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Why Parallel Computing?

• Want to speed up a calculation.
• Solution:

– Split the work between several processors.
• How?

– It depends on the type of parallel computer
• Shared memory (usually thread-based)
• Distributed memory (process-based)

– MPI works on all of them!



Shared memory parallelism

• Program runs inside a single process
• Several “execution threads” are created within 

that process and work is split between them.
• The threads run on different processors.
• All threads have access to the shared data 

through shared memory access.
• Must be careful not the have threads overwrite 

each other’s data.



Shared memory programming

• Easy to do loop-level 
parallelism.

• Compiler-based automatic 
parallelization
– Easy but not always 

efficient
– Better to do it yourself with 

OpenMP

• Coarse-grain parallelism 
can be difficult
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Distributed memory parallelism 

• Process-based programming.
• Each process has its own memory space that 

cannot be accessed by the other processes.
• The work is split between several processes.
• For efficiency, each processor runs a single 

process.
• Communication between the processes must 

be explicit, e.g.  Message Passing



How to split the work between processors?

• Most widely used method for grid-based 
calculations:
– DOMAIN DECOMPOSITION

• Split particles in particle-in-cell (PIC) or 
molecular dynamics codes.

• Split arrays in PDE solvers
• etc…
• Keep it LOCAL



What is MPI?

• MPI stands for Message Passing Interface.
• It is a message-passing specification, a 

standard, for the vendors to implement.
• In practice, MPI is a set of functions (C) and 

subroutines (Fortran) used for exchanging data 
between processes.

• An MPI library exists on most, if not all, 
parallel computing platforms so it is highly 
portable.



How much do I need to know?

• MPI is small (6 functions) 
– Many parallel programs can be written with just 6 basic 

functions. 

• MPI is large (125 functions) 
– MPI's extensive functionality requires many functions 
– Number of functions not necessarily a measure of 

complexity 

• MPI is just right 
– One can access flexibility when it is required.
– One need not master all parts of MPI to use it. 



How MPI works

• Launch the parallel calculation with:
mpirun –np #proc a.out
mpiexec –n #proc a.out

• Copies of the same program run on each processor within its 
own process (private address space).

• Each processor works on a subset of the problem.
• Exchange data when needed

– Can be exchanged through the network interconnect
– Or through the shared memory on SMP machines (Bus?)

• Easy to do coarse grain parallelism = scalable



Good MPI web sites

• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
• http://www-unix.mcs.anl.gov/mpi/tutorial/

• MPI on Linux clusters:
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Open MPI (http://www.open-mpi.org/)

http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/


Structure of an MPI program
Program mpi_code
! Load MPI definitions

use mpi (or include mpif.h)

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

Fortran 90
Style!…



Structure of an MPI program
#include "mpi.h"
int main( int argc, char *argv[] )
{
int nproc, myrank;
/* Initialize MPI */

MPI_Init(&argc,&argv);
/* Get the number of processes */

MPI_Comm_size(MPI_COMM_WORLD,&nproc);
/* Get my process number (rank) */

MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

Do work and make message passing calls…

/* Finalize */
call MPI_Finalize();

return 0;
}

C 
Style!…



Compilation

• mpich provides scripts that take care of the 
include directories and linking libraries
– mpicc
– mpiCC
– mpif77
– mpif90

• Otherwise, must link with the right MPI library



Makefile

• Always a good idea to have a Makefile

%cat Makefile
CC=mpicc
CFLAGS=-O

% : %.c
$(CC) $(CFLAGS) $< -o $@



mpirun and mpiexec

• Both are used for starting an MPI job
• If you don’t have a batch system, use mpirun

mpirun –np #proc –machinefile mfile a.out >& out < in &

%cat mfile
machine1.princeton.edu
machine2.princeton.edu
machine3.princeton.edu
machine4.princeton.edu

• PBS usually takes care of arguments to mpiexec



Batch System: PBS primer

• Submit a job script:  qsub script
• Check status of jobs:  qstat –a   (for all jobs)
• Stop a job:  qdel job_id

###  --- PBS SCRIPT  ---
#PBS –l nodes=4:ppn=2,walltime=02:00:00
#PBS –q dque
#PBS –V
#PBS –N job_name
#PBS –m abe
cd $PBS_O_WORKDIR
mpiexec –np 8 a.out



Basic MPI calls to exchange data
Point to point: 2 processes at a time

MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where types are: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX, MPI_CHARACTER, MPI_LOGICAL, etc…

Predefined Communicator: MPI_COMM_WORLD



Collective MPI calls
Collective calls: All processes participate

One process sends to everybody:
MPI_Bcast(buffer,count,datatype,root,comm,ierr)

All processes send to “root” process and the operation “op” is applied
MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

where op = MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD, etc…
You can create your own reduction operation with MPI_Op_create()

All processes send to everybody and apply the operation “op”(equivalent to an
MPI_Reduce followed by an MPI_Bcast)
MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

Synchronize all processes
MPI_Barrier(comm,ierr)



More MPI collective calls
All processes send a different piece of data to one single “root” process
which gathers everything (messages ordered by index)
MPI_Gather(sendbuf,sendcnt,sendtype,recvbuf,recvcount,

recvtype,root,comm,ierr)

All processes gather everybody else’s pieces of data
MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,comm,info)

One “root” process send a different piece of the data to each one of the other
processes
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,

recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index. 
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,

recvtype,comm,ierr)
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