
Introduction to Parallel Introduction to Parallel 
Programming with MPIProgramming with MPI

PICASso Tutorial
October 25-26, 2006

Stéphane Ethier
(ethier@pppl.gov)

Computational Plasma Physics Group
Princeton Plasma Physics Lab



Why Parallel Computing?

• Want to speed up a calculation.
• Solution:

– Split the work between several processors.
• How?

– It depends on the type of parallel computer
• Shared memory (usually thread-based)
• Distributed memory (process-based)

– MPI works on all of them!



Shared memory parallelism

• Program runs inside a single process
• Several “execution threads” are created within 

that process and work is split between them.
• The threads run on different processors.
• All threads have access to the shared data 

through shared memory access.
• Must be careful not the have threads overwrite 

each other’s data.



Shared memory programming

• Easy to do loop-level 
parallelism.

• Compiler-based automatic 
parallelization
– Easy but not always 

efficient
– Better to do it yourself with 

OpenMP

• Coarse-grain parallelism 
can be difficult

Main Process

serial work

start parallel
loop

stop parallel
loop

threads



Distributed memory parallelism 

• Process-based programming.
• Each process has its own memory space that 

cannot be accessed by the other processes.
• The work is split between several processes.
• For efficiency, each processor runs a single 

process.
• Communication between the processes must 

be explicit, e.g.  Message Passing



How to split the work between processors?

• Most widely used method for grid-based 
calculations:
– DOMAIN DECOMPOSITION

• Split particles in particle-in-cell (PIC) or 
molecular dynamics codes.

• Split arrays in PDE solvers
• etc…
• Keep it LOCAL



What is MPI?

• MPI stands for Message Passing Interface.
• It is a message-passing specification, a 

standard, for the vendors to implement.
• In practice, MPI is a set of functions (C) and 

subroutines (Fortran) used for exchanging data 
between processes.

• An MPI library exists on most, if not all, 
parallel computing platforms so it is highly 
portable.



How much do I need to know?

• MPI is small (6 functions) 
– Many parallel programs can be written with just 6 basic 

functions. 

• MPI is large (125 functions) 
– MPI's extensive functionality requires many functions 
– Number of functions not necessarily a measure of 

complexity 

• MPI is just right 
– One can access flexibility when it is required.
– One need not master all parts of MPI to use it. 



How MPI works

• Launch the parallel calculation with:
mpirun –np #proc a.out
mpiexec –n #proc a.out

• Copies of the same program run on each processor within its 
own process (private address space).

• Each processor works on a subset of the problem.
• Exchange data when needed

– Can be exchanged through the network interconnect
– Or through the shared memory on SMP machines (Bus?)

• Easy to do coarse grain parallelism = scalable



Good MPI web sites

• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
• http://www-unix.mcs.anl.gov/mpi/tutorial/

• MPI on Linux clusters:
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Open MPI (http://www.open-mpi.org/)

http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/


Structure of an MPI program
Program mpi_code
! Load MPI definitions

use mpi (or include mpif.h)

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

Fortran 90
Style!…



Structure of an MPI program
#include "mpi.h"
int main( int argc, char *argv[] )
{
int nproc, myrank;
/* Initialize MPI */

MPI_Init(&argc,&argv);
/* Get the number of processes */

MPI_Comm_size(MPI_COMM_WORLD,&nproc);
/* Get my process number (rank) */

MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

Do work and make message passing calls…

/* Finalize */
call MPI_Finalize();

return 0;
}

C 
Style!…



Compilation

• mpich provides scripts that take care of the 
include directories and linking libraries
– mpicc
– mpiCC
– mpif77
– mpif90

• Otherwise, must link with the right MPI library



Makefile

• Always a good idea to have a Makefile

%cat Makefile
CC=mpicc
CFLAGS=-O

% : %.c
$(CC) $(CFLAGS) $< -o $@



mpirun and mpiexec

• Both are used for starting an MPI job
• If you don’t have a batch system, use mpirun

mpirun –np #proc –machinefile mfile a.out >& out < in &

%cat mfile
machine1.princeton.edu
machine2.princeton.edu
machine3.princeton.edu
machine4.princeton.edu

• PBS usually takes care of arguments to mpiexec



Batch System: PBS primer

• Submit a job script:  qsub script
• Check status of jobs:  qstat –a   (for all jobs)
• Stop a job:  qdel job_id

###  --- PBS SCRIPT  ---
#PBS –l nodes=4:ppn=2,walltime=02:00:00
#PBS –q dque
#PBS –V
#PBS –N job_name
#PBS –m abe
cd $PBS_O_WORKDIR
mpiexec –np 8 a.out



Basic MPI calls to exchange data
Point to point: 2 processes at a time

MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where types are: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX, MPI_CHARACTER, MPI_LOGICAL, etc…

Predefined Communicator: MPI_COMM_WORLD



Collective MPI calls
Collective calls: All processes participate

One process sends to everybody:
MPI_Bcast(buffer,count,datatype,root,comm,ierr)

All processes send to “root” process and the operation “op” is applied
MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

where op = MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD, etc…
You can create your own reduction operation with MPI_Op_create()

All processes send to everybody and apply the operation “op”(equivalent to an
MPI_Reduce followed by an MPI_Bcast)
MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

Synchronize all processes
MPI_Barrier(comm,ierr)



More MPI collective calls
All processes send a different piece of data to one single “root” process
which gathers everything (messages ordered by index)
MPI_Gather(sendbuf,sendcnt,sendtype,recvbuf,recvcount,

recvtype,root,comm,ierr)

All processes gather everybody else’s pieces of data
MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,comm,info)

One “root” process send a different piece of the data to each one of the other
processes
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,

recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index. 
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,

recvtype,comm,ierr)


	Introduction to Parallel Programming with MPI
	Why Parallel Computing?
	Shared memory parallelism
	Shared memory programming
	Distributed memory parallelism 
	How to split the work between processors?
	What is MPI?
	How much do I need to know?
	How MPI works
	Good MPI web sites
	Structure of an MPI program
	Structure of an MPI program
	Compilation
	Makefile
	mpirun and mpiexec
	Batch System: PBS primer
	Basic MPI calls to exchange data
	Collective MPI calls
	More MPI collective calls

