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We study the stability of small strangelets by employing a simple model of strange matter as a gas of
noninteracting fermions confined in a bag. We solve the Dirac equation and populate the energy levels
of the bag one quark at a time. We find that for system parameters such that strange matter is unbound
in bulk, there may still exist strangelets with 4 < 100 that are metastable. We cannot determine, how-
ever, whether the lifetime of these strangelets is sufficient to detect them in current accelerator experi-

ments,
PACS numbers: 12.38.Mh, 12.40.Aa, 24.85.+p

With the advent of heavy ion colliders, it will soon be
possible to search for stable or metastable lumps of quark
matter with §~A4 ~10-30 [1] (for the sake of simplicity,
throughout this Letter we assign the strange quark a
strangeness of 4+ 1).. The possible stability of strange
quark matter (“strange matter”) in bulk was pointed out
by Witten in 1984 [2], and since then, there have been at-
tempts to predict the properties of strange matter in bulk
and in finite lumps (“strangelets”) [3]. These studies
generally only apply to A4 much larger than those accessi-
ble in heavy ion colliders. Here we present some qualita-
tive information on very small strangelets obtained from
an elementary model. Our model includes only quark ki-
netic energy, the Pauli principle, and confinement. It
cannot tell us anything about important issues like the
overall energy scale, or equivalently the bulk stability, of
strange matter. It does, however, illustrate potentially in-
teresting effects such as shell closures, “loading” and un-
loading of strangeness, and “islands of stability” in the
(S,4) plane. None of the details of our predictions
shouid be taken very seriously; they would undoubtedly
be changed in more sophisticated models.

No one knows how to model quark matter in QCD ac-
curately. Lattice simulations are as yet unable to cope
with systems at nonzero chemical potential. Models of
bulk strange matter have confined quarks in a bag and in-
cluded residual gluon interactions perturbatively [4,5].
Surface effects were included for large strangelets by in-
cluding surface modifications of the quark density of
states as well as Coulomb effects [6]. The resulting
Thomas-Fermi type model is only valid for strangelets
with radii very large compared to the natural length scale
of the system, B —1/4_1-2 fm. For typical strange-
matter densities, a strangelet with baryon number A
~200 has a radius of only 5-6 fm, so only for such a
large baryon number does the model of Ref. [6] become
reliable. We model a small strangelet as a gas of nonin-
teracting fermions confined in a bag. We determine the
energy eigenvalues and fill the bag energy levels sequen-
tially, obeying the exclusion principle, minimizing the en-
ergy (for each A) and adjusting the bag radius so the
quark pressure balances the vacuum pressure, B. This is
equivalent to minimizing the total energy at constant
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pressure, B. Values of B were taken from fits to bulk
strange matter as described in Ref. [6]. We also include
a phenomenological zero-point energy term —1.84/R.
The free parameters we use are the energy per baryon in
bulk, €5, the mass of the strange quark, m;, and the
baryon number, 4. We ignore residual perturbative
QCD interactions following Ref. [6]. We also ignore
Coulomb corrections. This should be a good approxima-
tion because Z is very small for small 4, Z < 4.

The quantum numbers and energetics of small strange-
lets show regularities reminiscent of atomic physics.
“Shell” effects are important when filling a bag with
quarks: The rate of change of the energy per baryon with
A changes dramatically near shell closures and leads to
enhanced stability. We find that there exist regions of A
in which strangelets are metastable even for parameters
such that strange matter is not bound in bulk. We also
observe that S for the most stable strangelet is an erratic
function of 4. Strange and nonstrange quark energy lev-
els cross as a function of the bag radius . When a non-
strange level dives below a strange level, the strange level
“unloads” into the nonstrange one. This phenomenon is
similar to the filling and emptying of inner d orbitals in
the periodic table. Finally, we find that the spatial distri-
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FIG. 1. The scaled number of states as a function of k com-
pared with the asymptotic expansion including the surface
correction.
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bution of strangeness is not uniform throughout a
strangelet. Because they are less relativistic, strange
quarks are concentrated in the interior. This phenome-
non is related to the quark mass dependence of the sur-
face tension in strange matter.

There have been previous attempts to use similar mod-
els to study very small strangelets. In Ref. [7], strange-
lets were constructed by filling the bag energy levels with
the strangeness ratio held fixed. In the published work,
S/ A was fixed at 0.7 which is far from the optimal value
for most 4. Fixing S/A artificially prevents the system
from finding a minimum energy configuration and ob-
scures shell structure. The objects of greatest interest in
heavy ion experiments are those of great stability, which
cannot be found from Ref. [7].

More recently, Madsen [8] has studied very small
strangelets using the asymptotic expansion of the density
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of states including the curvature term. Such expansions
describe average properties of the density of states but
are not sensitive to the shell structure which we expect to
be important for the lightest strangelets. By using the ex-
act density of states we automatically include the surface
and curvature effects which were studied by Madsen. It
is interesting to explore the magnitude of the shell effects
relative to the average properties included in the asymp-
totic expansion used by Madsen. To study this issue we
have plotted in Fig. 1 the actual integral of the density of
states N(k) for a light quark as a function of kR
=+E?—m?R in a rigid spherical cavity. We choose
m =150 MeV and R =0.0205 MeV ~!. This value of R
occurs for 4 =80 in a one-flavor strangelet. 4 =80 is
marked in the figure. For comparison we plot the asymp-
totic expansion for N (k) with and without a curvature
correction obtained by integrating the density of states,

p(k),
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where V and S are the volume and surface area of the
bag, respectively, k. is the “‘curvature coefficient” which
depends on the boundary condition and on k/m, and R,
and R, are the principal curvatures at each point. The
mass dependence of the curvature term, k., is not known
analytically, We follow Madsen [8] and use the form ap-
propriate to the nonrelativistic limit, m > k, where k., =1.
The dashed and solid curves in Fig. 1 correspond to Eq.
(1) with and without the curvature correction, respective-
ly. At kR =10, which corresponds to A4 = 80 the actual
N(k) is a noisy function of k reflecting the eigenvalue
spectrum of the Dirac operator in a cavity. At large k,
N(k) is well approximated by the integral of Eq. (1).
The curvature term in Eq. (1) clearly improves the fit for
small strangelets; however, the fluctuations are obviously
important in this region, and as we shall see, lead to im-
portant variations in the stability of light strangelets.

Since we are dealing with light quarks confined to a
small bag, we must consider them as relativistic particles.
We write down the Dirac equation and the appropriate
boundary condition,

(a'p+pm)¥=EV¥, forr<R, )
it-y¥=v, forr=R. 3)

This boundary condition ensures that there is no proba-
bility flux leaving the bag (j-£==0). Note that the wave
function need not go to zero on the boundary, whereas for
the nonrelativistic case it must. This implies that the
more massive, less relativistic, strange quarks will tend to
shy away from the boundary of the bag.

Once the Dirac equation is solved with this boundary
condition and geometry, we obtain expressions for the
eigenfunctions and transcendental equations for the ei- |
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genvalues. We take the energy, momentum, and mass to
be w, k, and m, respectively. We define a =R, x =kR,
and A =mR, so that a’=x2+A2 The bag eigenvalue
equation which determines ¢(A) can be found in Ref. [9],
as can be normalized quark wave functions. For the u
and d quarks, the mass is taken to be zero.

As described in Ref. [6], we determine the bag con-
stant and an estimate of the radius of the bag as a func-
tion of €5, ms, and A by studying the bulk limit, A-— eo.
In bulk equilibrium, the Fermi seas for the three quark
species must have the same Fermi energy or chemical po-
tential: g =p, =pg=us. u is the change in total energy
due to the addition of a quark. We obtain the number of
particles/volume n, for a =u, d, and s by integrating the

“k2V term in Eq. (1). For the massless # and d quarks,

ny.q=(u%/z?) for the s quark, ns =(u>cos’8/x?), where
sind=(m/p). In bulk, the baryon number is 4=(5)
xX,n.V. The total energy of the bag is E =22 ,u.n,V.
By using these two expressions, we find that e =3u. As
noted in Ref. [6], the surface tension is positive. Thus, to
minimize energy, the shape of the strangelet will be
spherical. By inverting the relation between A and n, we

obtain 11 13
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This is the radius of a lump of strange matter in which all
surface effects are ignored and is used as a first approxi-
mation to the actual radius that will balance the quark
pressure against the vacuum pressure. The equilibrium
condition on the volume gives us B=—2XQ,=quark
pressure. Using the @, from Ref. [6], we get

@
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Once we choose m; and determine a first approximation
to the radius we calculate the energy levels by solving the
transcendental equation numerically. We then adjust the
radius, and recalculate the energy levels, until the total
energy is minimized. Once a strangelet is thus created,
we can read off its energy per baryon, strangeness, and
radius directly.

We have performed a variety of checks on this calcula-
tion. First, we have calculated the number of states with
“momentum” less than k. This function, N (k), should be
approximated by the integral of the asymptotic expansion
of Eq. (1) for large k. This check is shown in Fig. 1
where it is clear that our model reproduces the asymptot-
ic result and the surface correction. Second, we have
checked that the energy per baryon and strangeness per
baryon also converge to the bulk values as A — oo,

We now turn to issues of stability and composition of
strangelets. Since all of the strangelets we consider have
€>930 MeV, they could eventually decay into 3¢Fe or
other nuclei. Therefore, our strangelets can only be
called metastable. If a strangelet is not in flavor equilib-
rium, it can decay via weak semileptonic decays, weak ra-
diative decays, and electron capture all of which have
AA=0. Other modes of decay such as fission, alpha de-
cay, weak and strong neutron decays, and strong A, X, E,
Q decays reduce the baryon number by one or more
units. Our strangelets are already in equilibrium at a
given A and thus are only subject to the decay modes
which reduce the baryon number. We check the stability
of our strangelets against these decay modes.

A strong (weak) neutron decay will occur if the dif-
ference in energy between two strangelets of AS =0(—1)
and A4 = —1 is greater than m,. For the A, Z, =, Q de-
cays, we have Ad=-—1 and AS=—1,—1,—2,—3, re-
spectively.

For small A, the dynamics are as follows. Given the
choice between massive and massless particles, we fill the
bag with less energetic massless particles first. We add
massless particles until we build up a large enough Fermi
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FIG. 2. (a) Strangeness as a function of A for the most
stable species. (b) Strangelet charges as a function of A.
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sea so that it becomes energetically favorable to add an s
quark to the system. Soon, it again becomes favorable to
add nonstrange quarks to the system. One might expect
that strange and nonstrange levels will fill in an alternat-
ing sequence. Figure 2(a) shows that this is not the case.
This is because the massive quark energy levels change at
a different rate with respect to the radius than the mass-
less quark energy levels do. Energy levels can cross, and
strange levels that have been filled may empty out into
nonstrange levels. This can be seen in the data for
€, =950 MeV, m; =150 MeV, where a level crossing
occurs at 4 =30 [see Fig. 2(a)l.

Within our model, there exist metastable strangelets
for various system parameter values (see Fig. 3). Those
species noted in the figure are stable against single baryon
emission. We find that for €, <930 MeV, which is the
value of ¢ for 5Fe, there exist many metastable strange-
lets (see Fig. 3). Whenever the slope of the ¢(4) curve is
negative enough, the decrease in energy due to emission
of a particle is not enough to offset the increase in energy
due to the slope. Thus, it is frequently energetically un-
favorable for a strangelet to decay via baryon emission.
Many of the smaller strangelets, however, are subject to
fissioning into several A hyperons and a nucleus, or dis-
solving into A hyperons and neutirons. This mode is a
strong decay, but its rate will be suppressed by several or-
ders of magnitude due to the unlikeliness of the quarks
simultaneously arranging themselves into the decay prod-
ucts. The suppression is difficult to estimate, however,
because we are dealing with a collective, many-particle
effect. Some quasistable species occur in regions where
the slope of €(A4) is positive [e.g., Fig. 3(d) near 4 =60).
In this region, the change in strangeness between most
stable species with 4 and 4—1 is AS=—3 [see Fig.
2(a)] requiring Q@ emission which is energetically forbid-
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FIG. 3. Energy per baryon as a function of 4. (a) e =930

~ MeV, m, =150 MeV, BY4=154.64 MeV. (b) €, =950 MeV,

ms =150 MeV, BY4=158.71 MeV. (c) e =970 MeV, m;
=150 MeV, BY4=162.31 MeV. (d) ;=950 MeV, m, =250
MeV, B4 =151.60 MeV.
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den. Neutron emission requires 9¢/9A4 at fixed strange-
ness to be positive. Direct calculation shows 8E/3A|; to
be negative here.

Another interesting effect that can be seen is the
phenomenon of shell closures. The first level to fill is a
1s1/2 level. At every occurrence of a shell closure, the
€(A) curve takes a noticeable dip. This generates a large
slope for €(A4) and thus, metastable regions in the neigh-
borhood of a closed shell. This is similar to atomic phys-
ics where shell closures produce more stable, less chemi-
cally reactive elements. Shell closures can be seen at
A=6,14,18,22,... (see Fig. 3). These particular values
correspond to a strange sy/2 shell, a nonstrange pi/; shell,
a nonstrange pis; shell, and a strange ps;, shell, respec-
tively. The locations of these shell closures are a function
of the self-consistent “potential,” in which the quarks are
bound—in this case, the bag. Therefore, the precise
values should not be taken too seriously.

The most surprising results are uncovered when we ex-
amine values of €, > 930 MeV. Looking at €, =950, 970
MeV, m; =150 MeV, we see that there still exist islands
of metastability against single baryon decay (see Fig. 3).
This is interesting because the failure of terrestrial
searches to find stable strange matter suggests that
strange matter in bulk may well be unstable [10]. Our
results indicate that even though this may be the case,
there is still a chance of detecting small strangelets in the
laboratory provided the strong decay into light nuclei and
several hyperons or complete dissolution does not proceed
too rapidly. These islands of metastability persist until
€, = 1000 MeV, m; =150 MeV.

The charge systematics of light strangelets are impor-
tant for experimenters. In bulk, we expect roughly equal
numbers of u, d, and s quarks, thus Z/ 4 < 1. Even for
nuclei, where Z~ A4, Coulomb effects are not important
for small 4. The possible charges of small strangelets are
determined by which shells are filled, and which one is
currently filling. Figure 2(b) shows that the allowed
charges for strangelets as a function of A4 is a complex
function that reflects the nature of the shell filling pro-
cess. Our model possesses exact isospin symmetry since
we have ignored both quark masses and electromagnetic
effects. Thus, the most stable configuration at each A is
an isospin multiplet. In actuality, small isospin violating
effects will select a single species at each A. However,
transitions among states of the same A4 are mediated by
slow processes like 8 decay, so the species shown in Fig.
2(b) are equally stable from the experimental standpoint.
For A <100, the charge remains relatively small (in
magnitude) in comparison to A4, so we are justified in
neglecting the Coulomb energy contribution.

We also plotted the spatial density for the quarks in the
strangelets. The heavier s quarks have a distribution that
is concentrated closer to the center of the strangelet than
the u and d quarks (see Fig. 4). By requiring that no
probability flux leave the bag rather than requiring that

0.451 o

04l B ) €,= 950 MeV |

“m, = 150 MeV

Q.35

o3}
0.25-

02

STRANGENESS/MATTER

0.15

© O

0.051

1 1 1 r .
0.5 06. - 0.7 08 09 |

fe) ( L 2 1
o [oX] 0.2 03 0.4

) FRACTIONAL RADIUS .
FIG. 4. The ratio of radial strangeness density to radial total
matter density for small 4.

¥ =0, a relativistic quark may have a nonzero density,
¥T¥, at the boundary. As the mass of the particle in-
boundary condition becomes ¥ =0.

We have shown that the energetics associated with
shell closures are likely to be important in the study of
very small strangelets. Our admittedly crude method
brings out this aspect of the system that is not seen when
the smoothed density of states is employed. Our results
are consistent with those obtained for large A. We there-
fore conclude that metastable strange matter may be
found in small lumps. The suppressed strong decay into a
nucleus {or many neutrons) and A hyperons might render
it difficult to detect, however. One characteristic that
would identify a strangelet is its unusual charge/mass ra-
tio. The charge is typically small as described above.
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