data analysis, we replace the values of the

pinhole pixels with an average of their nearest neighbors.

We take several steps to minimize the background light before acquiring the back-

ground image. The phosphor screen, which sits between the ¯lament and the camera, has

a coating of aluminum. This coating blocks most of the light coming from the ¯lament,

reducing the white hot glow to a gentle orange glow. We out¯tted the camera lens with

a 22 nm passband optical ¯lter that is tuned to the 545 nm emission wavelength of the

phosphor. We set the electronic shutter on the CCD camera to be as short as possible to

minimize the signal from the constant glow of the ¯lament while still capturing all of the

light from electrons striking the phosphor screen.

Even with all of the measures we take to reduce the background light, the plasma

produces a light signal that is at most only a factor of 10 greater than the background at
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Figure 2.4: The image in the upper left is the same background image from Figure 2.3 but
with the brightness reduced so as to be on the same scale as the other images in this Figure.
The image in the upper right is an image of a plasma before background subtraction. The
bottom image is the ¯nal image of the plasma after subtracting the background image.
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any given pixel. The total brightness of a plasma image is only 40% brighter than an image

of the background, however. Testing the background subtraction by subtracting the saved

background image from successive images of no plasma in order to obtain a \null" image

shows that the cancelation is good to the level of 1%.

Over the course of an hour or so, random mechanical vibrations in the laboratory

from sources such as passing trucks outside or slamming doors in the building cause the

camera alignment to change and the background image appear to be o®set. There are °uc-

tuations in the temperature of the room and thermal expansion may change the mechanical

alignment of the camera. And, even though the camera is mostly isolated from changes in

the room temperature by being in a temperature regulated box (see Appendix A), thermal

°uctuations can still change the brightness of the images. For these reasons, we acquire a

new background image periodically, waiting no more than one hour between background

images.

Clipping and Threshold

After subtracting the background image, we can make two further image manip-

ulations. We clip the image by setting all pixels to zero beyond the radius where we know

the wall of the trap to be. This eliminates some portion of the scattered light that does

not represent where electrons strike the phosphor screen. Next, we sometimes enforce a

threshold pixel value. At ¯rst, we set to zero all pixels with negative values. Ultimately,

however, we found it better to skip the threshold procedure. Because image noise is both

positive and negative, quantities such as the RMS plasma radius behave better if we keep

the negative pixel values.

Image Faithfulness

Ideally, the accelerating electric ¯eld would be purely axial in order to not distort

the image. But there are di±culties in enforcing the boundary conditions necessary to

create axial electric ¯eld lines. The radial component of the imaging electric ¯eld causes a

radial compression of the image and the ~E£ ~B drift causes a rotation of the image. Figure
2.5 shows the result a numerical solution for the electric potential created by the phosphor,

Á(r; z)phos.

The radial compression amounts to a mapping r ! m(Bz)r where m(Bz) is a
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Figure 2.5: Making simplifying assumptions about the geometry of the system, we solve
for the potential created by the phosphor screen. The phosphor screen and the trap walls
have a radius of 0:75}. The vacuum chamber has a wall radius of 3:50} and is not shown
here. The phosphor sits at z = 0 in this Figure, 1:50} away from the last con¯nement gate.
The phosphor is at Á = 1 while the con¯nement gates and vacuum chamber walls are at
Á = 10¡6. The contours are logarithmically spaced and show that there is a signi¯cant
radial component of the electric ¯eld.

magni¯cation factor dependent on Bz. We take images of the electrons streaming o® of

the ¯lament and measure the radial compression as a function of Bz. Figure 2.6 shows

that the result is m ¼ [200=Bz(G)]0:28 for Bz ∙ 200 G. The compression is less for smaller
phosphor voltages, but using voltages of less than 16 kV results in plasma images that are

not su±ciently bright.

Averaging

The reproducibility of the system allows us to average multiple camera images.

We ¯nd that averaging ¯ve images is su±cient to reduce the pixel noise. Averaging more

than ¯ve images only marginally improves the statistics but it increases the duration of the

experiment. Many of our data runs take several hours and so a di®erence of 20% is quite

signi¯cant. It is important that the background image have little noise because we subtract

it from every subsequent image. Therefore, the background image is an average of twenty

images.

2.3 Measuring Plasma Parameters

We use the walls of the trap and the phosphor screen to measure the total charge

in the plasma, Q, the transverse pro¯le of the plasma density, n(r; µ), and the on axis axial

temperature of the plasma kTk. We measure the length of the plasma, L, by using an
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Figure 2.6: We measure the radial compression of an image as a function of Bz by imaging
the ¯lament and measuring where each turn of the spiral appears to be. Above 200 G,
the curves are °at and there is no noticeable compression of the image. Below 200 G, the
compression scales like B0:28z . Each line in this Figure is a di®erent turn of the ¯lament.
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iterative r-z Poisson solver that ¯nds a self consistent solution that corresponds to an image

of the plasma.

2.3.1 Total Charge

Phosphor

When we dump the plasma, all of the electrons end up on the phosphor. We

¯nd the total charge, Q, from Q = CphosVphos. We measure the phosphor capacitance

Cphos by including it as one leg in a capacitive voltage divider (see Figure 2.7) while using

V o

C

C

o

G

V

Figure 2.7: We use a simple capacitive voltage divider to measure the capacitance of the
phosphor screen or a gate. A series of known capacitances, Co, forms one leg of the voltage
divider while the unknown capacitance C forms the other. We measure the output voltage,
V , as a function of Vo, C and the frequency of the oscillator.

various capacitors of known values, Co, as the other leg. A function generator drives the

voltage divider with sine waves and we measure the amplitude of the output as a function

of frequency. For a known capacitance, Co, and drive voltage, Vo, the measured signal is

V = GVoCo=(C + Co), where G is the gain of any ampli¯cation stages. By using Co À C,

which we verify a posteriori, V ¼ GVo and we measure GVo. Then we solve for C,

C = Co

µ
GVo ¡ V

V

¶
: (2.1)

The slope of the graph of Co versus V=(GVo¡V ) shown in Figure 2.8 yields Cphos. The result
is that Cphos ¼ 300 pF. Severe noise pickup from the leads connecting the phosphor to the

outside of the vacuum chamber greatly hampers this method of measuring Q. Also, there

appears to be a tenuous electrical connection to the phosphor. This results in the charging

up of the phosphor and gives shot to shot variations. These problems make measuring Q

from the phosphor dubious at best. Instead, we rely on Gauss' Law probes.
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Figure 2.8: We measure the output voltage V of a voltage divider with the phosphor screen
as one leg, and a known capacitance Co as the other leg. The slope of each line gives the
capacitance of the phosphor screen or gate for each of several frequencies. Above 10 kHz,
the slope is 300 pF.
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Gauss' Law Probe

When we hold a plasma in the trap, there is an image charge induced on the

grounded hold gates equal in magnitude to the plasma charge within the axial extent of

those gates. When we dump the plasma out of the trap, this image charge runs to ground.

This allows us to measure Qgate = CgateVgate. If we assume that the plasma is axially

uniform over the extent of the gate, then we are measuring the number of electrons per unit

length, ¸. If we assume that L is simply the distance between the two con¯nement gates (a

good assumption for long plasmas), then Q = QgateL=Lgate = CgateVgateL=Lgate. Note that

¸ is a more robust measurement than Q here because ¸ does not depend on the length of

the plasma, L, which is di±cult to measure accurately.

` = 1 Diocotron Frequency

If we measure the frequency of the ` = 1 diocotron mode, we can deduce ¸. If a

plasma with ¸ electrons per unit length is o® axis by an amount D, then it induces an image

plasma on the wall. The image is equivalent to a plasma with ¡¸ at r = r2wall=D. The

electric ¯eld from this image causes an ~E £ ~B drift in the azimuthal direction. The linear

frequency of the ` = 1 diocotron mode is !o = ¸e=2¼²oBzr
2
wall. The nonlinear frequency

for ¯nite mode amplitude is !D = !o(1¡D2=r2wall)¡1. Fine and Driscoll [33] have derived
a formula that further corrects for ¯nite length and temperature e®ects. Their result is,

!

!D
= 1 +

∙
j01
2

µ
F +

4¼²okT

¸e2

¶
¡ 0:671

¸µ
rwall
L

¶
; (2.2)

where j01 is the ¯rst zero of the zeroth order Bessel function J0. The quantity F is the

electrostatic energy per unit length for a °at topped plasma with unit ¸: F = 1=4 +

ln(rwall=rp). Since we have rather Gaussian plasmas, we use

F =

Z rwall

0

1

2
²oE

22¼rdr

=

Z rwall

0

1

2
²o

∙
e

2¼²or

Z r

0
n(r0)2¼r0dr0

¸2
2¼rdr (2.3)

and we choose n(r) to be a Gaussian normalized to unity. We calculate F numerically.

Knowledge of kT and L, and a measurement of ! is therefore su±cient to calculate ¸.

These techniques agree with each other to within a few percent for determining ¸ and so

we use the Gauss' Law probe method because of its simplicity.
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CCD Image

We can convert the brightness of a CCD camera image to plasma density and thus

deduce Q. If the phosphor is spatially uniform and linear, and if the CCD camera system

is uniform and linear, then the total brightness of a camera image, T (in units of pixel

brightness, or \cams" for \camera units"), is proportional to the total amount of charge,

Q. Moreover, the brightness of any pixel is proportional to the z integrated density at the

location of the pixel. To calibrate the camera images, we ¯rst use the Gauss' Law probe

technique to measure ¸ = CgateVgate=eLgate. By assuming L, we write Q = ¸L and the

conversion factor from cams to number of electrons is

cam

e¡
=
TeLgate
CgateV L

(2.4)

This value should be constant and we measure it to be 0.31 cam=e¡ for 16 kV of phosphor

voltage and a camera gain of 150.

2.3.2 Density

We can further calculate what electron density each pixel corresponds to. We

need the factor cam=e¡ just calculated and the \size" of the pixels. We observe that the

camera's ¯eld of view includes screws that hold the phosphor screen in place and we know

how far apart these screws are. We calculate that 126.10 pixels corresponds to 1 centimeter.

Therefore, the \size" of a pixel is (126:10)¡2 cm2. So for a particular pixel the z averaged

number density of electrons is

n = PixelValue

Ã
e¡

cam

! Ã
1

Volume

!

= PixelValue

Ã
CgateV L

TeLgate

! Ã
126:102

L

!

= PixelValue

Ã
CgateV

TeLgate

!
(126:10)2: (2.5)

This is independent of L and only requires that the plasma have some well de¯ned and uni-

form L. Therefore, even if we are relatively uncertain about the precise value of L, this cali-

bration of density is more accurate than the calibration of cam=e¡. For a 28 cm long plasma,

16 kV of phosphor voltage, and a gain of 150, the calibration is 1724 cm¡3=PixelValue.
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2.3.3 Length

So far, the length of the plasma is a poorly de¯ned quantity. Because of the

thermal spread in electron energies, the radial dependencies of the plasma itself and the

con¯nement potentials, and the strength of the con¯nement potentials, the plasma length

is a function of r, kT , and Vo. Ignoring these e®ects, one might say that the length of the

plasma is simply the distance between the con¯nement gates. The larger this distance, the

better this assumption is. However, even for the longest plasma that we can trap, using

con¯nement gates separated by 34.02 cm, we ¯nd that a better estimate of the plasma

length is 28 cm.

We use an iterative r-z Poisson solver method [34, 35] in which we take an image

of the plasma to be the z integrated density pro¯le of a plasma, n(r), held between the

con¯nement gates. We ¯nd the potential that corresponds to this density distribution,

compute no exp(eÁ=kT ), and use this as the source term in Poisson's equation. We repeat

this process using the new solution for Á(r; z), at each iteration we require that the z

integrated density equals n(r). We stop after reaching su±cient convergence. This technique

assumes that the plasma is in global thermal equilibrium and that we know the temperature.

Knowing Á(r; z) allows us to calculate L as the turning points of an electron with axial

velocity vth.

2.3.4 Temperature

We measure the axial temperature of the plasma using the technique described by

Eggleston et. al. [36]. We slowly raise the voltage on the dump gate from ¡Vo to ground.
Because the charged plasma column has a space charge potential and a ¯nite temperature,

hot electrons that are on axis will be able to leak out the trap ¯rst. By collecting these ¯rst

electrons, we do not greatly disturb the plasma and we measure the tail of the Maxwellian

distribution. From this, we extract kT .

d lnQesc
d eÁ

=
¡1:05
kT

: (2.6)

The amount of charge that has escaped is Qesc. Typical temperatures are about 1 eV.
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2.4 Modi¯cations

Since the experiments performed by Notte [29], Peurrung [37], Hansen [38] and

Reimann [39] with the U.C. Berkeley Malmberg-Penning trap, we made several modi¯ca-

tions. These include changing the ¯lament, rearranging the gates, installing a new imaging

system, and adding quadrupole magnets.

2.4.1 Filament

The previous ¯lament was a spiral, divided into eight segments of equal arclength.

Each segment was electrically isolated, mounted separately, and driven by a separate power

supply. The purpose of this design was to allow ¯ner control of the injected plasmas.

However, the correct alignment of these segments was torturously di±cult. Often,

adjacent segments would touch one another, shorting out the °ow of electricity, making for

uneven electron emission. In practical use, this restricted the number of usable segments

and thus the maximum plasma radius allowed. Moreover, the 16 quarter inch diameter,

75 cm long copper rods used to deliver power to the ¯lament were unwieldy during machine

maintenence.

A single, continuous, ¯lament replaces the segmented ¯lament. This solves the

shorting problems, and now we need only two copper rods to deliver power to the ¯lament.

There are still alignment problems however; the ¯lament is not exactly centered in the trap

and a slight torque has made the spiral nonuniform. See Figure 2.9.

2.4.2 Gates

To better serve the goals of our experiment, we changed the ordering of the gates

inside the machine. We placed as many gates of similar length next to one another as

possible. We added a gate to the end of the machine to allow for longer plasmas. Lastly,

we replaced a two-sectored gate with a four-sectored gate to allow the measurement of

quadrupole signals. Figure 2.10 shows the design of the four-sectored gate and Figure 2.11

shows the arrangements of the gates within the machine.
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Figure 2.9: This image of the ¯lament is actually an image of free streaming electrons, (not
a trapped plasma), coming directly from the ¯lament. This is not light emitted from the
¯lament. An accidental slight twist during installation gives the ¯lament its asymmetric
appearance. By setting tinject and tramp properly, we still create a symmetric plasma.

Figure 2.10: We installed a new four-sectored gate in order to measure quadrupole signals.
The entire wall area is part of one sector or another, i.e. there is no \body". Electrically
isolated end rings hold the sectors together. Small ceramic washers act as stando®s to
electrically isolate the pieces and ceramic pins hold the pieces together.
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Figure 2.11: This scale drawing shows the arrangements of the gates inside the machine.
The ¯rst two gates on the far left support and house the ¯lament. Gates 0 through 9 are
used to inject, hold, analyze and dump the plasma. The phosphor screen sits to the far
right. End views of gates 5 and 6 show the sectors. Gate 5 has three sectors 90± apart and
50± in extent. Gate 6 has four sectors 90± in extent.

2.4.3 Imaging System

In order to create an image of the plasma that is a faithful z integrated version

of the plasma, the accelerating electric ¯elds should be purely axial. In a parallel plate

con¯guration, the potential is constant in any transverse plane, and varies linearly with

distance. In the previous machine con¯guration, a grid and acceleration rings were put in

place to enforce the correct boundary conditions. The phosphor is an equipotential surface

at 16 kV. A stack of 20 copper rings, separated by 1 M­ resistors, was placed between the

phosphor and the last con¯nement gate. The phosphor and the ¯rst ring were at 16 kV. The

last ring was grounded. Thus, the potential decreased linearly in the z direction. Finally,

a ¯ne grid of tungsten wire was woven across the face of a ring and placed next to the

last gate. This grounded grid represents an approximate equipotential surface while still

allowing electrons to be dumped from the trap.

There were two problems with this design. The support structure for this assembly

was inadequate and the grid itself interfered with plasma imaging.

The stack of rings was held together by brittle Macor rods. Vacuum compatible,

electrically insulating supports needed to be used, but the geometry of the system required

that the Macor rods be very thin. The rods were 3:700} long and 0:086} in diameter and

had 0:035} of 2-56 threading on each end. During machine maintenance, these rods often

broke. Over time, the screw holes on the large Macor disk that holds the phosphor in place
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began to crumble, reducing the tolerance. With these two problems, the alignment of this

acceleration stage became di±cult and we isolated the acceleration rings from the last gate

by inserting Te°on spacers. Unfortunately, these spacers charged up and created soft glows

in the camera images.

At high phosphor voltages necessary for bright images, the grid altered the trajec-

tories of the electrons, resulting in striping in the images. We ¯nally decided to remove the

grid and acceleration rings altogether. We are left with the con¯guration described above.

2.4.4 Quadrupole Magnets

To apply a transverse, axially invariant, quadrupole magnetic ¯eld, we use two

di®erent sets of coils. One set of coils are planar hexagons and the other set is an elongated

box.

Quadrupole Fields

In the absence of currents and time dependent electric ¯elds, ~r ¢ ~B = 0 and

~r£ ~B = 0. The possible axially invariant magnetic ¯elds in cylindrical coordinates are of the
form ~Bn = ~rÃn, where Ãn(r; µ) = ¯rn=n exp[in(µ¡µo)]. These Ãn are the two dimensional
simpli¯cations of the three dimensional potential, ªn(r; µ; z) = ¯

0Jn(kr)=n exp[in(µ¡ µo)§
kz] in the limit k ! 0. The constants ¯ and ¯0 are arbitrary coe±cients. It is useful

to enumerate the ¯rst several Ãn in both polar and cartesian coordinates to identify the

corrections to the desired quadrupole ¯eld when we Taylor expand the ¯eld produced by

the coils in the lab.

The n = 1 ¯eld is the dipole ¯eld

~B = Bxx̂+Byŷ: (2.7)

The n = 2 ¯eld is the quadrupole ¯eld

~B = ¯1(xx̂¡ yŷ) + ¯2(yx̂+ xŷ)
= ¯r

³
cos[2(µ ¡ µo)]r̂ ¡ sin[2(µ ¡ µo)]µ̂

´
; (2.8)

where ¯2 = ¯21 + ¯
2
2 and tan(2µo) = ¯1=¯2. We may use either ¯ and µo or ¯1 and ¯2

to describe the quadrupole ¯eld. Figure 2.12 shows the ¯eld lines for the magnetic ¯eld in

equation 2.8. We can simply approximate the quadrupole ¯eld with µo = 0 in the laboratory
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Polar nÃn Cartesian nÃn

r cos(µ) x

r sin(µ) y

r2 cos(2µ) x2 ¡ y2
r2 sin(2µ) 2xy

r3 cos(3µ) x3 ¡ 3xy2
r3 sin(3µ) ¡y3 + 3x2y
r4 cos(4µ) x4 ¡ 6x2y2 + y4
r4 sin(4µ) 4x3y ¡ 4xy3
r5 cos(5µ) x5 ¡ 10x3y2 + 5xy4
r5 sin(5µ) y5 ¡ 10x2y3 + 5x4y
r6 cos(6µ) x6 ¡ 15x4y2 + 15x2y4 ¡ y6
r6 sin(6µ) 6x5y ¡ 20x3y3 + 6xy5

Table 2.2: The scalar magnetic potentials for axially invariant, cylindrically symmetric
geometry in both polar and cartesian coordinates.

by four in¯nitely long straight current carrying wires arranged at the corners of a square,

and with alternating directions. The current density distribution is

~J = Iẑ
h
±(x¡ d; y ¡ d) + ±(x+ d; y + d) (2.9)

¡±(x¡ d; y + d)¡ ±(x+ d; y ¡ d)
i
:

The magnetic scalar potential produced is

Ã =
¹oI

¼

µ
Ã2(r=d; µ)¡ 1

4
Ã6(r=d; µ) + ¢ ¢ ¢

¶
(2.10)

The next highest order correction to the quadrupole ¯eld from this current distribution is

the n = 6 dodecapole ¯eld. Since r=d » 0:15 in our experiments, this correction is 104

times smaller than the quadrupole term. To allow for quadrupole ¯elds with arbitrary µo,

we constructed two sets of quadrupole ¯eld coils that are rotated by 45± with respect to one

another, the hexagonal coils for µo = 0 (the ¯1 direction) and the box coils for µo = 45
± (the

¯2 direction). As discussed below, the largest ¯eld errors in the coils used in the experiment

come from the speci¯c geometry of the coils and not the n = 6 correction just described.
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Figure 2.12: The magnetic ¯eld lines for the n = 2 quadrupole ¯eld at an angle µo. The
¯eld lines have a four-fold symmetry.

Hexagonal Coils

We performed initial experiments with quadrupole coils wound on preexisting

frames that we use for creating dipole ¯elds. The frames are hexagonal to optimize their

performance as dipole magnets. Truly axially invariant coils would be straight, but there

must be end pieces that allow the current to be continuous and these end pieces create

perpendicular ¯elds themselves. To compensate for this extra dipole ¯eld, the original de-

signers of the machine bent the centers of the frames outwards to reduce their e®ect. The

result is a hexagonal frame shown in Figure 2.13. One pair of hexagonal coils is for Bx and

one pair is for By.

We use these frames to create quadrupole ¯elds by winding 36 extra turns of wire

around the hexagonal forms. If the current in the coils in a pair runs in opposite directions

as in the third picture in Figure 2.13, then we get a quadrupole ¯eld. The bowing out and

the end pieces of the hexagonal coils are problematic, however. A single pair of hexagonal

coils produces a ¯eld that is mostly a quadrupole, but \stretched" in the x or y direction.

There is also a signi¯cant axial dependence. The ¯rst two pictures in Figure 2.13 show

that the two pairs are di®erent sizes. We found that by keeping the ratio of currents in the

two pair of coils ¯xed at 1.391, we minimize the transverse asymmetry and the strong axial

dependence.

Using the law of Biot-Savart, we simulate the ¯elds produced by these coils. We

hope to understand the results of the simulation as the sum of the basic ¯elds represented
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Figure 2.13: The ¯rst picture shows the x ¡ z plane while the middle picture shows the
y ¡ z plane. These hexagonal coils were originally designed to create dipole ¯elds. But by
changing the polarity of the currents so that the currents °ow as in the picture on the right,
they also serve to produce quadrupole ¯elds.

by ªn and Ãn. A single pair of hexagonal coils has a signi¯cant magnetic cusp component,

ª0. However, when we add the ¯elds of the two pairs of hexagonal coils, these cusp ¯elds

mostly cancel, leaving a ¯eld that we cannot easily represent by ªn and Ãn. So instead, we

model the resulting cusp ¯eld as a polynomial of the form Bz = a1z + a3z
3 + a5z

5 + a7z
7.

We assume that Br ¿ Bz and write Br = ¡ r
2 @Bz=@z. After we account for this ¯eld, an

axially dependent quadrupole ¯eld ª2 and an axially invariant quadrupole ¯eld Ã2 remain.

~BHex = (xx̂¡ yŷ)

¡ 0:457
"
cos(k1z)(xx̂¡ yŷ)¡ k1r

2

2
sin(k1z) cos(2µ)ẑ

#
+
³
¡6£ 10¡5z ¡ 0:04z3 + 0:3z5 ¡ 0:2z7

´
ẑ

+
r

2

³
6£ 10¡5 + 0:12z2 ¡ 1:7z4 + 1:4z6

´
r̂; (2.11)

where k1 = 3:628 m
¡1, and x, y and z are in meters. This ¯t to the numerically calculated

¯eld is best at the origin. At r = rwall; z = 0, the ¯t is only 0.1% o®. At r = 0; z = §0:25 m,
the ¯t is 0.5% o®. At r = rwall; z = §0:25 m, the ¯t is 3.6% o®. Because of the axial

dependence of the magnetic ¯eld, the transverse quadrupole ¯eld is approximately 12%

stronger at z = §0:15 m than it is at z = 0.
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Box Coils

We designed the box shaped coils to provide a quadrupole ¯eld at µo = 45
±. Using

these coils in conjunction with the hexagonal coils, we produce quadrupole ¯elds at arbitrary

µo.

These coils are closer to the current distribution of equation 2.10 than the hexag-

onal coils. We constructed the coils from hollow quarter inch copper rods so that cooling

water can °ow through them. The box coils can have straight edges because the contribu-

Figure 2.14: The box coils produce quadrupole ¯elds by carrying currents as indicated by
the arrows.

tions of the end pieces tend to cancel each other in the quadrupole case as opposed to the

dipole ¯eld case where they add. Figure 2.14 shows the box shaped coils. In the actual sys-

tem, there are four turns. The simulations show that the ¯eld produced is well represented

by Ã0, ª0, and Ã2. There is a constant axial ¯eld, a magnetic mirror term, and an axially

invariant quadrupole ¯eld.

~BBox = (yx̂+ xŷ)

+1:32£ 10¡3 ẑ
+ 4:43£ 10¡4 [¡ sinh(k2z)J1(k2r)r̂ + cosh(k2z)J0(k2r)ẑ] ; (2.12)

where k2 = 9:378 m
¡1, and x, and y are in meters. At r = rwall; z = 0, the error in this ¯t

as compared to the numerically calculated ¯eld is less than 0.1%. At r = 0; z = §0:25 m,
the ¯t is 2.2% o®. At r = rwall; z = §0:25 m, the ¯t is 0.2% o® in the transverse direction



34

and 2.4% o® in the axial direction. Because of the small axial variation, the transverse

quadrupole ¯eld varies no more than 1% from z = 0 to z = §0:15 m.

Quadrupole Magnet Limits

The maximum current outputs of the power supplies limit us to a quadrupole

¯eld of 2 G/cm. Without bipolar power supplies, 0 ∙ µo ∙ 45±. A transistor driven relay
connected to one of the power supplies allows us to span the range ¡45± ∙ µo ∙ 45± to
better test any dependencies on µo. The current rating of the relay contacts limits us to

¯elds less than 0.1 G/cm. This is su±cient for most experiments.

Aside from the consequences of the geometry of the coils, the largest error we

expect in the quadrupole ¯eld is if the quadrupole coils are o®set in the transverse plane by

some distance d. Since, for example, ~B = ¯(xx̂ ¡ yŷ), the o®set coils produce the desired
quadrupole ¯eld plus a dipole ¯eld of strength ¯d. We account for this e®ect by tuning the

dipole magnets while the quadrupole magnet is on. We ¯nd that there is no measurable

e®ect down to a level equivalent to an o®set of 0.3 cm. In subsequent chapters, we include

only the ideal, two dimensional, quadrupole ¯eld and ignore the corrections from the shape

of the coils.

Total Magnetic Field

The large axial ¯eld and the weak perturbation ¯eld combine to give the total

magnetic ¯eld,

~B = Bzẑ + ¯r
³
cos[2(µ ¡ µo)]r̂ ¡ sin[2(µ ¡ µo)]µ̂

´
: (2.13)

For µo = 0, the equations for the magnetic ¯eld lines are

~r(s) = xoe
¯sx̂+ yoe

¡¯sŷ +Bzsẑ; (2.14)

where s is an arbitrary parameter and ~B = d~r=ds. Figure 2.15 shows this ¯eld pattern. A

°ux tube that is circular at z = 0 is elliptical at either end, but with the ellipses rotated by

90± with respect to one another.

2.5 Automation

To facilitate the acquisition of large time consuming data sets, we automated the

experimental apparatus. The automation consists of both hardware and software compo-
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Figure 2.15: The lines with arrows show the ¯eld lines produced by adding a small, trans-
verse, quadrupole ¯eld to a strong axial ¯eld. A °ux tube that is circular at z = 0 is
elliptical as you move away from z = 0. The transverse cross sections show the ¯eld lines
for the transverse quadrupole ¯eld alone.
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nents. The hardware includes a PC in control of magnet power supplies, a digital sequencer,

arbitrary function generators, a CCD camera system and other electronics. The software is

an elaborate set of LabVIEW routines.

The PC contains a National Instruments AT-AO-6 DAQ board that generates

the analog and TTL signals that control the hardware. Analog signals control the voltage

programmed current mode power supplies that drive the magnets. A TTL signal enables

the ¯lament bias driver. A TTL pulse from the AT-AO-6 drives the relay that selects the

polarity of one of the quadrupole magnets. A series of op-amps (in a unit named PP-24)

bu®er the AT-AO-6 board from the power supplies, preventing dangerous ground loops that

have damaged the AT-AO-6 in the past.

A digital delay (SRS-DG535) triggers the CCD camera. A 32 channel sequencer

(Rohatgi Electronics SN100) that generates all of the various timing pulses for our exper-

iments triggers the DG-535. A small, dedicated, PC controls the SN100 and our primary

PC controls this PC through the RS-232 interface. A USB GPIB interface connects several

devices to the PC, including the function generator used to shape the inject pulse. The

length of the plasma, L, is not automated. Someone must be present to connect the right

BNC cable to the right jack to choose L.

The set of LabVIEW programs exists to coordinate the automated parts of the

experiment and also to analyze the data. See Appendix B for details.
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Chapter 3

Plasma Shape

The quadrupole ¯eld has both radial and azimuthal components, bending the

unperturbed ¯eld lines. Therefore, these quadrupole ¯elds change the trajectories of the

electrons and change the shape of the plasma. Even though the main focus of this research is

the transport caused by the quadrupole magnetic ¯eld, we can make some simple predictions

and perform some simple experiments on the shape of the plasma. And so before considering

transport, we explore the shape of the plasma.

3.1 Introduction

3.1.1 Guiding Center Motion

In the guiding center approximation, an electron's guiding center moves freely

along the magnetic ¯eld lines while drifting across them. The ~rB and curvature drifts are

in the azimuthal direction and are unimportant in our system compared to the ~E £ ~B drift
and the axial bounce motion.

~rB Drift

The quadrupole ¯eld strength is equal to ¯r so that the ~rB drift is

~vrB = ¡1
2
v?rL

~B £ ¯r̂
B2z

: (3.1)

For a 1 eV electron, an axial ¯eld of 40 G and ¯ = 0:1 G/cm, ~vrB = 3100 cm/s. This is

small compared to the other velocities in the system.
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Curvature Drift

The curvature drift is

~vRc =
mv2k
e

~Rc £ ~B

R2cB
2
: (3.2)

The radius of curvature is Rc = j~r 0(s) £ ~r 00(s)j=j~r 0(s)j3, where 0 = d=ds. It points mostly
in the radial direction although there can be a small axial component. Using equation 2.14,

we ¯nd

Rc =
¯

Bz

£
r2 + (Bz=¯)

2
¤3=2

[r2 + (¯r2=Bz sin(2µ))2]
1=2
: (3.3)

For a 1 eV electron at r = 1 cm, Bz = 40 G and ¯ = 0:1 G/cm, ~vcurv = 16 cm/s. This is

small compared to the other velocities in the system.

3.1.2 Qualitative Discussion

With transport present, the plasma's density and shape change with time. If the

characteristic transport time is greater than the other time scales in the system, then we

can imagine that the plasma exists in a quasi-equilibrium state at any instant in time. It is

the shape of the quasi-equilibrium plasma that we are interested in. The relevant parameter

is the product of the ~E £ ~B rotation frequency, !E , and the bounce time, tb = L=vz.

The quadrupole ¯eld has four-fold symmetry and so if !Etb = ¼=2, that is if an

electron rotates 90± about the trap axis as it travels the length of the trap, then the electron

is in resonance with the quadrupole ¯eld. If !Etb À ¼=2, the electron is above resonance.

If !Etb ¿ ¼=2, the electron is below resonance. The importance of the resonant electrons

becomes clearer when I discuss transport in Chapter 4.

The value of !Etb is not the same for all electrons, however. In general, the density

of the plasma is not constant and so !E is a function of r. Also, there is a distribution

of bounce times because of the thermal spread in velocities. The net result is that there

is some spread in the values of !Etb about some mean value !Etb. If !Etb ¿ 1 (below

resonance), then the plasma is spinning slowly; the electrons follow the magnetic ¯eld lines

and the plasma has the shape shown in Figure 3.1. The plasma's cross section is circular

in the center and elliptical at each end, but with the ellipses rotated by 90± with respect

to one another. At any z, the major and minor axes of the elliptical cross section are

oriented along the x̂ and ŷ directions. If !Etb À 1 (above resonance), then the plasma is

spinning relatively quickly and assumes the shape of a cylinder, as shown in Figure 3.2. The
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Figure 3.1: A slowly rotating plasma is elliptical.

Figure 3.2: A quickly rotating plasma is cylindrical.
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rapid rotation smears out any structure in the plasma. The electrons continue to follow the

magnetic ¯eld lines, but the radial oscillations average out. Equations 4.16 and the resulting

Poincar¶e section in Figure 4.4 con¯rm these expectations for !Etb ¿ 1 and !Etb À 1.

A circular ¯lament produces an elliptical plasma because individual electrons fol-

low elliptical trajectories. Consider individual electrons that leave the ¯lament. A Poincar¶e

section in the x-y plane would show that an electron that leaves the ¯lament from a point on

the circumference at 12:00 o'clock or 6:00 o'clock traces out a small ellipse shown in Figure

3.3. An electron that leaves the ¯lament from a point on the circumference at 3:00 o'clock

E lectron T rajectory

E lectron T rajectory

F ilam en t

Figure 3.3: Even though a circular ¯lament emits electrons, each electron follows an elliptical
trajectory. The plasma therefore has an elliptical shape.

or 9:00 o'clock traces out a large ellipse as in Figure 3.3. Since the overall shape of the

plasma is determined by the net motion of all electrons, the plasma has an elliptical shape

at its ends.

There are two observations we make about the below resonance plasma that we

can measure directly in experiments. First, the stronger the quadrupole ¯eld, the more

elliptical the ends of the plasma are. Second, if we consider a ¯xed quadrupole ¯eld but

successively longer plasmas, the plasma is more elliptical at the ends.
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3.1.3 ² and µp from Images

Quantitative measures of the plasma's shape are the ellipticity, ², and angle of an

image of the plasma, µp. Ellipticity is the RMS length of the plasma cross section divided

by the RMS width and is always greater than or equal to 1 by convention. The angle,

µp, is the angle that the major axis of the ellipse makes with the x axis. For a plasma of

uniform density whose perimeter is described by (x=a)2 + (y=b)2 = 1, the ellipticity is a=b

and µp = 0.

Even though the plasma may have a nontrivial three dimensional shape, when we

image it the electrons follow the ¯eld lines on their way out of the trap. The image we record

corresponds to the shape of the plasma at the end of the trap nearest to the phosphor. We

con¯rm this by comparing the image of a long plasma with the image of the same plasma

but in which only the end is dumped. The images are the same.

We measure the ellipticity and angle by calculating various moments of a plasma

image. An image measures the two dimensional density distribution n(x; y). Figure 3.4

shows a typical plasma image with an applied quadrupole ¯eld. We calculate the moments,

Figure 3.4: For the plasma in this image, Bz = 400 G , ¯ = 1 G=cm, µp ¼ µo = 45±.

Mxx =

Z
x2 n d2~x

Myy =

Z
y2 n d2~x
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Mxy =

Z
xy n d2~x: (3.4)

As the image is recorded on a CCD array on which the pixels are arranged in a cartesian

grid, the moments in equation 3.4 are the natural moments to compute. However, we also

de¯ne,

Ms =

Z
r2 sin(2µ)n d2~x

Mc =

Z
r2 cos(2µ)n d2~x

Mr =

Z
r2 n d2~x: (3.5)

These polar and cartesian moments are related by,

Mr = Mxx +Myy

Ms = 2Mxy

Mc = Mxx ¡Myy: (3.6)

We ¯rst use these equations to ¯nd the orientation of the ellipse, µp. Suppose

the distribution, n(x; y), describes an ellipse with its major axis pointing along the x0 axis

which makes an angle, µp, with the x axis. Then Ms0 = 0 by de¯nition. So we write,

Ms0 =

Z
r2 sin(2µ ¡ 2µp)n d2~x = 0: (3.7)

Simplifying the sin function gives,

¡ sin(2µp)Mc + cos(2µp)Ms = 0: (3.8)

We now solve for the orientation angle of the ellipse in terms of the measured moments of

the imaged distribution.

tan(2µp) =
2Mxy

Mxx ¡Myy
(3.9)

Note that we can express equation 3.9 in the following alternate forms that are useful below,

cos(2µp) =
Mxx ¡Myyq

(Mxx ¡Myy)2 + 4M2
xy

sin(2µp) =
2Mxyq

(Mxx ¡Myy)2 + 4M2
xy

: (3.10)
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Now we proceed to compute the ellipticity, ². Since ² is the ratio of the RMS major

axis to the RMS minor axis,

² =

s
Mx0x0

My0y0
=

s
Mr0 +Mc0

Mr0 ¡Mc0
: (3.11)

To write this in terms of the directly measured moments, Mxx, Myy and Mxy, we ¯rst note

that Mr0 =Mr. Then, we reexpress Mc0 in terms of the other moments.

Mc0 = cos(2µp)Mc + sin(2µp)Ms

= cos(2µp)(Mxx ¡Myy) + sin(2µp)2Mxy

=
(Mxx ¡Myy)

2q
(Mxx ¡Myy)2 + 4M2

xy

+
4M2

xyq
(Mxx ¡Myy)2 + 4M2

xy

=
q
(Mxx ¡Myy)2 + 4M2

xy; (3.12)

where we have used equation 3.10. We ¯nally write ² as,

² =

vuuutMxx +Myy +
q
(Mxx ¡Myy)2 + 4M2

xy

Mxx +Myy ¡
q
(Mxx ¡Myy)2 + 4M2

xy

: (3.13)

This is the formula that we use to calculate ² from the images.

3.1.4 ² and µp from Wall Sectors

Our second measure of the shape of the plasma is the signal induced on the wall

of the trap as measured by four sectors of 90± azimuthal extent each as in Figure 3.5.

Since we are only interested in elliptical distortions of the plasma, we want a signal that

is insensitive to ` = 1 modes. The signal that we use to measure the quadrupole moment

is the combination VQ = (V1 + V3) ¡ (V2 + V4), where Vi are the voltages induced on the
wall sectors. If the elliptical plasma is oriented along the x axis or the y axis, we measure

a signal of one sign or the other. An elliptical plasma with µp = 45
± creates no signal. A

circular plasma creates no signal. For small ellipticities, where ² ¼ 1+ ±, VQ is proportional
to ±.

The signal VQ measures the z averaged shape of the plasma at the axial location

of the 5:14 cm long four-sectored gate. By choosing di®erent gates as the inject gate and

dump gate, we place this four-sectored gate at various axial locations in the plasma and

we learn about the z dependence of the plasma shape. This technique is most useful once
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Figure 3.5: By measuring the signal VQ = (V1+V3)¡ (V2+V4), we can determine the shape
of the plasma. An elliptical plasma oriented in the x̂ or ŷ direction produces a signal of one
sign or the other. A plasma oriented at 45± or a circular plasma produces no signal.

images of the plasma establish that the plasma is oriented along the x̂ or ŷ directions, and

not at some intermediate angle. At present, there is no good calibration between the wall

signal VQ and the CCD camera image measurement of ².

3.2 Experiment, Data and Analysis

The experiments performed to measure the shape of the plasma are: imaging

the plasma to measure ² and µp as functions of !Etb, using the wall sector technique

to measure the ellipticity of the plasma at three axial locations within the plasma z =

f¡5 cm; 0 cm; 5 cmg as a function of ¯, and measuring the ellipticity at the end of a plasma
as the length of the trapped plasma, L, increases at ¯xed ¯.

3.2.1 ² and µp from Images

There are two subtleties we must address before presenting the data. First, the

plasma continues to rotate as it leaves the trap, and this means that the image may not

correspond exactly to the trapped plasma's shape. The image may appear over-rotated.

Second, the electric ¯elds used to accelerate the electrons for imaging may cause distortion

of the image. Note that this rotation is more severe at low Bz, where we expect the plasma
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to be cylindrical. Therefore, this e®ect should not be too important. The radial compression

does not a®ect the measurement of ² or µp. The extra rotation of the image may confuse

the interpretation of the µp data however. In fact, we have no reliable way to separate the

image rotation from the imaging ¯elds from any actual rotation of the plasma.

The results shown in Figure 3.6 are for a 28 cm long plasma. We hold the plasma

for 80 ms at 1000 G and scale the hold time as B2z . The plasma changes from elliptical at

small !Etb (large Bz) to cylindrical at large !Etb (small Bz). The angle of orientation µp

changes from µo at large !Etb to µo + 90
± at low !Etb. This rotation is likely due to the

e®ects of the radial component of the imaging ¯eld. However, at large Bz, the rotation from

the imaging ¯elds is small and µp = ¡45±, the same as the angle of the applied quadrupole
¯eld here. The value of ²¡ 1 at a given Bz is proportional to the perturbation strength, ¯,
as expected.

Figure 3.6: Varying Bz changes !E and thus !etb. ²(Bz) shows the expected behavior; the
plasma is circular at low Bz and elliptical at high Bz and ² ¡ 1 is proportional to ¯. The
change in µp(Bz) is likely due to imaging ¯elds. At large Bz, µp ¼ µo.
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3.2.2 ² and µp from Wall Sectors

To measure ² and µp from the wall sectors, we ¯rst ¯ne tune the capacitance to

ground and resistance to ground of the wall sectors. Even though the four sectors are

identical as far as the plasma is concerned, each sector has its own connecting wires and

thus its own capacitance and resistance to ground. We add variable capacitors and resistors

and adjust their values so that a symmetric test signal gives no output signal, VQ. The test

signal is capacitively coupled so that it mimics the presence of a plasma in the trap. Figure

3.7 shows the circuit we use to tune the capacitance and resistance.

Figure 3.7: We connect the top and bottom sectors to Input A and the left and right sectors
to Input B. We adjust the capacitance and the resistance until a test signal applied to both
Test A and Test B simultaneously gives no output signal VQ = (V1+V3)¡(V2+V4). We use
an INA-103 instrumentation ampli¯er to generate the signal VQ and an OP-37 to generate
the total signal VTotal = V1 + V2 + V3 + V4.

If we choose the four-sectored gate to be the ¯rst gate after the inject gate, then

we are measuring ² at the end of the plasma. Given the arrangement of the gates inside

the machine, possible plasma lengths are approximately 19, 11, 7 and 3 cm when the
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four-sectored gate is at the end. Figure 3.8 shows that ² ¡ 1 at the end of the plasma is

Figure 3.8: The ellipticity at the end of a plasma measured by VQ is proportional to the
length of the trapped plasma.

proportional to L when ¯ is ¯xed. Because of the short length of some of the plasmas used

in this measurement, they are below resonance plasmas. For the shorter lengths used, above

resonance plasmas are not accessible in the machine and so we make no measurement. We

would expect a regime where ² ¼ 1, independent of L.
By varying the angle, µo, of the applied quadrupole, the signal should change

sinusoidally. The data in Figure 3.9 con¯rm this. Camera images also show that µp follows

the angle of the applied quadrupole.

As described above, we choose di®erent inject and dump gates so that the four-

sectored gate is at the z location we want. One drawback of this method is that we cannot

do this for full length plasmas. And it is only for full length plasmas that we can have above

resonance plasmas. Therefore, we cannot test the axial invariance of the above resonance

plasma's shape. Thus, we only measure ² versus z in the below resonance regime. Note
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Figure 3.9: Varying the angle of the applied quadrupole ¯eld rotates the plasma and reduces
the measured signal on the four-sectored gate. The two data sets refer to two separate
features of the oscilloscope trace used to measure the e®ect. The solid line is a least squares
¯t to a cos[2¼(µ ¡ µo)=b] giving a = ¡251 mV, µo = 4:6±, and b = 194±. These compare
favorably with the expected values of µo = 0 and b = 180

±.

that the z = 0 measurement is made on a longer plasma (15.4 cm) than the measurements

made at the ends of the plasma (§10.3 cm). This is by necessity of the gate arrangement.
Figure 3.10 shows that, as expected, ² ¡ 1 is equal and opposite at §zo, is 0 at z = 0 and
proportional to ¯.

3.3 Summary

These experiments give us an understanding of the most obvious e®ects of the

quadrupole ¯eld, the e®ect of the quadrupole ¯eld on the shape of the plasma. The pre-

viously uniform axial ¯eld, Bz ẑ, now has the shape described by equation 2.13 when we

apply the quadrupole ¯eld. The °ux tubes become twisted bowties.
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Figure 3.10: Placing the pickup gate at di®erent axial positions allows us to measure the
relative ellipticity at the left, middle, and right of the plasma. We see that VQ = 0 in the
center of the plasma, while VQ is equal and opposite at the ends of the plasma.

Measurements with both the CCD camera and the wall sectors show that when

!Etb À 1 (above resonance), the rotation of the plasma column is fast compared to the

bounce motion and the plasma is cylindrical. The radial oscillations of the electrons average

out. When !Etb ¿ 1 (below resonance), the plasma rotates slowly and assumes the shape

of the magnetic ¯eld lines.

The below resonance plasma has all the properties we expect of a plasma that has

the same shape as a magnetic °ux tube. At the center of the plasma, the plasma's cross

section is circular. The ellipticity is equal and opposite at each end of the plasma and this

ellipticity is proportional to the length of the plasma and to the quadrupole ¯eld strength.

The angle of orientation of the plasma is the same as the angle of the applied quadrupole

¯eld. We attribute the rotation of the plasma images at low Bz to the e®ects of the imaging

electric ¯eld.
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Chapter 4

Transport

4.1 Theory

The addition of the quadrupole ¯eld causes the trajectories of individual electrons'

guiding centers to have radial components. Within a simpli¯ed model, we can ¯nd these

trajectories analytically. Small collisions, however, can knock electrons from one trajectory

to another. Therefore, we envision the e®ect of the quadrupole ¯eld to be a di®usion process.

We use the analytical trajectories to ¯nd an estimate of the step size, ¸, we postulate a

collision frequency, º, and form a di®usion coe±cient, D = ¸2ºf , where f is the fraction of

electrons participating in the di®usion.

4.1.1 Qualitative Discussion

We can guess what the trajectories look like by considering a few examples of

speci¯c electrons. Consider the resonant electron in Figure 4.1 that starts at 45± below the

x axis and that rotates about the trap axis by 90± during the time it takes to travel the

length of the trap. This electron is on ¯eld lines with radial components directed radially

outwards and thus the electron moves to a larger radial position than it started at. Now

consider the return trip back across the length of the trap. Again, the electron is on ¯eld

lines with radial components directed outwards. This particular electron, with it's certain

initial angle, and it's certain value of !Etb, is on a trajectory that takes it ever outwards. If

the resonant electron with !Etb = ¼=2 begins at 45
± above the x axis instead of 45± below,

the same argument shows that the electron moves ever inwards. If this electron begins at
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Figure 4.1: An electron that begins 45± below the x axis and rotates by 90± as it travels
the length of the trap is resonant and moves ever outwards.

µ = 0, then as it travels across the length of the trap, it moves outwards during the ¯rst

half of the traversal and inwards during the second half. The result is that there is no net

radial displacement. Depending on the initial angle, the resonant electron may move either

outwards or inwards.

If the electron does not exactly meet the resonance condition !Etb = ¼=2, then as

it travels across the length of the trap it will always see ¯eld lines with radial components

directed both outwards and inwards. The result of this motion is a reduction in the radial

excursion as compared to the resonant electron. If o® resonance, the electron experiences

radial oscillations. If the electron is too far above resonance, then in one traversal of the

trap the radial excursions average out over µ. If the electron is too far below resonance, it

simply bounces back and forth along a ¯eld line. And even though this ¯eld line may take

the electron from a small radius at one end to a large radius on the other end, the radial

excursion averages out over z.

There are higher order resonances as well. If the electron has !Etb = N¼=2, where

N is an odd integer, then the electron that begins 45± below the x axis sees ¯eld lines with

a net radial component as it travels across the length of the trap. If N is even, the outwards

motion and inwards motion cancel out. As with the primary resonance, these higher order

resonances cause the electrons to move either outwards or inwards depending on the initial

angle of the electrons.
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4.1.2 Quantitative Discussion

Let us now consider the situation more quantitatively. If the guiding center of an

electron follows a magnetic ¯eld line, then

1

vz

dr

dt
=
Br
Bz
: (4.1)

The radial magnetic ¯eld is from the expression for the quadrupole ¯eld in polar coordinates,

~BQuadrupole = ¯r[cos(2µ)r̂ ¡ sin(2µ)µ̂]: (4.2)

Substituting the expression for Br into equation 4.1 we obtain,

dr

dt
= vz

¯r cos
³
2µ(t)

´
Bz

: (4.3)

We integrate this expression to solve for ln r.

ln r =
vz¯

Bz

Z
cos
³
2µ(t)

´
dt: (4.4)

Exponentiating gives,

r = R exp

∙
vz¯

Bz

Z t

0
cos
³
2µ(t0)

´
dt0
¸
; (4.5)

where R is the electron's initial radius and µ(t) = µo+!Et. Hereafter, we drop the subscript

E from !E because we wish to give ! other subscripts.

For the N th order resonance, ! = (N¼=2)(vz=L). We denote these resonant fre-

quencies by !N , and de¯ne the departure from resonance, ¢!N , for those electrons that do

not exactly meet the resonance condition via,

µ(t) = µo + (!N +¢!N)t: (4.6)

Then,

r = R exp

∙
vz¯

Bz

Z t

0
cos
³
2µo + 2(!N +¢!N)t

0´dt0¸: (4.7)

We assume that ¢!N ¿ !N and average over the fast oscillation of frequency !N . Although

it is not obvious, this averaging removes the complication associated with vz changing

sign after an electron bounces from the end of the trap. Let I(t) =
R t
0 cos

³
2µo + 2(!N +

¢!N )t
0
´
dt0. Then note that !N t is ÁN , the angle of rotation for the N th resonance. So,

hI(t)i =
2

N¼

Z t

0

Z N¼
2

0
cos
³
2µo + 2ÁN + 2¢!N t

0´dÁN dt0
=

1

N¼

Z t

0

h
sin(2µo + 2¢!N t

0 +N¼)¡ sin(2µo + 2¢!N t0)
i
dt0

=
1

N¼

Z t

0
¡2 sin(2µo + 2¢!N t0)dt0; (4.8)
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where N is odd. Evaluating the t0 integral yields,

hI(t)i = 1

N¼¢!N

∙
cos(2µo + 2¢!N t)¡ cos(2µo)

¸
: (4.9)

Using this in equation 4.7 gives,

r = R exp

∙ jvzj¯
BzN¼

cos(2µo + 2¢!N t)¡ cos(2µo)
¢!N

¸
: (4.10)

As argued above, the electron with the largest radial excursion is the one with

µo = ¡¼=4. We set µo = ¡¼=4 and assume that the quadrupole ¯eld is weak enough so
that the argument of the exponential is small and we expand the exponential to ¯nd the

step size, ¸N .

¸N = R

∙ jvzj¯
BzN¼

sin(2¢!N t)

¢!N

¸
(4.11)

The electron follows this trajectory until it su®ers a collision, so we substitute 1=º for t. As

long as ¢!N t¿ 1, then

¸N =
2Rjvzj¯
BzN¼º

: (4.12)

Below, we estimate º¡1 to be approximately 15 ¹s. If we choose typical parameters such

as R = 1 cm, vz = 4:2£ 107 cm/s, ¯ = 0:02 G/cm and Bz = 100 G, then ¸1 = 0:04 cm.

To determine the width of the resonance, ¢!N , in ! space we note that equa-

tion 4.10 is an oscillatory function as in Figure 4.2. We choose ¢!N such that t = 1=º

corresponds to the ¯rst maximum of this function. That is, choose ¢!N so that

¢!N =
¼º

4
: (4.13)

This expression means that the extra angle of rotation, ¢ÁN = ¢!N=º, before a collision

should be no greater than ¼=4. Figure 4.2 shows that this choice of ¢!N selects trajectories

that have similar radial excursions to the resonant electron. If we use º¡1 = 15 ¹s, then

¢!1 = 5:2£ 104 rad s¡1.
We construct the di®usion coe±cient by writing, DN = ¸

2
Nºf , where the fraction

of electrons participating in the di®usion is

f =

r
m

2¼kT
exp

Ã
¡v2z
2v2th

!
¢vz; (4.14)

where vth =
p
kT=m and ¢vz is the width of the resonance in velocity space. Since

!N = (N¼=2)(vz=L), we can write ¢!N=!N = ¢vz=vz, or ¢vz = Lº=2N . If we use
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Figure 4.2: A plot of equation 4.10. An electron exactly in resonance has an exponential
trajectory. As the electron is further o® resonance, the radial oscillations become smaller in
magnitude and increased in frequency. We choose ¢!N such that trajectory reaches its ¯rst
maximum at 1=º. In this Figure, ¯ = 0:02 G/cm, Bz = 200 G, L = 28 cm, ! = 4:5£105 rad
s¡1.

vz = vth = 4:2 £ 107 cm/s, L = 28 cm and º¡1 = 15 ¹s, then ¢vz = 9:3 £ 105 cm/s and
f = 5:4£ 10¡3.

Up until this point, we have considered an electron with a given velocity, vz,

and determined the resonant angular frequency !N in terms of vz. In our experiment, we

calculate ! from n(r) and we only have knowledge of the average velocity vth. Therefore, it

is more natural to write vN = 2!L=N¼ and substitute this formula for vN for jvzj to write
di®usion as a function of !. Putting this all together gives,

DN =

µ
4R!L¯

BzN2¼2º

¶2
º

r
m

2¼kT
exp

Ã
¡ !2

2!2th

!
Lº

2N
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=
8R2!2L3¯2

B2zN
5¼4

r
m

2¼kT
exp

Ã
¡ !2

2!2th

!
; (4.15)

where !th ´ N¼vth=2L.
We plot D1(!) in Figure 4.3. We may describe the resonant behavior of D(!)

qualitatively. At large !, the plasma is rotating relatively quickly, and so for an electron to

be resonant it must have a relatively large vz. But the Maxwellian distribution ensures that

there are few electrons moving very fast. The di®usion is suppressed. At small !, there

are plenty of resonant electrons in the thermal distribution, but now the step size is small.

Again, di®usion is suppressed. Summing over odd N gives the total di®usion we expect

Figure 4.3: The resonance is clearly shown in this graph of D1(!). Here, Bz = 100 G,
L = 28:2 cm, r = 0:95 cm, ¯ = 0:02 G/cm, and kT = 0:25 eV.

from this model. Several features are noteworthy.

That the collision frequency, º, canceled out of our calculation is characteristic

of di®usion in the so called \plateau" regime. In this regime, there are frequent collisions

and di®usion typically scales like ±2, where ± is the perturbation strength. In the so called



56

\banana" regime, there are infrequent collisions and di®usion scales like ±1=2º where the

collision frequency appears explicitly. The 90± collision time, º¡190 , is approximately 3 ms

in our system if we use the Spitzer formula for º90. But using º90 grossly underestimates

º because a change in angle of much less than 90± will knock an electron o® of resonance.

The ratio ¢v90=v ¼ 1 for a 90± collision, but ¢v=v = ¼º=4! de¯nes a collision in our case.
Collisions are a random walk process, so the mean squared excursion in velocity space is

proportional to time, thus ¢v290=¢v
2 = º=º90. Solving for º, yields º = (16!2º90=¼

2)1=3.

For ! = 106 rad s¡1, º¡1 ¼ 15 ¹s, which is short enough to ensure that we are in a

collisional regime for all axial ¯elds accessible in our experiment. It is appropriate to work

in the plateau regime.

Because of the N¡5 dependence, D is well approximated by D1. The function

D1(!) has a maximum at !res =
p
2!th. Therefore, the height of the peak scales like

!2 exp(¡!2=2!2th)jp2!res / !2th. This makes the overall L scaling of the peak L
3!2th / L,

and the overall kT scaling !2th=
p
kT / pkT .

Let us further consider the scalings predicted by the expression for D. When

the argument of the exponential is small, the exponential term is close to unity. The

argument will be small if !=!th ¿ 1 and the plasma is below resonance. In this regime,

D / (¯R!=Bz)
2L3. To compare this scaling to the scalings of other models, we imagine

two circumstances. First, imagine that only Bz and L may vary; the electric ¯eld is ¯xed

and ! / 1=Bz and D scales like L3=B4z , in contrast to the usual L
2=B2z that is attributed

to resonant particle transport [15]. Second, imagine further that ¯=Bz is constant as well,

as would be the case if the quadrupole ¯eld perturbation came from asymmetries in the

solenoidal magnet; the scaling is L3=B2z , which is also di®erent than the usual L
2=B2z scaling.

The L2=B2z scaling comes from considering the di®usion to be a bounce resonant

e®ect. We expect that for a bounce resonant e®ect !E and tb should enter in the combination

!Etb / L=Bz and since [D] = m2=s it must be L2=B2z . However, this argument makes no
reference to any speci¯c mechanism. In our model, the extra power of L that makes the

overall dependence L3 comes from f (see equation 4.14), since ¢vz / L.
There are many simplifying assumptions in our model. Assumptions that we can

justify are the constancy of vz and the neglect of the quadrupole ¯eld's contribution to

!. Conservation of energy dictates that vz = dz=dt varies with radius. Also, the equation

for dµ=dt contains a term from the azimuthal component of the quadrupole ¯eld. For a
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constant density plasma, the full set of equations for r, µ and z is,

dr

dt
=

s
2E

m
+
!2p
2
r2
¯r cos

³
2µ(t)

´
Bz

dµ

dt
= !E ¡

s
2E

m
+
!2p
2
r2
¯ sin

³
2µ(t)

´
Bz

dz

dt
=

s
2E

m
+
!2p
2
r2; (4.16)

where E = 1
2mv

2
z¡eÁ and Á = m!2pr2=4e is the potential of a constant density plasma. This

set of coupled di®erential equations describes the motion of the electron's guiding center if

we include a change in sign for the square roots each time the electron reaches the end of

the plasma. We ¯nd, numerically, that µ(t) is not greatly modi¯ed from µ(t) = µo+!Et by

the quadrupole ¯eld.

In our qualitative picture of resonant particles, the resonant electrons are lost to the

wall quickly. By adding energy conservation, the resonant electrons become nonresonant as

they move radially outwards. The result is that the electron undergoes a radial oscillation.

We solve the set of coupled di®erential equations numerically and create a Poincar¶e section

at the end of the plasma. We keep the parameters E, !p, ¯ and Bz ¯xed and only vary the

initial conditions r(0) and µ(0).

The Poincar¶e section in Figure 4.4 shows the three di®erent types of particle orbits:

above resonance, resonant, and below resonance. By keeping E ¯xed, the electrons at small

radii have small vz, implying that !Etb À 1. At large radii, the electrons have a large vz,

implying that !Etb ¿ 1. The shape of the orbits at small radii are nearly circular while

the orbits at large radii are elliptical. For intermediate radii, where the electrons have axial

velocities such that !Etb ¼ ¼=2 the trajectories become banana shaped islands.
Figure 4.5 compares equation 4.10 with a numerical solution of equation 4.7 and

the full set of coupled di®erential equations in equation 4.16 for a set of realistic parameters.

We ¯nd that the averaging over the fast oscillations is valid. Moreover, for times less than

» º¡1, our model is a fair approximation of the full set of coupled di®erential equations.

The latter conclusion is somewhat weaker at larger ¯=Bz, r(0) or n, where our model might

only be a fair approximation of the full set of di®erential equations for times less than

» 1
3º
¡1.

Aside from assuming that vz and ! are constant, what are other limitations of our

model? The axial and radial variations of the plasma density and temperature complicate
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Figure 4.4: Poincar¶e sections showing electrons with constant E. Bz = 40 G, ¯ = 0:1 G/cm,
L = 28 cm, and n = 106 cm¡3 here. At small radii, we have !Etb À 1 and the orbits
are nearly circular. At large radii, we have !Etb ¿ 1 and the orbits are elliptical. For
!Etb ¼ ¼=2 we have the islands. Not visible are smaller islands corresponding to the higher
order resonances at still smaller radii.
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Figure 4.5: A comparison of the numerical solution and the averaged, analytic, solution for
µo = ¡45± shows that averaging is e®ective. Bz = 200 G, ¯ = 0:02 G/cm, L = 28 cm,
n = 106 cm¡3 and vz is such that this is a resonant electron.

things. A plasma with nonuniform density will not have a constant !E . If there is a

temperature gradient, then tb will vary. Moreover, the e®ective length of the plasma changes

with temperature and density. If we are not in a collisional regime, then we are in a banana

regime and the derivation of D we present here is no longer valid. There are other transport

processes present that try to °atten out the density distribution once the quadrupole ¯eld

creates density gradients and it may be that the interaction of the two e®ects produces

transport that is di®erent from what we predict. Mobility or other nondi®usive processes

which would interfere with di®usion measurements could be present.
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4.2 Experiment

4.2.1 Measuring Di®usion

Our tool for measuring D is the CCD camera. For the small ¯ used in the di®usion

experiments, even below resonance plasmas are nearly cylindrical. Imaging these plasmas

gives n(r; µ; t) where there is practically no µ dependence. Therefore, we average over µ in

the subsequent analysis and treat the camera images as measurements of n(r; t).

To measure D from n(r; t), we begin by considering the continuity equation,

@n

@t
= ¡~r ¢ ~¡; (4.17)

where ~¡ is the °ux of electrons. We multiply both sides of equation 4.17 by 2¼r and integrate

from r = 0 to some arbitrary radius r = R and make the identi¯cation

N(t) =

Z R

0
n(r; t) 2¼r dr (4.18)

as the number per unit length within the radius R. We get,

dN

dt
= ¡2¼R¡r(R): (4.19)

Thus,

¡r = ¡dN=dt
2¼R

: (4.20)

To measure D, we must make some assumption about the form of ¡. The simplest assump-

tion is Fick's Law, where ~¡ = ¡D~rn. This gives

D =
dN=dt

2¼R dn=drjr=R : (4.21)

We created LabVIEW routines to automate the data collection process. The

outline of the data acquisition process is as follows:

1. Choose R. We ¯nd that setting R = 120 pixels = 0:952 cm is a good choice for all

data sets as dn=dr is appreciable at this radius. If dn=dr is too small, division by

dn=dr becomes problematic.

2. Set an axial ¯eld, Bz.

3. Determine the maximum hold time tmax for N(t). We wish to capture enough of the

evolution of N(t) to accurately measure dN=dt. Since we ¯nd that most plasmas are

similar initially, regardless of Bz, we search for tmax where n(R) = 2:5 £ 106 cm¡3.
We ¯nd that this works well.
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4. Scan ~B? to set the optimal ~B?. As detailed below in Section 4.2.2, we choose ~B? to

maximize the total charge in the plasma, Q, at some late time.

5. Scan quadrupole ¯eld to ¯nd neighborhood in ¯1-¯2 space (see equation 2.8) in which

to take data. We vary ¯1 and ¯2 to maximize Q at some late time.

6. Set ¯ and µo and image plasmas held for 36 times between 4 ¹s and tmax. 36 images is a

compromise between wanting accurate dN=dt measurements and wanting experiments

of manageable duration.

7. Repeat step 6 for as many ¯ and µo as necessary to cover a neighborhood near the

optimal quadrupole ¯eld.

8. Repeat steps 2-7 for as many Bz as necessary.

4.2.2 Optimal ~B?, ¯ and µo

Before we can measure the e®ect of the quadrupole ¯eld, we must ¯rst make sure

there is no dipole e®ect and no naturally occurring quadrupole e®ect. Since the dipole

and quadrupole magnets can have both dipole and quadrupole components, tuning is an

iterative process, but one that converges rapidly. Let us begin by assuming there is no

quadrupole ¯eld and focus on the dipole ¯eld.

There are many techniques for determining the correct ~B? to apply to cancel the

perpendicular component of the Earth's ¯eld and any dipole ¯eld from the misalignment of

the machine with the solenoid. The three techniques that we used were: minimizing RMS

radius growth, minimizing di®usion, and maximizing total charge remaining at some ¯xed

late time.

Minimizing RMS radius growth seemed like a good method, but it turns out that

at small Bz the plasma radius decreases with time as charge is lost to the wall. The plasma

is eaten away from the outside.

Since we are ultimately measuring di®usion, it makes sense to tune ~B? so that we

minimize di®usion. This technique is time consuming, however. Moreover, the optimal ~B?
was not always well de¯ned in ~B? space.

The total charge technique involves holding the plasma for a ¯xed time (until

there is approximately half of the total charge left) and varying ~B? until this charge is

maximized. This technique depends on there being little variation in the total charge at
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t = 0 as a function of ~B?, and we ¯nd that this is true. This technique agrees with the

di®usion technique in the range where they can both be used, but is much faster. This gives

us con¯dence that the total charge technique is valid for all Bz. Figure 4.6 is a contour plot

showing the total charge remaining as a function of Bx and By. We can clearly identify the

optimal ~B? from these data to within 10 mG.

Figure 4.6: We choose B? by maximizing the total charge, Q, remaining at some late time
as a function of the perpendicular magnetic ¯eld. The contour labels refer to millions of
electrons. Here, Bz = 100 G.

Figure 4.7 shows the optimal values of ~B? as a function of Bz for the values of

Bz used in the subsequent transport measurements. Extrapolating to Bz = 0, ~B? is the

perpendicular component of the Earth's magnetic ¯eld. The steering ¯elds are linear in

Bz since they correct for the ¯elds from the main magnet. Because ~B? may compensate

for some mechanical misalignments aside from the magnetic ¯eld, these data may change
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Figure 4.7: The optimal B? is linear in the applied axial ¯eld and the values at Bz = 0 give
the Earth's magnetic ¯eld.

depending on the temperature of the system as thermal expansion changes the alignment

of the gates.

Once we have established ~B?, we then use the same technique with ¯1 and ¯2 to

determine the optimal quadrupole ¯eld to apply to cancel out any naturally quadrupole

¯eld. Since an o® center quadrupole ¯eld creates a dipole ¯eld, we repeat the process for

dipole tuning. We ¯nd that quadrupole ¯elds less than 0:1 G/cm create dipole ¯elds of less

than » 30 mG.

4.3 Data and Analysis

To measure transport as a function of !Etb, we must vary !Etb. To vary !E we

can look at a di®erent radius if !E is not constant, change the density, or change Bz. To
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vary tb, we can change kT or L. I discussed the methods of and di±culties with these

techniques in Section 2.1.

We analyze the data as follows:

1. We convert the image of the plasma from cartesian coordinates to polar coordinates

and average over µ to ¯nd n(r; t).

2. A Poisson solver uses the radial pro¯le to ¯nd the potential, Á(r; t), the corresponding

electric ¯eld, Er(r; t) = ¡@Á(r; t)=@r, and rotation frequency, !E(r; t) = Er(r; t)=Bzr.

3. We compute N(R; t) from n(r; t).

4. We calculate dN=dt and dn=dr.

5. We choose ! and ¯nd the corresponding t from !E(t). We interpolate dn=dr and

dN=dt to ¯nd these quantities at t.

6. We calculate D as in equation 4.21 for each quadrupole ¯eld applied.

7. We ¯nd the minimum of the resulting \di®usion bowl" in ¯1-¯2 space and compute

the average di®usion at some distance from this minimum since we assume that the

e®ect of the quadrupole ¯eld is independent of µo.

4.3.1 Di®usion Measurement Example

We begin with an axial ¯eld of 100 G and a plasma con¯ned between gates sep-

arated by L = 34:02 cm. The measured temperature is about 1:6 eV. We choose a radius

of 0:95 cm so that we are in the region of n(r) where the slope is appreciable. The initial

rotation frequency, !(r = 0:95; t = 0) is about 4:0 £ 106 rad s¡1. After 400 ms, the total
amount of plasma has decreased signi¯cantly, and !(r = 0:95; t = 400) = 8:0£ 105 rad s¡1.
We accumulate n(r; t) for a series of perturbations.

We measure the slope dn=dr from a single image, n(r; t0) at R = 0:95 cm by

¯tting a parabola to a small portion of n(r). For the radial pro¯le in Figure 4.8, the slope

is ¡1:744 § 0:009 £ 106 cm¡4 at R = 0:95 cm, where the error is from the uncertainty in

the coe±cients of the ¯t. We calculate N(R; t) and then we compute dN=dt by ¯tting a

parabola to a local region of N(t). For the data in Figure 4.9, the slope at t = 195 ms (the

time that Figure 4.8 corresponds to) is 2:029 § 0:006 £ 107 cm¡1s¡1. The choice of t at
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Figure 4.8: We use the azimuthally averaged radial pro¯le to calculate the slope dn=dr.
The plasma extends to the wall at r = 1:905 cm. We ¯t a parabola to a region that is
0.22 cm wide in order to capture as many points as possible while ensuring that a parabola
is a good approximation of n(r).
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Figure 4.9: The charge per unit length within a radius r = R decreases as a function of time
because of transport processes occurring within the plasma. We use these data to measure
dN=dt. We ¯t a parabola to the largest number of data points possible such that the total
mean squared error is less than a threshold value. In this Figure, all data, except the point
at t = 0, are included in the ¯t.
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which to measure D is arbitrary since we do not expect transport to have an explicit time

dependence. We choose t by some auxiliary condition, for example to have n(R) or !(R)

be constant across a data set. The choice t = 195 ms here corresponds to ! = 2:0 £ 106
rad s¡1. Then we calculate D; for the data in Figures 4.8 and 4.9, D = 1:95§ 0:02 cm2s¡1.
Note that this technique requires axial and azimuthal invariance because we assume the

camera images give n(r; t), without µ or z dependencies.

Figure 4.10 shows the di®usion as a function of quadrupole ¯eld at ! = 2:0 £
106 rad s¡1. Notice that the minimum di®usion does not occur at zero perturbation. This is

evidence that we are correcting for naturally occurring ¯eld errors by applying a quadrupole

¯eld. For the same data set, the minimum changes as a function of !. The minimum

changes by » 0:010 G/cm over the range of useful !. This is not understood. Perhaps

the quadrupole ¯eld not only compensates for inherent quadrupole perturbations, but also

compensates for con¯nement gate e®ects. As the plasma density decreases over time, the

plasma extends less into the inject and dump gate regions. In any event, we ¯nd values of

D relative to the minimum of the di®usion surface at constant !.

4.3.2 Background Di®usion Processes

For some value of the quadrupole ¯eld, D(¯1; ¯2) has a minimum. But D is not

zero at this minimum because there are other di®usion processes occurring in the plasma in

addition the di®usion caused by the quadrupole ¯eld. To extract the e®ect of the quadrupole

¯eld from the total di®usion, we subtract the di®usion at the minimum from the average

di®usion at some distance from the minimum. We justify this subtraction by noting that

di®usion coe±cients are proportional to the square of the step size, and since uncorrelated

random steps add in quadrature, di®usion coe±cients add linearly. We must therefore

assume that the background di®usion processes are uncorrelated to the quadrupole ¯eld

e®ect.

The vacuum pressure is low enough that we do not expect collisions with neutral

atoms to contribute to di®usion. If there are mechanical misalignments or magnet coil

imperfections, then electrostatic and magnetic ¯eld errors will cause transport. Uninten-

tionally excited plasma modes may lead to di®usion. Similarly, rotational pumping may

cause transport. Collisions between electrons cause transport to help to drive the plasma

towards thermal equilibrium.
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Figure 4.10: Di®usion from the application of a quadrupole ¯eld. This data is taken at
Bz = 100 G and ! = 2:0 £ 106 rad s¡1. We choose values of ¯1 and ¯2 in a checkerboard
pattern and the data (solid dots) show that there is an optimal quadrupole ¯eld and that
di®usion increases away from this optimal value.
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4.3.3 ¯ Dependence

Data like those in Figure 4.10 allow us to verify the ¯2 scaling predicted by the

model. We measure D relative to the minimum of the di®usion surface and Figure 4.11

shows that, over a wide range of parameters, D does scale like ¯2 for small perturbations.

One di®erence between di®usion in the plateau regime and the banana regime is the scaling

with the perturbation strength. For plateau di®usion, the scaling is ¯2, whereas for banana

di®usion the scaling is ¯1=2. So our data is consistent with di®usion in the plateau regime.

Figure 4.11: At several Bz and !, the di®usion is seen to be proportional to ¯
2 as expected,

consistent with plateau di®usion.

4.3.4 ! and Bz Dependencies

Next, we investigate the ! dependence of the phenomenon. After choosing Bz,

the easiest way to vary ! is simply to wait, since n naturally decreases as a function

of time. For example, for the plasma we considered in Section 4.3.1, ! decreased from
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4£106 rad s¡1 to 8:0£105 rad s¡1 in 400 ms. Therefore, we can repeat the measurement of
the \di®usion bowl" at several values of ! for one Bz. We choose a perturbation strength,

¯ = 0:020 G/cm here. We average di®usion at a distance of 0:020 G/cm from the minimum

di®usion over many angles of the quadrupole ¯eld. We estimate the uncertainty from the

standard deviation of these data to be approximately 7%. This uncertainty dominates over

the uncertainty in any one individual measurement of D. Figure 4.12 shows the results.

Figure 4.12: Since ! decreases as a function of time, we can measure D(!) over a range of
! at ¯xed Bz. There is signi¯cant overlap of ! ranges for similar Bz. The di®usion data
show a scaling with B2z and a resonant behavior. Here, ¯ = 0:020 G/cm.

The data show that the quadrupole ¯eld enhances di®usion resonantly in !. This

is the most important feature of the data. As ! increases from 105 rad s¡1 the di®usion

grows. But above ! ¼ 2 £ 106 rad s¡1 the di®usion decreases again. Another observation
is that it is DB2z that we plot on the vertical axis and not simply D. The model has an

explicit B¡2z scaling, and so DB2z is independent of Bz. Since the data for various Bz in

Figure 4.12 overlap, this suggests that this Bz scaling is correct.
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Our formula for D scales like !2 at small ! when the exponential term is near

unity. We test this scaling at small ! by replotting Figure 4.12 on log-log axes in Figure

4.13. The least squares ¯t line to the data with ! < 1:3 £ 106 rad s¡1 gives a slope of
2:05§ 0:09.

Figure 4.13: The same data in Figure 4.12 plotted on log-log axes show that for ! <
1:3£106 rad s¡1, the di®usion scales like !2. We no longer distinguish between the di®erent
Bz used to accumulate the data.

4.3.5 L Dependence

We repeated these measurements for di®erent L. As discussed above, Dmax / L
and !res / L¡1. Figure 4.14 shows the raw data where, for each L, we used several Bz. We
extract !res and Dmax from Figure 4.14 and show the results in Figures 4.15 and 4.16. The

trends are in the right direction, although the exact dependencies are di±cult to obtain

from these data. The Dmax scaling is consistent with L and the !res scaling is consistent

with L¡1.
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Figure 4.14: As we decrease the length, the peak moves to higher ! and the maximum
di®usion decreases. The di®erent curves for each L correspond to di®erent Bz.
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Figure 4.15: The value of !res decreases as L increases. Excluding the shortest plasma, the
data are marginally consistent with a line with slope -1 (solid line).
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Figure 4.16: As L increases, the maximum di®usion increases and is consistent with a line
with slope 1 (solid line).
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4.3.6 kT Dependence and Theory Fit

To test the temperature dependence of the quadrupole induced di®usion, we heated

the plasma for 1 ms by applying noise signals to the wall of the trap after injecting the

plasma. We obtained temperatures of up to 6.5 eV in this fashion. As discussed above

Dmax / kT , and !res /
p
kT . So Dmax should grow and the peak should move to larger

! as we heat the plasma. Figure 4.17 shows that although the resonance moves in the

correct direction, the maximum di®usion decreases as the plasma temperature increases.

This stands in contrast to the predictions of our model.

Figure 4.17: As we heat the plasma, the peak shifts to larger ! while the overall di®usion
decreases. The di®erent curves for each kT correspond to di®erent Bz.

Returning to the data shown in Figure 4.12, we now add a curve representing our

model in Figure 4.18. In principle, there are no free parameters in the model; we either

set or measure ¯, Bz, R, L, kT , and !. Nevertheless, to achieve even moderate agreement

with the model, we must use an overall multiplicative factor of about 0.3, and set kT to
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Figure 4.18: In principle, there are no free parameters in our model. However, a theory
curve ¯ts the data reasonably well only if we use an arti¯cially low temperature of 0.34 eV.
An independent measurement shows the temperature is 1.6 eV.
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be 0:34 eV, in contrast to the measured value of 1:6 § 0:1 eV. Given the crude nature of
our model, we might expect multiplicative factors of order unity. The curve showing the

¯t of the theory to the data contains terms up to N = 10. Adding more terms does not

change the appearance of the curve. This problem with kT is a serious shortcoming of our

model. It might be that o® resonance electrons dominate the transport, that the e®ect of

the quadrupole ¯eld is not a purely di®usive process, or that because ¸ is small there are

¯nite Larmor radius e®ects.

4.3.7 r Dependence

We ¯nd that is di±cult to test the radial dependence of the transport. It seems

as though clean measurements are possible only in a small neighborhood near r ¼ 1 cm.

This trouble comes from the noise in the measurements of dn=dr at extreme radii and the

measurements of dN=dt at large radii. At large and small radii, dn=dr ¼ 0 and is therefore
more sensitive to noise. In fact, for ¯ > 0:1 G/cm, we occasionally observe slightly hollow

radial pro¯les where dn=dr > 0 at small r. Purely di®usive transport cannot create hollow

radial pro¯les. Small dn=dr causes problems since we must divide by dn=dr to compute D.

At large radii, dN=dt ¼ 0. In either case, D / (dN=dt)=(dn=dr) is poorly behaved.

4.3.8 Dipole Di®usion

To be certain that we are really testing the e®ect of quadrupole ¯elds and not just

the e®ect of the dipole component of the quadrupole magnets, we repeat some measurements

but with a dipole perturbation rather than a quadrupole perturbation. We choose B? =

0:020 G to correspond to the quadrupole ¯eld, ¯ = 0:020 G/cm. The results in Figure 4.19

show that the dipole ¯eld has relatively little e®ect. Not only does this assure us that we are

actually measuring the e®ect of the quadrupole ¯eld, but it also tells us that residual dipole

¯elds remaining from imperfect tuning are unlikely to greatly a®ect our measurements.

4.3.9 Flux

It is possible that the discrepancies between our model and our data are due to

our interpretation of the data in terms of di®usion. We do not directly measure D, rather

we measure dN=dt and dn=dr. To calculate D from our data, we assumed that ~¡ = ¡D~rn.
We neglect any contribution to the °ux from a mobility term, ¡¹n~E. If we use the Einstein
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Figure 4.19: We apply a dipole error ¯eld of 20 mG which is comparable to the quadrupole
¯eld of 20 mG/cm and we see that the di®usion is small. We are con¯dent that when we
apply a quadrupole ¯eld we are not simply seeing the e®ect of a dipole component of the
quadrupole magnets. The di®erent curves for both the quadrupole and dipole perturbations
correspond to di®erent Bz.
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relation, ¹ = De=kT , and we use ! = E=Br, we can write the mobility contribution to the

°ux as Dne!Br=kT . The di®usion coe±cient is now

D =
1

2¼R

dN

dt

µ
dn

dr
+
ne!BR

kT

¶¡1
: (4.22)

If we include the mobility term in our analysis of the data and try temperatures between

0.25 eV and 2 eV, we ¯nd that D is reduced by about an order of magnitude while !res does

not change. Therefore, it is not an omitted mobility term that is the root of our problem

with the temperature dependence of our model. It may be that the °ux cannot be simply

written as a di®usive term and a mobility term proportional to ~E.

Since ¡ is closer than D to what we actually measure in our experiment, let us

consider ¡. We measure R and dN=dt, and the °ux is (dN=dt)=2¼R. We need not make

any further assumptions. Figure 4.20 shows ¡ versus ! for the same parameters as in

Figure 4.20: ¡ vs. ! shows the same resonant behavior as D vs. !. However, unlike D, ¡
has no explicit Bz dependence. The di®erent curves correspond to di®erent Bz. L = 28 cm.

Figure 4.12. Just as there is a resonant peak in D(!), there is a resonant peak in ¡(!).
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Notice that °ux does not seem to exhibit an explicit Bz dependence like di®usion does, as

the data from di®erent Bz appear to coincide in Figure 4.20. The °ux increases by » 30%
above the background level near resonance.

Figures 4.21, 4.22 and 4.23 show ¡(!) for shorter plasmas. These data show

that !res increases as L decreases, as we expect for a bounce resonant e®ect. Indeed, !res is

beyond the reach of our machine in Figure 4.23. For the shorter plasmas, there now appears

to be an explicit Bz dependence because the data sets for di®erent Bz do not coincide with

one another.

Figure 4.21: ¡ vs. ! shows the same resonant behavior asD vs. !. However, unlikeD, ¡ has
no explicit Bz dependence. The di®erent curves correspond to di®erent Bz. L = 24:8 cm.

A simple model of the °ux [40] better predicts the location of the maximum °ux,

but exhibits an explicit Bz dependence. The model considers the trajectories given by

equation 4.10 expanded to second order in the argument of the exponential. The model

gives the net radial velocity as the ratio of the µo averaged radial step after two bounces to

twice the bounce time. This radial velocity is then averaged over the thermal distribution.
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Figure 4.22: ¡ vs. ! shows the same resonant behavior as D vs. !. The di®erent curves
correspond to di®erent Bz. Unlike Figures 4.20 and 4.21, the data for di®erent Bz do not
coincide and this suggests an explicit Bz dependence. L = 17:1 cm.
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Figure 4.23: ¡ vs. ! shows only increasing °ux with !. We cannot reach !res for a plasma
this short. As with the 17.1 cm plasma in Figure 4.22, ¡ appears to have an explicit Bz
dependence. The di®erent curves correspond to di®erent Bz. The leftmost curve is for
Bz = 158:11 G. The next curve is for Bz = 100:00 G. The two curves on the right are for
63.23 G and 40.00 G. L = 11:9 cm.
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Multiplying by the density gives the °ux.

In a variation of this model, we ¯nd the electrons' time averaged radial displace-

ment as given by the exact solution of equation 4.10. We divide by the collision time to

¯nd the radial velocity. Multiplying by the density gives the °ux. The °ux given by this

model is orders of magnitude too small to account for the measured values.

4.4 Summary

We have shown that a quadrupole ¯eld applied to a plasma con¯ned in a Malmberg-

Penning trap resonantly enhances transport. Even a small quadrupole ¯eld (0.020 G/cm

compared to an axial ¯eld of 100 G) doubles the di®usion in the system; this is a strong

e®ect, likely to be important even when the plasma is o® resonance.

The di®usion scales like ¯2, suggesting that we are in the plateau regime of trans-

port in which there are frequent collisions. The scaling of !res with L and kT is what one

expects if di®usion from the quadrupole ¯eld is a bounce resonant e®ect. The resonance

condition is !Etb = !EL(kT=m)
¡1=2 = ¼=2 and so by decreasing L or increasing kT , !res

increases. We also ¯nd that the di®usion has an explicit B¡2z dependence.

The ¯ and Bz scalings agree with our simple model of the e®ect, while the L

scaling is consistent with our model. The kT scaling of !res is consistent with our model,

but the scaling of Dmax with temperature that we observe does not agree with the model.

We observe that Dmax decreases as kT increases, while our model predicts the opposite.

Moreover, the magnitude of kT that we must use in our model to obtain even moderate

agreement with the data is signi¯cantly smaller than the measured temperature. The model

best ¯ts the data when we use kT = 0:34 eV while the actual temperature is 1.6 eV.

These di±culties with kT remain unexplained and suggest that we need a better model of

quadrupole induced transport.

The r dependence proves di±cult to test. In principle, we can analyze the camera

images at any r. However, the radial pro¯les are quite °at at small r and so the numerical

di±culty associated with dividing small numbers limits us to a narrow range in the neigh-

borhood of r ¼ 1 cm. The range is too narrow to allow us to draw any conclusions about
the r dependence of D.
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Chapter 5

Conclusions

5.1 Summary

We have applied an axially invariant, transverse quadrupole ¯eld to a pure elec-

tron plasma con¯ned in a Malmberg-Penning trap and observed the e®ects the quadrupole

¯eld has on the shape of the plasma and on transport within the plasma. The quadrupole

¯eld distorts the parallel magnetic ¯eld lines into °ux tubes with elliptical cross sections.

Whether the ~E £ ~B rotation is faster or slower than the bounce time determines the prop-

erties of both the plasma shape and the transport.

If the plasma rotates quickly, we observe the plasma to smear out into a cylinder as

all radial oscillations average out. If the plasma rotates slowly, we observe that the plasma

has the shape of a °ux tube, circular in the center and elliptical on each end but with the

ellipses rotated by 90± with respect to one another. The ellipticity is proportional to both

the quadrupole ¯eld and to the length of the plasma. The angle of orientation of the plasma

follows the angle of the applied quadrupole ¯eld.

The transport created in the plasma by the quadrupole ¯eld exhibits a strong

resonance in !. The resonance has the proper scalings for a bounce resonant e®ect where

!Etb = ¼=2. As L decreases or kT increases, !res increases. We ¯nd that the di®usion

coe±cient, D(!), has an explicit Bz dependence and scales like ¯
2. This scaling with the

perturbation strength is consistent with di®usion in the so called plateau regime. The peak

di®usion, Dmax, increases with L, whereas Dmax decreases with kT .

We measure di®usion coe±cients of order 1 cm2=s at resonance for a perturbation

of only 0.020 G/cm. The perturbation is small compared to the typical axial ¯eld of
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100 G. In antihydrogen experiments, quadrupole ¯elds whose strengths are comparable to

the axial ¯elds strength will be used. Therefore, we expect these experiments to have trouble

con¯ning antiprotons and positrons because of the proportionately larger quadrupole ¯elds.

Typical experiment parameters will be Bz = 2 T, n = 10
8cm¡3, L = 1 cm and T = 4 K. We

estimate that !Etb ¼ 0:6. This places them near the resonance where quadrupole induced

transport is greatest. Even if operating o® resonance, the magnitude of the quadrupole ¯eld

will be strong enough to severely limit con¯nement times.

The results I report in this thesis provide a clear demonstration of a bounce res-

onant e®ect in a plasma system. A simple model of the di®usion does not predict the

observed dependencies on kT , but agrees with the ¯, L, and explicit Bz dependencies.

Clearly, we need a more detailed model. Our model only treats resonant electrons while it

may be that o® resonance electrons dominate the transport. Perhaps the transport is not

purely di®usive, and so it might be more appropriate to formulate a model of the radial °ux

to compare with our experimental observations. Regardless, experiments planned by the

ATHENA and ATRAP collaborations will face di±culty trying to con¯ne antiprotons and

positrons while preparing to make antihydrogen because of the strong transport induced by

quadrupole magnetic ¯elds.

5.2 The Future

To study this phenomenon further, one may want to build a special purpose appa-

ratus which would be better suited for applying quadrupole ¯elds. The Malmberg-Penning

trap we used was not designed with quadrupole ¯eld experiments in mind. While it is a

useful machine that is well suited for a variety of plasma experiments, there are several

changes that one might make.

In our machine, the quadrupole is on during the injection, holding, and dumping

of the plasma. This is because the timescale for the magnetic ¯eld to di®use into the trap,

¿ , is longer than the timescale for some experiments. If we want to apply the quadrupole

¯eld only after we inject the plasma, we must reduce ¿ . We could place magnet coils inside

the vacuum chamber, much closer to the trap walls. Further, we could modify the walls of

the trap to reduce ¿ .

Making the trap walls thinner would decrease ¿ . If the trap walls were made of

stainless steel, they could be made very thin. We measured the di®usion of magnetic ¯elds
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through 3:5} diameter stainless steel cylinders with wall radii of 0:016}, 0:035}, 0:060} and

0:190}. We wrapped copper wires in the shape of the box coils around the cylinders and

applied an oscillating voltage to the wires to produce an oscillating magnetic ¯eld. We

placed a small pickup coil inside the cylinder and measured the response of the coil to the

oscillating magnetic ¯eld as a function of frequency.

Figure 5.1 shows the fraction of the signal that is transmitted through the cylinder

wall as compared to the signal we receive in the absence of a stainless steel cylinder. If

the shortest hold time for a plasma is around 100 ms, then perhaps we would want the

quadrupole ¯eld to turn on in 1 ms. Figure 5.1 shows that there is near unity transmission

at 1 kHz.

Figure 5.1: We create an oscillating magnetic ¯eld outside of stainless steel cylinders of
several wall radii. The transmission fraction is de¯ned as the ratio of the signal received on
the pickup coil when placed inside a cylinder as compared to the signal received when no
cylinder is present.

If we are concerned about the magnetic properties of stainless steel, we could con-
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sider the alternative design in Figure 5.2. In this design, the trap walls could be constructed

from copper rods machined to ¯t together so that the trap wall is circular and so that there

are gaps between adjacent rods. The gaps would reduce ¿ . Reducing ¿ allows us to turn on

Figure 5.2: An alternate trap design might consist of walls that are made from copper
rods machined to form a circular trap. The gaps between adjacent rods would reduce the
magnetic ¯eld di®usion time.

the perturbation after we inject the plasma and turn it o® before we dump the plasma. This

would make the initial plasmas more similar to one another and perhaps help disentangle

the properties of the plasma from the e®ects of the quadrupole ¯eld during imaging.

One could add extra coils for the application of higher order multipole ¯elds. We

could make the imaging electric ¯eld more uniform in order to reduce the image rotation

and compression at low Bz. For example, adding conducting annular plates around the

phosphor and the last gate would help to keep the electric ¯eld lines straight. To help

explore the region !Etb À 1, we could make the con¯nement region longer. Or, we could

increase tb by allowing a gas into the vacuum chamber for the plasma to collisionally cool

against.

There is clearly room for more re¯ned measurements of the e®ects of a quadrupole

¯eld on transport in a Malmberg-Penning trap, and these measurements would bene¯t from

a deeper theoretical understanding of the physics involved.
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Appendix A

Imaging System

The most important modi¯cation of the machine was the installation of a new

CCD camera system. The new system gives us faster data rates, better resolution and an

improved signal to background ratio. This appendix describes the details of the camera

system and instructions for its use.

A.1 First Camera System

The original camera was a Fairchild Weston Schlumberger model 3000F CCD

camera connected to a PC via a Data Translation frame grabber card. The image acquisition

times were slow and the camera had a resolution of 334£ 470 pixels. The optics were such
that the phosphor covered a grid of 200£300 pixels; the pixels were not square. The largest
problem, however, was signal to background ratio. As mentioned in Chapter 2, the ¯lament

glows white hot and steps were taken to reduce this light. Even with the aluminization of

the phosphor and the use of the optical ¯lter, the background light was approximately a

factor of two brighter than light from the plasma on a per pixel basis. The maximum signal

per pixel from a plasma was about 500 units, which is an underutilization of the dynamic

range of the CCD array.

A.2 Second Camera System

The ¯rst ¯x for these problems was to use a Princeton Instruments liquid nitrogen

cooled CCD camera with a mechanical shutter. The CCD array itself (TEK-1024) was more
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sensitive. The resolution was improved as the phosphor now covered a grid of 400 £ 400
pixels. Maximum pixels brightnesses from a plasma were improved to approximately 1500

units. The mechanical shutter was capable of opening and closing within 10 ms and could

be driven pneumatically or electrically. When driven pneumatically, we included a small

gas reservoir to maintain air pressure during the shutter operation. This produced shorter

exposures. Using this system, the signal to background was still less than unity.

The liquid nitrogen dewar needed ¯lling every 12 hours. This made long data runs

di±cult because runs would be interrupted by the need to ¯ll the dewar. The mechanical

shutter caused vibrations that would misalign the camera over time, requiring that more

frequent background images be taken. Over time, the shutter leafs began to fail and would

frequently jam. Perhaps most importantly, this camera was a shared resource in the lab,

leading to schedule con°icts.

A.3 Current Camera System

Finally, we moved to an intensi¯ed CCD camera system, a Princeton Instruments

ICCD-MAX. With the most current technology, we have the fastest data rates yet. The

intensi¯er can be gated for exposure times down to the nanosecond range. As the light

from a plasma is present for less than 3 ms (see Figure A.1) , we do not need nanosecond

shutter speeds, but we can tailor the exposure time to match the phosphor characteristics.

Also, we can optimize the intensi¯er gain to take advantage of the full dynamic range of the

CCD array. The per pixel brightness of the background is reduced to about 1000 units by

shuttering, while the brightest pixels of a plasma image are about 10,000 units. The pinhole

defects shown in Figure 2.3 are as bright as 5000 units. There are no moving parts in this

camera so that there are fewer misalignment necessitated background image acquisitions.

This camera uses thermoelectric cooling and not liquid Nitrogen to cool the CCD array, and

so no user intervention is required during data acquisition. Software integration is smoother

as well. Compared to earlier systems, it is easy to import camera data into analysis software.

There is one drawback that this camera system does not overcome, thermal °uc-

tuations. After using the camera system during the day and at night, on cold days and on

hot days, with the lab doors and windows opened and closed, it became apparent that the

brightness of the camera images was proportional to the ambient temperature. This was

true regardless of the temperature regulation of the CCD array itself to better than 0:01±C.
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Figure A.1: The brightness of the phosphor as a function of time without background sub-
traction. The shutter is open for only 1 ¹s. During the ¯rst 10 ¹s, the signal increases as
more electrons leave the trap and strike the phosphor. The data show that after approxi-
mately 1.5 ms, the phosphor is dark again, therefore camera shutter need only be open for
these 1.5 ms. Note that the background light is at a level of 0.8 in these arbitrary units,
smaller than the signal from the plasma.
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Some other part of the camera is sensitive to the ambient temperature.

To correct for this, we constructed a temperature regulation system. We addressed

the trivial problems ¯rst. Keeping the doors and windows to the lab closed helps to reduce

rapid temperature changes during data runs. Further, we placed the camera inside a padded

aluminum box to isolate it from the air in the room. The box has a fan on top to blow

room temperature air onto the camera. There are several exhaust holes near the bottom

of the box. We placed a temperature probe (AD 590) inside the box by the exhaust of

the camera body. By trial and error, we determined that the camera exhaust served as

the most accurate measure for the temperature sensitive elements of the system. Because

we are restricting the air °owing to the camera against manufacturer recommendation, we

connected a thermal switch to the AC power and attached it to the neck of the image

intensi¯er. If the system becomes too hot, the power turns o® and the system cools.

The temperature probe and fan work as parts of a feedback system controlled by

an OMEGA CN77000 PID Process Control unit. We built the circuitry shown in Figure

A.2 (PP-25) to interface both the temperature probe and the fan to the OMEGA unit.

R1 (k­) To (
±C) R2 (k­) ¢T (±C)

2.10 20 68.0 5

1.68 25 34.0 10

1.40 30 22.6 15

1.20 35 17.0 20

1.05 40 13.6 25

Table A.1: The values of R1 and R2 determine the temperature range that the OMEGA
PID 10 V input range corresponds to.

The primary source of heat is the heat generated by the camera. The fan provides the

cooling and the air temperature of the lab and the speed of the fan control the amount

of cooling. The optimal temperature for operation is 36±C, and the system is regulated to

within §0:03±C. Only on the hottest days of summer was the temperature control system
unable to maintain this temperature. Temperatures much closer to 40±C are not healthy

for the camera.

A secondary issue with the camera system is the timing. We need to know when

to trigger the camera so that we capture all of the light from the plasma. We also need to

know how long the camera takes to read out the image to the PC so that we know when

to prepare the next plasma. We ¯nd that sending the trigger pulse to the camera 1 ¹s
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Figure A.2: PP-25 schematic. The top circuit takes the temperature reading from the
AD590 (a current in ¹A equal to the absolute temperature in K) and converts it into a
voltage in mV equal to the temperature in ±C and then into a voltage between 0 and 10 V
for use by the OMEGA PID controller. This 0-10 V signal corresponds to a temperature
range between To and To +¢T , where R1 and R2 determine To and ¢T as shown in table
A.1. The bottom circuit allows the OMEGA PID controller to drive the fan. The OMEGA
PID controller outputs a voltage between 0 V and 10 V, but with little current. The fan
requires a voltage between 4 V and 12 V to operate over its full range.
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before we send the signal to the dump gate is su±cient to capture all of the light from the

phosphor.

The overall repetition rate of our experiments is limited by the readout time of

the camera controller unit. Measurements show that it requires at least 385 ms to read

out an image. This is the lower bound on the cycle time. We observe that, for whatever

reason, the controller takes more time to read out the occasional image. To prevent image

from being taken while the CCD array is reading out and leading to a double exposure,

we pass the trigger pulse to the camera through an and gate with the SCAN TTL pulse

from the camera. The SCAN indicates whether the camera is ready for the next image or is

still reading out data. Unfortunately, this SCAN pulse is not either high or low, but rather

high, or spiky. We remove the spikes with a low pass RC ¯lter before we send the signal to

the and gate. Figure A.3 shows the timing diagram for triggering the camera.

The WinView software has numerous settings, most of which are automatically

stored by the software. Table A.2 shows these settings. The reader may ¯nd details regard-

ing these settings in WinView User's Manual and ST-133 Controller Operation Manual.

The two settings that must be reset by the user each time the software is run are: Detector

Temperature and LOGIC OUT Output.
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(a)

(b)

(c)

(d)

(e)

Figure A.3: (a) The dump pulse signals the release of the plasma. (b) The camera trigger
pulse from the SN100 is 1 ¹s wide and must precede the dump pulse by 1 ¹s. (c) The
SCAN pulse goes high when the camera is ready to record an image. Before that time,
there are extraneous spikes. The spikes are approximately 0.2 ¹s wide and 4 ms apart. (d)
We remove the spikes with a low pass RC ¯lter (R = 20 ­, C = 50 nF). (e) The camera
must not be triggered while it is reading out the CCD array and so we send the trigger
pulse and the ¯ltered SCAN pulse through an and gate.



95

Software Setting Value

Detector Temperature -20

Controller Type ST133

Camera Type THM 512x512

Shutter Type Electronic

LOGIC OUT Output Not Scan

Interface Type High Speed PCI

Number of Cleans 1

Strips per Clean 512

Minimum Block Size 2

Number of Blocks 5

Exposure Time 0

Accumulations 5

Gain 150

Intensi¯er Gate Mode

ADC Type Fast

Timing Mode External Sync

Shutter Control Normal

Safe Mode (async) selected

Edge Trigger + edge

Table A.2: Software settings for WinView/32 2.4.2.4 are shown here. Details regarding
these settings may be found in the WinView documentation. All settings but two are
recorded by the software. Detector Temperature and LOGIC OUT Output must be reset
by the user each time the software is run.
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Appendix B

LabVIEW Programs

To aid in the acquisition and analysis of data, we used National Instruments'

LabVIEW 6i software. This appendix is an attempt to document the programs we wrote

for acquisition and analysis.

B.1 Hardware Control

LabVIEW comes with low level hardware routines that can control the AT-A0-6

DAQ card, the RS-232 port, and the USB GPIB bus. We wrote several programs that

make use of these built-in routines to control hardware. Princeton instrument hardware

and software controls the CCD camera system.

B.1.1 AT-AO-6

We use the AT-AO-6 DAQ board to interface the PC with the magnet power

supplies, the ¯lament bias control and the quadrupole ¯eld polarity switching relay.

² Control Mag Fields.vi is a top level vi that controls the magnets' power supplies.
This routine converts the requested magnetic ¯eld into the appropriate voltage to

apply to the voltage programmed current mode power supplies. We calibrated the

power supplies by measuring the output current as a function of programming voltage.

We numerically simulated our magnet coils to obtain the calibration between coil

current and magnetic ¯eld. To prevent ground path problems that had damaged

the AT-AO-6, the analog signals from the AT-AO-6 pass through a series of op-amp
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bu®ers (Job # PP-24).

² Box Coil Polarity.vi is a sub vi of Control Mag Fields.vi that uses a digital
output channel to energize a relay connected to the box shaped quadrupole ¯eld

coils. We wired the relay as a DPDT switch that serves to control the polarity of the

magnetic ¯eld.

² Filament Bias On/Off Switch.vi uses a digital output channel on the AT-AO-6
card to send a TTL signal to the Cathode Driver (Job # 98-38). This TTL signal

selects either a ¯lament bias of +10V or a front panel controlled negative voltage.

B.1.2 RS-232

We use the serial port to control the dedicated PC that operates the Rohatgi

Electronics SN100 Sequencer.

² LowLevelComm.vi is called by all other vi's that wish to talk to the SN100. The
command syntax is given in the SN100 users' manual.

² Monitor Comm SN100.vi was originally designed to overcome problems with old

versions of Microsoft Windows' DCOM software. With newer versions of DCOM,

this vi may be unnecessary. However, in normal usage, this vi is set running and the

beginning of each user session and is left running for the duration of the experiment.

B.1.3 USB GPIB

To free system resources that a PCI card would otherwise consume, we purchased

a USB GPIB controller.

² Auto Setup Arb Inject calculates the shape of the inject pulse based on the

requested ¯eld, Bz, and uses LabVIEW's GPIB commands to address the Tektronix

AFG 5101 Arbitrary/Function Generator directly.

² Temperature.llb contains routines that acquire traces from the Tektronix TDS-

420A oscilloscope. This library also contains routines that calculate kT from these

traces.
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B.1.4 Image Acquisition

The WinView software from Princeton Instruments is responsible for acquiring

images from the ST-133 camera controller via the custom serial interface provided by the

manufacturer. There are a number of ways to import the image data into LabVIEW for

analysis. Unfortunately, none of these methods are as direct as we might like. The following

methods are workarounds.

One method is to write a program that creates a WinView object and repeatedly

acquires images when the camera is ready. LabVIEW is not capable of this and so we

used Visual Basic. We set the instance of WinView to write these images to a storage

directory with sequential ¯lenames. LabVIEW routines then search the directory for current

images and read these ¯les. This method has two problems; hard drive access times are

nonnegligible and this method is asynchronous.

VB ActiveX.exe to get SPE data.vi opens an ActiveX automation reference

to an ActiveX object that we wrote in Visual Basic. This object acquires an image from

WinWiew and outputs the data to LabVIEW as an array of numbers. There is no time

consuming hard disk access. This method is both faster and synchronous.

B.2 General Experiment Operation

There are many routines we use for general operation of the experiment. Load

Typical Routines.vi opens the front panels of some of the most useful vi's for general

machine operation.

² Monitor Comm SN100.vi

² Filament Bias On/Off Switch.vi

² Complete Setup initializes Bz, ~B?, ¯, µo, the inject gate pulse, the hold time and
the total cycle time.

² Get Background Data.vi biases the ¯lament to +10V to stop plasma injection

and takes pictures of the background light. Then, it searches the image and makes a

map of the pinholes seen in Figure 2.3. The software uses this map to replace these

pixels in the ¯nal image with a suitable average of nearest neighbors.
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² Get Plasma Picture.vi ensures that the ¯lament is biased, obtains the raw image,
subtracts the background, ¯xes the pinholes, and expands the image to compensate

for the compression from the imaging electric ¯elds.

B.3 Analysis

Some of these analysis programs are used as subroutines in programs like Get

Plasma Picture.vi, while some stand alone.

² array smoother.vi applies a mask to the image to smooth the image.

² Threshold and Clip.vi sets all pixels beyond a given radius to zero and sets all
pixels below a threshold value to zero.

² Radial Expansion.vi stretches the image according the formula, r ! m(Bz)r, where

m ¼ [200=Bz(G)]0:28 for Bz ∙ 200 G.

² Calculate Basic Parameters takes a camera image and ¯nds the total image
brightness, the brightest pixel, the mean values of x, y, x2, y2, (x¡ ¹x)2, and (y¡ ¹y)2,
the RMS radius and the angular momentum.

² Calculate Ellipticity.vi computes ² and µp according to the formulae in Chapter
3.

² Ronson's Poisson Solver.vi takes the cartesian image data, converts it to polar
coordinates, ¯nds the potential Á(r; µ) and ¯nds the electric ¯eld, ¡~r?Á(r; µ) under
the assumption that the image corresponds to an axially invariant charge distribution.

This program is an implementation of the algorithm used by Chu [41].

² Hughes rz Poisson Solver.vi is a LabVIEW implementation of the r-z Poisson

solver in [34]. This routine is useful for ¯nding an estimate of L. It ¯nds L by

calculating the turning points for an electron with vth.

² rzPoisson.vi is a multigrid relaxer we use to simulate the electric ¯eld produced by
the high voltage on the phosphor.
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B.4 Transport Experiment

These vi's break into two groups: automated acquisition/analysis routines and

nonautomated analysis.

² Quadrupole Transport Experiment.vi is a top level program we wrote to auto-

matically accumulate and analyze data for the transport experiment. This program

uses many of the routines described in the earlier sections of this appendix. The pro-

gram applies a magnetic ¯eld perturbation, collects n(r; t) data, computes dN=dt, !,

and dn=dr, and calculates °uxes and di®usion coe±cients.

{ Find Proper Hold Time.vi ¯nds the longest hold time to use by increasing

the hold time until n(R) decays to some arbitrary value. We ¯nd that choosing

n = 2:5 £ 106 cm¡3 works well for all Bz to allow us to both reliably calculate
dN=dt and have a wide range of !.

{ Total vs Bx and By-2D.vi and Total vs Beta and Theta-2D.vi next

apply various dipole and quadrupole perturbations at the longest hold time in

order to ¯nd the optimal tuning. Both routines use the total charge technique

described in Section 4.2.2. We use these optimal values as the centers about which

we apply perturbations. An important subroutine is Hardy 2D spline.vi,

which uses a Hardy Multiquartics spline [42] to interpolate the data.

{ Time History.vi applies a magnetic ¯eld perturbation and measures n(r; t) for

36 times between 4¹s and the longest hold time.

{ New Analyze Data.vi takes the data acquired by from Time History.vi,

passes it toRonson's Poisson Solver.vi, and then calculatesN(R) and dn=dr.

To compute dn=dr, we discretize n(r) into 120 bins and ¯t a parabola to a §7
bin wide region centered on R.

{ Write B Bx By Dt dndr N D Omega n TI PointsUsed.vi takes the results

of New Analyze Data.vi and calculates dN=dt, ! and D. To compute dN=dt,

we ¯t a parabola to N(t).

The ¯nal output of Quadrupole Transport Experiment.vis is a record of Bz,

~B?, ¯1, ¯2, R, n, !, dn=dr, dN=dt, ¡ and D for all 36 times and for all 120 radii.
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² Process Data.vi ¯nds D or ¡ as function of either (Bx; By) or (¯1; ¯2) at constant

!. We again use the Hardy 2D spline.vi routine to interpolate the data. Figure

4.10 is an example of D(¯1; ¯2). The program ¯nds the extrema of these functions

and ¯nds the average value of the function over 100 points on a circle centered on the

extrema.
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