
PICSciE Mini-Course
December 5, 2013

Stéphane Ethier
(ethier@pppl.gov)

Computational Plasma Physics Group
Princeton Plasma Physics Lab

Goals for this tutorial

1.  Get introduced to parallel programming for shared memory and
distributed memory systems

2.  Learn practical knowledge of MPI communication library
3.  Learn practical knowledge of OpenMP directives for shared memory

parallelism
4.  Learn basic knowledge of OpenACC accelerator directives
5.  Learn how to use all of the above in the same parallel application

Why mixed programming?
November 2013 top500 list

(www.top500.org)

Titan Cray XK7 hybrid system

Processor: AMD Interlagos (16) GPUs: 18,688 Tesla K20
Cabinets: 200 Memory/node CPU: 32 GB
nodes: 18,688 Memory/node GPU: 6 GB
cores/node: 16 Interconnect: Gemini
Total cores: 299,008 Speed: 27 PF peak (17.6)

Cray XK7 architecture

Nework interconnect

16-core AMD Opteron > 2000 “cores” nvidia K20X GPU node

Why Parallel Computing?

Why not run n instances of my code à la MapReduce/Hadoop?
•  Want to speed up your calculation.
•  Your problem is too large for a single node
•  Want to use those extra cores on your multicore processor
•  Solution:

–  Split the work between several processor cores so that they can work in parallel
–  Exchange data between them when needed

•  How?
–  Compiler auto-prallelization (only good for obvious parallelism)
–  OpenMP directives on shared memory node
–  Message Passing Interface (MPI) on distributed memory systems (works also on

shared memory nodes)
–  and others…

Languages and libraries for parallel
computing

•  Multithreading or “shared memory parallelism”
–  Directive-base OpenMP (deceptively easy) www.openmp.org (!$OMP DO)
–  POSIX pthread programming (explicit parallelism, somewhat harder than MPI

since one needs to manage threads access to memory).
–  GPGPU (General-Purpose Graphical Processing Unit) programming with CUDA

(nvidia) or OpenCL (similar to CUDA but more difficult) or OpenACC!
•  PGAS global address space SPMD languages (using GASNet layer or other)

–  Efficient single-sided communication on globally-addressable memory
–  FORTRAN 2008 co-arrays

•  Example: xarray(100,200)[*] where * is a process number
•  “puts” and “gets” directly to and from remote memory via the network with little or no

involvement from the CPU
•  Works best on a specialized network, such as Cray XE6 Gemini interconnect

–  UPC (http://upc.lbl.gov/): Similar to co-array Fortran but for C.
•  MPI for distributed-memory parallelism (runs everywhere except GPUs)

Let’s start with MPI…

Reason to use MPI: Scalability and portability

3D torus network interconnect
(e.g. Cray XE6 or XK7) 3D torus interconnect

On a large system!

nodes

MPI

•  Context: distributed memory parallel computers
–  Each processor has its own memory and cannot access the memory of other

processors
–  A copy of the same executable runs on each MPI process (processor core)
–  Any data to be shared must be explicitly transmitted from one to another

•  Most message passing programs use the single program multiple data
(SPMD) model
–  Each processor executes the same set of instructions
–  Parallelization is achieved by letting each processor operate on a different piece

of data
–  Not to be confused with SIMD: Single Instruction Multiple Data a.k.a vector

computing

How to split the work between processors?
Domain Decomposition

•  Most widely used method for grid-based calculations

How to split the work between processors?
Split matrix elements in PDE solves

•  See PETSc project:

How to split the work between processors?
“Coloring”

•  Useful for particle simulations

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4

What is MPI?

•  MPI stands for Message Passing Interface.
•  It is a message-passing specification, a standard, for the vendors to

implement.
•  In practice, MPI is a set of functions (C) and subroutines (Fortran) used for

exchanging data between processes.
•  An MPI library exists on ALL parallel computing platforms so it is highly

portable.
•  The scalability of MPI is not limited by the number of processors/cores on

one computation node, as opposed to shared memory parallel models.

MPI standard

•  MPI standard is a specification of what MPI is and how it should behave.
Vendors have some flexibility in the implementation (e.g. buffering,
collectives, topology optimizations, etc.).

•  This tutorial focuses on the functionality introduced in the original MPI-1
standard

•  MPI-2 standard introduced additional support for
–  Parallel I/O (many processes writing to a single file). Requires a parallel

filesystem to be efficient
–  One-sided communication: MPI_Put, MPI_Get
–  Dynamic Process Management

•  New MPI-3 standard starting to be implemented by compilers vendors
–  Non-blocking collectives
–  Improved one-sided communications
–  Improved Fortran bindings for type check
–  And more (see http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf)

How much do I need to know?

•  MPI has over 125 functions/subroutines
•  Can actually do everything with about 6 of them although I would not

recommend it
•  Collective functions are EXTREMELY useful since they simplify the

coding and vendors optimize them for their interconnect hardware
•  One can access flexibility when it is required.
•  One need not master all parts of MPI to use it.

MPI Communicators

•  A communicator is an identifier associated with a group of processes
–  Each process has a unique rank within a specific communicator (the rank starts

from 0 and has a maximum value of (nprocesses-1)).
–  Internal mapping of processes to processing units
–  Always required when initiating a communication by calling an MPI function

or routine.
•  Default communicator MPI_COMM_WORLD, which contains all

available processes.
•  Several communicators can coexist

–  A process can belong to different communicators at the same time, but has a
unique rank in each communicator

A sample MPI program in Fortran 90

Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

Header file

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

• Defines MPI-related parameters and
functions

• Must be included in all routines
calling MPI functions

• Can also use include file:
 include mpif.h

Initialization

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the beginning of the
code before any other calls to MPI
functions

•  Sets up the communication channels
between the processes and gives each
one a rank.

How many processes do we have?

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Returns the number of processes available
under MPI_COMM_WORLD communicator

•  This is the number used on the mpiexec (or
mpirun) command:

 mpiexec –n nproc a.out

What is my rank?

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Get my rank among all of the nproc processes
under MPI_COMM_WORLD

•  This is a unique number that can be used to
distinguish this process from the others

Termination

Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the end of the
properly close all communication
channels

• No more MPI calls after finalize

A sample MPI program in C

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

Compiling and linking an MPI code

•  Need to tell the compiler where to find the MPI include files and how to
link to the MPI libraries.

•  Fortunately, most MPI implementations come with scripts that take care of
these issues:
–  mpicc mpi_code.c –o a.out
–  mpiCC mpi_code_C++.C –o a.out
–  mpif90 mpi_code.f90 –o a.out

•  Two widely used (and free) MPI implementations on Linux clusters are:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich)
–  OPENMPI (http://www.openmpi.org)

Makefile

•  Always a good idea to have a Makefile

%cat Makefile
CC=mpicc
CFLAGS=-O

% : %.c
 $(CC) $(CFLAGS) $< -o $@

How to run an MPI executable

•  The implementation supplies scripts to launch the MPI parallel calculation,
for example:
 mpirun –np #proc a.out

 mpiexec –n #proc a.out
 aprun –size #proc a.out (Cray XT)
•  A copy of the same program runs on each processor core within its own

process (private address space).
•  Each process works on a subset of the problem.
•  Exchange data when needed

–  Can be exchanged through the network interconnect
–  Or through the shared memory on SMP machines (Bus?)

•  Easy to do coarse grain parallelism = scalable

MPICH, OPENMPI

mpirun and mpiexec

•  Both are used for starting an MPI job
•  If you don’t have a batch system, use mpirun

 mpirun –np #proc –machinefile mfile a.out >& out < in &

 %cat mfile
 machine1.princeton.edu machine1.princeton.edu
 machine2.princeton.edu OR machine1.princeton.edu
 machine3.princeton.edu machine1.princeton.edu
 machine4.princeton.edu machine1.princeton.edu

 1 MPI process per host 4 MPI processes on same host

•  PBS batch system usually takes care of arguments to mpiexec

Batch System

•  Submit a job script: qsub script
•  Check status of jobs: qstat –a (for all jobs)
•  Stop a job: qdel job_id

--- PBS SCRIPT ---
#PBS –l nodes=4:ppn=2,walltime=02:00:00
#PBS –q dque
#PBS –V
#PBS –N job_name
#PBS –m abe
cd $PBS_O_WORKDIR
mpiexec a.out

Basic MPI calls to exchange data

•  Point-to-Point communications
–  Only 2 processes exchange data
–  It is the basic operation of all MPI calls

•  Collective communications
–  A single call handles the communication between all the processes in a

communicator
–  There are 3 types of collective communications

•  Data movement (e.g. MPI_Bcast)
•  Reduction (e.g. MPI_Reduce)
•  Synchronization: MPI_Barrier

Point-to-point communication

Point to point: 2 processes at a time

 MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

 MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
 recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where the datatypes are:
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:
Broadcast

•  One process (called “root”) sends data to all the other processes in the same
communicator

•  Must be called by all the processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:
Gather

•  One root process collects data from all the other processes in the same
communicator

•  Must be called by all the processes in the communicator with the same
arguments

•  “sendcount” is the number of basic datatypes sent, not received (example
above would be sendcount = 1)

•  Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Collective communication:
Gather to All

•  All processes within a communicator collect data from each other and end
up with the same information

•  Must be called by all the processes in the communicator with the same
arguments

•  Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:
Reduction

•  One root process collects data from all the other processes in the same
communicator and performs an operation on the received data

•  Called by all the processes with the same arguments
•  Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical

AND, OR, XOR, and a few more
•  User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:
Reduction to All

•  All processes within a communicator collect data from all the other
processes and performs an operation on the received data

•  Called by all the processes with the same arguments
•  Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)

P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls

One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,
 recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,
 recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

Blocking communications

•  The call waits until the data transfer
is done
–  The sending process waits until all

data are transferred to the system
buffer

–  The receiving process waits until all
data are transferred from the system
buffer to the receive buffer

•  All collective communications are
blocking

Non-blocking

•  Returns immediately after the
data transferred is initiated

•  Allows to overlap computation
with communication

•  Need to be careful though
–  When send and receive buffers

are updated before the transfer
is over, the result will be
wrong

Non-blocking send and receive

Point to point:

 MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)

 MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication

 MPI_Wait(request,status,ierr)

 MPI_Test(request,flag,status,ierr)

MPI_Wait returns when the operation identified by “request” is complete. This is a non-
local operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete.
Otherwise it returns “flag = false”. This is a local operation.

MPI-3 standard introduces “non-blocking collective calls”

How to time your MPI code

•  Several possibilities but MPI provides an easy to use function called
“MPI_Wtime()”. It returns the number of seconds since an arbitrary point
of time in the past.

 FORTRAN: double precision MPI_WTIME()
 C: double MPI_Wtime()

 starttime=MPI_WTIME()
 … program body …
 endtime=MPI_WTIME()
 elapsetime=endtime-starttime

Debugging tips

Use “unbuffered” writes to do “printf-debugging” and always write out the
process id:
 C: fprintf(stderr,”%d: …”,myid,…);
 Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The
errorcode is returned to the calling environment so it can be any number.
 C: MPI_Abort(MPI_Comm comm, int errorcode);
 Fortran: call MPI_ABORT(comm, errorcode, ierr)

To detect a “NaN” (not a number):
 C: if (isnan(var))
 Fortran: if (var /= var)

Use a parallel debugger such as Totalview or DDT if available

References

•  Just google “mpi”, or “mpi standard”, or “mpi tutorial”…
•  http://www.mpi-forum.org (location of the MPI standard)
•  http://www.llnl.gov/computing/tutorials/mpi/
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
•  http://www-unix.mcs.anl.gov/mpi/tutorial/

•  MPI on Linux clusters:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
–  Open MPI (http://www.open-mpi.org/)

•  Books:
–  Using MPI “Portable Parallel Programming with the Message-Passing Interface” by

William Gropp, Ewing Lusk, and Anthony Skjellum
–  Using MPI-2 “Advanced Features of the Message-Passing Interface”

Example: calculating π using numerical
integration

#include <stdio.h>!
#include <math.h>!
int main(int argc, char *argv[])!
{!
 int n, myid, numprocs, i;!
 double PI25DT = 3.141592653589793238462643;!
 double mypi, pi, h, sum, x;!
 FILE *ifp;!

 ifp = fopen("ex4.in","r");!
 fscanf(ifp,"%d",&n);!
 fclose(ifp);!
 printf("number of intervals = %d\n",n);!

 h = 1.0 / (double) n;!
 sum = 0.0;!
 for (i = 1; i <= n; i++) {!
 x = h * ((double)i - 0.5);!
 sum += (4.0 / (1.0 + x*x));!
 }!
 mypi = h * sum;!

 pi = mypi;!
 printf("pi is approximately %.16f, Error is %.16f\n",!
 pi, fabs(pi - PI25DT));!

 return 0;!
}!

C version

Root reads input and broadcast to all
#include "mpi.h"!
#include <stdio.h>!
#include <math.h>!
int main(int argc, char *argv[])!
{!
 int n, myid, numprocs, i, j, tag, my_n;!
 double PI25DT = 3.141592653589793238462643;!
 double mypi, pi, h, sum, x, pi_frac;!
 double tt0, tt1, ttf;!
 FILE *ifp;!
 MPI_Status Stat;!
 MPI_Request request;!

 n = 1;!
 tag = 1;!

 MPI_Init(&argc,&argv);!
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);!
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);!

 tt0 = MPI_Wtime();!

 if (myid == 0) {!
 ifp = fopen("ex4.in","r");!
 fscanf(ifp,"%d",&n);!
 fclose(ifp);!
 }!
 /* Global communication. Process 0 "broadcasts" n to all other processes */!
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);!

Each process calculates its section of the integral
and adds up results with MPI_Reduce

… !
 h = 1.0 / (double) n;!
 sum = 0.0;!
 for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {!
 x = h * ((double)i - 0.5);!
 sum += (4.0 / (1.0 + x*x));!
 }!
 mypi = h * sum;!

 pi = 0.; /* It is not necessary to set pi = 0 */!

 /* Global reduction. All processes send their value of mypi to process 0!
 and process 0 adds them up (MPI_SUM) */!
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);!

 ttf = MPI_Wtime();!
 printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",!
 myid, pi, fabs(pi - PI25DT), (ttf-tt0));!

 MPI_Finalize();!
 return 0;!
}!

OpenMP: a directive-based approach to
shared memory parallelism

http://www.openmp.org

Why OpenMP?

•  Each node consists of 2 x 16-core
(or 12-core) sockets

•  The sockets are linked together and
share the entire memory on the node

•  All 32 cores share the memory and
the single access to the network

•  If each core is running an MPI
process and the code issues an MPI
collective call (MPI_Alltoall), all 32
processes will fight for access to the
network at the same time!

Cray XE6 architecture

What is OpenMP?

•  OpenMP is:
–  An Application Program Interface (API) that may be used to explicitly direct

multi-threaded, shared memory parallelism
–  Comprised of three primary API components:

•  Compiler Directives
•  Runtime Library Routines
•  Environment Variables

–  Portable:
•  The API is specified for C/C++ and Fortran
•  All operating systems that can handle multithreading can in principle run OpenMP

codes (Linux, Unix, MacOS X, Windows)
–  Standardized:

•  Jointly defined and endorsed by a group of major computer hardware and software
vendors

•  Expected to become an ANSI standard later?

What are directives?

•  In C or C++, preprocessor
statements ARE directives. They
“direct” the preprocessing stage.

•  Parallelization directives tell the
compiler to add some machine
code so that the next set of
instructions will be distributed to
several processors and run in
parallel.

•  In FORTRAN, directives are
special purpose comments
inserted right before the loop or
region to parallelize.

C:
#pragma omp parallel for private(idx)
for (idx=1; idx <= n; idx++) {
 a[idx] = b[idx] + c[idx];
}

Fortran:
!$omp parallel do private(idx)
do idx=1,n
 a(idx) = b(idx) + c(idx)
enddo

Telling the compiler to process the
directives

•  Most, if not all compilers can process OpenMP directives and generate
appropriate multi-threaded code.

•  Be careful though. Some vendors are selling different versions of their
compilers and the OpenMP support can come under a “parallel” or “high
performance” version.

•  This is achieved by using an option that instructs the compiler to activate
and interpret all OpenMP directives. Here are a few examples:
–  PGI compiler: pgf90 –mp and pgcc –mp
–  IBM xlf: xlf90_r -qsmp=omp and xlc_r –qsmp=omp
–  Linux gcc: gcc –fopenmp
–  Intel (Linux): icc –openmp and ifort -openmp

•  It is important to use the “thread-safe” versions of the XL compilers on
the IBM systems (Blue Gene and Power systems). They have an extra
“_r” added to their names (xlc_r, xlf90_r)

Shared memory parallelism

•  Multi-threaded parallelism (parallelism-on-demand)
•  Fork-and-Join Model (although we say “spawn” for threads and

“fork” for processes).

Spawn
threads

Parallel region Parallel region

Serial
region

Serial
region

Serial
region

Spawn
threads

Destroy
threads

Destroy
threads

Process and thread: what’s the difference?

•  You need an existing process to create a thread.
•  Each process has at least one thread of execution.
•  A process has its own virtual memory space that cannot be accessed by

other processes running on the same or on a different processor.
•  All threads created by a process share the virtual address space of that

process. They read and write to the same address space in memory. They
also share the same process and user ids, file descriptors, and signal
handlers. However, they have their own program counter value and stack
pointer, and can run independently on several processors.

Amdahl’s law of scalability

•  For p=0.8 the max
speedup is 5!!

•  The goal is to minimize
the time spent in the
serial regions

•  Profile your code!

where n is the number of
processors and p the
fraction of parallel
work

Goals of OpenMP

•  Provide a standard among a variety of shared memory architectures/
platforms

•  Establish a simple and limited set of directives for programming shared
memory machines. Significant parallelism can be implemented by using
just 3 or 4 directives.

•  Provide capability to incrementally parallelize a serial program, unlike
message-passing libraries which typically require an all or nothing
approach

•  Provide the capability to implement both coarse-grain and fine-grain
parallelism.
–  Coarse-grain = domain decomposition.
–  Fine-grain = loop-level parallelism.

•  Supports Fortran (77, 90, and 95), C, and C++
•  Public forum for API and membership

Example of OpenMP code structure

In FORTRAN:
 PROGRAM HELLO
 INTEGER VAR1, VAR2, VAR3
 Serial code . . .
 Beginning of parallel section. Fork a team of threads.
 Specify variable scoping
!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
 Parallel section executed by all threads . . .
 All threads join master thread and disband
!$OMP END PARALLEL
 Resume serial code . . .
 END

Example of code structure in C

In C:
#include <omp.h>
main () {
 int var1, var2, var3;
 Serial code . . .
 Beginning of parallel section. Fork a team of threads.
 Specify variable scoping
#pragma omp parallel private(var1, var2) shared(var3)
 {
 Parallel section executed by all threads . . .
 All threads join master thread and disband
 }
 Resume serial code . . .
}

Directives format in Fortran

sentinel directive-name [clause…]
–  All Fortran OpenMP directives must begin with a sentinel. The accepted

sentinels depend upon the type of Fortran source. Possible sentinels are: !
OMP, COMP, *$OMP

–  Just use !$OMP and you will be fine…
–  The sentinel must be followed by a valid directive name.
–  Clauses are optional and can be in any order, and repeated as necessary

unless otherwise restricted.
–  All Fortran fixed form rules for line length, white space, continuation and

comment columns apply for the entire directive line

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

Fortran fixed form source

•  Fixed Form Source:
–  !$OMP C$OMP *$OMP are accepted sentinels and must start in column 1
–  All Fortran fixed form rules for line length, white space, continuation and

comment columns apply for the entire directive line
–  Initial directive lines must have a space/zero in column 6.
–  Continuation lines must have a non-space/zero in column 6.

The following formats are equivalent:

!234567

!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO C$OMP+SHARED(A,B,C)

Fortran free form source

•  Free Form Source:
–  !$OMP is the only accepted sentinel. Can appear in any column, but must be

preceded by white space only.
–  All Fortran free form rules for line length, white space, continuation and

comment columns apply for the entire directive line
–  Initial directive lines must have a space after the sentinel.
–  Continuation lines must have an ampersand as the last non-blank character in

a line. The following line must begin with a sentinel and then the
continuation directives.

!23456789
 !$OMP PARALLEL DO &
 !$OMP SHARED(A,B,C)
 !$OMP PARALLEL &
 !$OMP&DO SHARED(A,B,C)

C / C++ Directives Format

•  #pragma omp
–  Required for all OpenMP C/C++ directives.

•  directive-name
–  A valid OpenMP directive. Must appear after the pragma and before any

clauses.
•  [clause, ...]

–  This is optional. Clauses can be in any order, and repeated as necessary
unless otherwise restricted.

•  newline
–  Required. Precedes the structured block which is enclosed by this

directive.

#pragma omp parallel default(shared) private(beta,pi)

General rules for C/C++ format

•  Directives follow conventions of the C/C++ standards for compiler
directives

•  Case sensitive
•  Only one directive-name may be specified per directive (true with Fortran

also)
•  Each directive applies to at most one succeeding statement, which must be

a structured block.
•  Long directive lines can be "continued" on succeeding lines by escaping

the newline character with a backslash ("\") at the end of a directive line.

Conditional compilation: _OPENMP

•  All OpenMP-compliant implementations define a macro named _OPENMP
when the OpenMP compiler option is enabled.

•  This macro can be used to include extra code at the preprocessing stage.
•  Valid for both C and Fortran (requires .F or .F90 extension), although one

can also use simply !$ in version 2.0 and higher for Fortran (see
specification).

#ifdef _OPENMP
 iam = omp_get_thread_num() + index;
#endif

!$ iam = omp_get_thread_num() + &
!$& index

PARALLEL Region Construct

•  A parallel region is a block of code that will be executed by multiple
threads. This is the fundamental OpenMP parallel construct.

•  When a thread reaches a PARALLEL directive, it creates a team of threads
and becomes the master of the team. The master is a member of that team
and has thread number 0 within that team.

•  Starting from the beginning of this parallel region, the code is duplicated
and all threads will execute that code.

•  There is an implied barrier at the end of a parallel section. Only the master
thread continues execution past this point.

Fortran format of PARALLEL construct

!$OMP PARALLEL [clauses …
 PRIVATE (list)
 SHARED (list)
 DEFAULT (PRIVATE | SHARED | NONE)
 FIRSTPRIVATE (list)
 REDUCTION ({operator|intrinsic_procedure}: list)
 COPYIN (list)
 IF (scalar_logical_expression)
 NUM_THREADS(scalar_integer_expression)
]
 block
!OMP END PARALLEL

C/C++ format of parallel construct

#pragma omp parallel [clauses] new-line
 { structured-block }

Where clauses are:
 private(list)
 shared(list)
 default(shared | none)
 firstprivate(list)
 reduction(operator : variable-list)
 copyin(list)
 if(scalar_expression)
 num_threads(scalar_integer_expression)

Data scope attribute clauses

•  An important consideration for OpenMP programming is the understanding
and use of data scoping.

•  Because OpenMP is based on the shared memory programming model,
most variables are shared by default between the threads.

•  Global variables include (shared by default):
–  Fortran: COMMON blocks, SAVE variables, MODULE variables
–  C: File scope variables, static

•  Private variables include (private by default):
–  Loop index variables
–  Stack variables in subroutines called from parallel regions
–  Fortran: Automatic variables within a statement block

Data scope attributes clauses

•  The clauses private(list), shared(list), default and firstprivate
(list) allow the user to control the scope attributes of variables for the
duration of the parallel region in which they appear. The variables are listed
in brackets right after the clause.

•  PRIVATE variables behave as follows:
–  A new object of the same type is declared once for each thread in the team

–  All references to the original object are replaced with references to the new
object

–  Variables declared PRIVATE are uninitialized for each thread

•  The FIRSTPRIVATE clause combines the behavior of the PRIVATE
clause with automatic initialization of the variables in its list. Listed
variables are initialized according to the value of their original objects prior
to entry into the parallel or work-sharing construct.

REDUCTION clause

•  reduction(operator : variable-list)
•  This clause performs a reduction on the variables that appear in list, with

the operator or the intrinsic procedure specified.
•  Operator is one of the following:

–  Fortran: +, *, -, .AND., .OR., .EQV., .NEQV., MIN, MAX
–  C/C++: +, *, -, &, ^, |, &&, ||, min, max

•  The following are only available for Fortran: IAND, IOR, IEOR
•  Variables that appear in a REDUCTION clause must be SHARED in the

enclosing context. A private copy of each variables in list is created for
each thread as if the PRIVATE clause had been used.

COPYIN clause

•  The COPYIN clause provides a means for assigning the same value to
THREADPRIVATE variables for all threads in the team.
–  The THREADPRIVATE directive is used to make global file scope variables

(C/C++) or common blocks (Fortran) local and persistent to a thread through
the execution of multiple parallel regions.

•  List contains the names of variables to copy. In Fortran, the list can contain
both the names of common blocks and named variables.

•  The master thread variable is used as the copy source. The team threads are
initialized with its value upon entry into the parallel construct.

IF clause

•  If present, it must evaluate to .TRUE. (Fortran) or non-zero (C/C++) in
order for a team of threads to be created. Otherwise, the region is executed
serially by the master thread.

•  Only a single IF clause can appear on the directive.

How many threads?

•  The number of threads in a parallel region is determined by the
following factors, in order of precedence:
1.  If the NUM_THREADS clause appears after the directive name, the

number of threads specified is used for that parallel region.
2.  Use of the omp_set_num_threads() library function
3.  Setting of the OMP_NUM_THREADS environment variable
4.  Implementation default

•  The threads are numbered from 0 (master thread) to N-1
•  By default, a program with multiple parallel regions will use the same

number of threads to execute each region. This behavior can be
changed to allow the run-time system to dynamically adjust the
number of threads that are created for a given parallel section. The
num_threads clause is an example of this.

Fortran example of PARALLEL construct
PROGRAM REDUCTION
 INTEGER tnumber,I,J,K,OMP_GET_THREAD_NUM
 I=0; J=1; K=5
 PRINT *, "Before Par Region: I=",I," J=", J," K=",K

!$OMP PARALLEL PRIVATE(tnumber) REDUCTION(+:I)&
!$OMP REDUCTION(*:J) REDUCTION(MAX:K)
 tnumber=OMP_GET_THREAD_NUM()
 I = I + tnumber
 J = J*tnumber
 K = MAX(K,tnumber)
 PRINT *, "Thread ",tnumber," I=",I," J=", J," K=",K
!$OMP END PARALLEL

 PRINT *, ""
 print *, "Operator + * MAX"
 PRINT *, "After Par Region: I=",I," J=", J," K=",K
END PROGRAM REDUCTION

C example of PARALLEL construct

#include <omp.h>
main () {
 int nthreads, tid; /* Fork a team of threads giving
 them their own copies of variables */
#pragma omp parallel private(nthreads, tid)
 { /* Obtain and print thread id */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */
 if (tid == 0){
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 } /* All threads join master thread and terminate */
}

Work-Sharing Constructs

•  A work-sharing construct divides the execution of the enclosed code region
among the members of the team that encounter it.

•  Work-sharing constructs do not launch new threads
•  There is no implied barrier upon entry to a work-sharing construct,

however there is an implied barrier at the end of a work sharing construct.
•  Types of Work-Sharing Constructs:

–  DO / for - shares iterations of a loop across the team. Represents a type of
"data parallelism".

–  SECTIONS - breaks work into separate, discrete sections. Each section is
executed by a thread. Can be used to implement a type of "functional
parallelism".

–  SINGLE - serializes a section of code
–  WORKSHARE - divides the execution of the enclosed structured block into

separate units of work

Work-Sharing Constructs Restrictions

•  A work-sharing construct must be enclosed dynamically within a parallel
region in order for the directive to execute in parallel.

•  Work-sharing constructs must be encountered by all members of a team or
none at all.

•  Successive work-sharing constructs must be encountered in the same order
by all members of a team.

DO/for directive

•  Purpose:
–  The DO / for directive specifies that the iterations of the loop immediately

following it must be executed in parallel by the team. This assumes a parallel
region has already been initiated, otherwise it executes in serial on a single
processor.

•  Restrictions:
–  The DO loop can not be a DO WHILE loop, or a loop without loop control.

Also, the loop iteration variable must be an integer and the loop control
parameters must be the same for all threads.

–  Program correctness must not depend upon which thread executes a particular
iteration.

–  It is illegal to branch out of a loop associated with a DO/for directive.

Format of DO construct

!$OMP DO [clause ...
 SCHEDULE (type [,chunk])
 ORDERED
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 SHARED (list)
 REDUCTION (operator | intrinsic : list)
]
 do_loop

!$OMP END DO [NOWAIT]

(C/C++) Format of “for” construct

#pragma omp for [clause ...] newline
 { for-loop }

Where clauses are:
 schedule (type [,chunk])
 ordered
 private(list)
 firstprivate(list)
 lastprivate(list)
 shared(list)
 reduction(operator : variable-list)
 nowait

SCHEDULE clause

•  Describes how iterations of the loop are divided among the threads in the
team. For both C/C++ and Fortran.

•  STATIC:
–  Loop iterations are divided into pieces of size chunk and then statically

assigned to threads. If chunk is not specified, the iterations are evenly (if
possible) divided contiguously among the threads.

•  DYNAMIC:
–  Loop iterations are divided into pieces of size chunk, and dynamically

scheduled among the threads; when a thread finishes one chunk, it is
dynamically assigned another. The default chunk size is 1.

SCHEDULE clause

•  GUIDED:
–  The chunk size is exponentially reduced with each dispatched piece of the

iteration space. The chunk size specifies the minimum number of iterations to
dispatch each time.. The default chunk size is 1.

•  RUNTIME:
–  The scheduling decision is deferred until runtime by the environment variable

OMP_SCHEDULE. It is illegal to specify a chunk size for this clause.

•  The default schedule is implementation dependent. Implementation may
also vary slightly in the way the various schedules are implemented.

DO/for directive clauses

•  ORDERED:
–  Must be present when ORDERED directives are enclosed within the DO/for

directive.

–  Should be used only for debugging…

•  LASTPRIVATE(list)
–  The LASTPRIVATE clause combines the behavior of the PRIVATE clause

with a copy from the last loop iteration or section to the original variable
object.

–  The value copied back into the original variable object is obtained from the last
(sequentially) iteration or section of the enclosing construct. For example, the
team member which executes the final iteration for a DO section, or the team
member which does the last SECTION of a SECTIONS context performs the
copy with its own values.

NOWAIT clause

•  If specified, then the threads do not synchronize at the end of the parallel
loop. Threads proceed directly to the next statements after the loop.

•  In C/C++, must be in lowercase: nowait

•  For Fortran, the END DO directive is optional at the end of the loop.

Fortran example DO directive
PROGRAM VEC_ADD_DO
 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=1000)
 PARAMETER (CHUNKSIZE=100)
 REAL A(N), B(N), C(N)
 ! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
 CHUNK = CHUNKSIZE
 !$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
 !$OMP DO SCHEDULE(DYNAMIC,CHUNK)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
 !$OMP END DO NOWAIT
 !$OMP END PARALLEL
END

C/C++ example of “for” directive
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main()
{
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;

 #pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
}

SECTIONS directive

•  The SECTIONS directive is a non-iterative work-sharing construct. It
specifies that the enclosed section(s) of code are to be divided among the
threads in the team.

•  Independent SECTION directives are nested within a SECTIONS directive
Each SECTION is executed once by a thread in the team. Different
sections will be executed by different threads.

Fortran format of SECTIONS construct

!$OMP SECTIONS [clause ...
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 REDUCTION (operator | intrinsic : list)
]
[!$OMP SECTION]
 block

[!$OMP SECTION
 block]
 …
!$OMP END SECTIONS [NOWAIT]

(C/C++) Format of sections construct

#pragma omp sections [clause ...] newline
 {
 [#pragma omp section newline]
 structured-block
 [#pragma omp section newline
 structured-block]
 …
 }

Where clauses are:
 private(list)
 firstprivate(list)
 lastprivate(list)
 reduction(operator : variable-list)
 nowait

Fortran example SECTIONS directive
PROGRAM VEC_ADD_SECTIONS
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N)
! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
!$OMP PARALLEL SHARED(A,B,C), PRIVATE(I), NUM_THREADS(2)
!$OMP SECTIONS
!$OMP SECTION
 DO I = 1, N/2
 C(I) = A(I) + B(I)
 ENDDO
!$OMP SECTION
 DO I = 1+N/2, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL
END

C/C++ example of “sections” directive
#include <omp.h>
#define N 1000
main()
{
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i) num_threads(2)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i < N/2; i++)
 c[i] = a[i] + b[i];
 #pragma omp section
 for (i=N/2; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of sections */
 } /* end of parallel section */
}

SINGLE directive

•  The SINGLE directive specifies that the enclosed code is to be executed by
only one thread in the team.

•  May be useful when dealing with sections of code that are not thread safe
(such as I/O).

•  Threads in the team that do not execute the SINGLE directive, wait at the
end of the enclosed code block, unless a nowait (C/C++) or NOWAIT
(Fortran) clause is specified.

•  Format:
–  Fortran: !$OMP SINGLE [clause…] … !$OMP END SINGLE
–  C/C++: #pragma omp single [clause ...] newline
–  Clauses: private(list), firstprivate(list), nowait

Combined Parallel Work-Sharing Constructs:
PARALLEL DO

•  This is one of the simplest and most useful constructs for fine-grain
parallelism.

PROGRAM VEC_ADD_DO
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N)
 ! Some initializations
 !$OMP PARALLEL DO !By default, the static schedule
 DO I = 1, N !will be used and the loop will
 A(I) = I * 1.0 !be divided in equal chunks
 B(I) = A(I)
 ENDDO ! No need to put the END DO directive here

 !$OMP PARALLEL DO SHARED(A,B,C) PRIVATE(I)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
END

Combined Parallel Work-Sharing Constructs:
“parallel for”

#include <omp.h>
#define N 1000
main()
{
 int i;
 float a[N], b[N], c[N];

 /* Some parallel initialization */
 #pragma omp parallel for
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;

 #pragma omp parallel for private(i)
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
}

Synchronization Constructs

•  Let two threads on two different processors both trying to increment a
variable x at the same time (assume x is initially 0):

THREAD 1:
increment(x)
 { x = x + 1; }

THREAD 1:
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2:
increment(x)
 { x = x + 1; }

THREAD 2:
10 LOAD B, (x address)
20 ADD B, 1
30 STORE B, (x address)

One possible execution sequence:
1.  Thread 1 loads the value of x into

register A.
2.  Thread 2 loads the value of x into

register B.
3.  Thread 1 adds 1 to register A

4. Thread 2 adds 1 to register B
5. Thread 1 stores register A at

location x
6. Thread 2 stores register B at

location x
The resultant value of x will be 1, not

2 as it should be.

Synchronization Constructs

•  To avoid the situation shown on the previous slide, the increment of x must
be synchronized between the two threads to insure that the correct result is
produced.

•  OpenMP provides a variety of Synchronization Constructs that control how
the execution of each thread proceeds relative to other team threads:
–  OMP MASTER
–  OMP CRITICAL
–  OMP BARRIER
–  OMP ATOMIC
–  OMP FLUSH
–  OMP ORDERED

Example…

real(8):: density(mzeta,mgrid)
density=0.

 do m=1,me
 kk=kzelectron(m)
 ij=jtelectron0(m)
 density(kk,ij) = density(kk,ij) + wzelectron(m)
 enddo

What happens when trying to parallelize this loop with OpenMP?

 Need to protect updates to density array!

One solution…

real(8) :: density(mzeta,mgrid),dnitmp(mzeta,mgrid)

!$omp parallel private(dnitmp)
 dnitmp=0. ! Set array elements to zero
!$omp do private(m,kk,ij)
 do m=1,me
 kk=kzelectron(m)
 ij=jtelectron0(m)
 dnitmp(kk,ij) = dnitmp(kk,ij) + wzelectron(m)
 enddo

!$omp critical
 do ij=1,mgrid
 do kk=1,mzeta
 density(kk,ij) = density(kk,ij) + dnitmp(kk,ij)
 enddo
 enddo
!$omp end critical
!$omp end parallel

THREADPRIVATE directive

•  The THREADPRIVATE directive is used to make global file scope
variables (C/C++) or Fortran common blocks and modules local and
persistent to a thread through the execution of multiple parallel regions.

•  The directive must appear after the declaration of listed variables/common
blocks. Each thread then gets its own copy of the variable/common block,
so data written by one thread is not visible to other threads.

•  Format:
–  Fortran: !$OMP THREADPRIVATE (/cb/, …)
–  C/C++: #pragma omp threadprivate (list)

THREADPRIVATE directive

•  On first entry to a parallel region, data in THREADPRIVATE variables,
common blocks, and modules should be assumed undefined, unless a
COPYIN clause is specified in the PARALLEL directive.

•  THREADPRIVATE variables differ from PRIVATE variables because
they are able to persist between different parallel sections of a code.

•  Data in THREADPRIVATE objects are guaranteed to persist only if the
dynamic threads mechanism is "turned off" and the number of threads in
different parallel regions remains constant. The default setting of dynamic
threads is undefined (although usually “static” in practice).

Fortran example of THREADPRIVATE

 PROGRAM THREADPRIV
 INTEGER ALPHA(10), BETA(10), I
 COMMON /A/ ALPHA
!$OMP THREADPRIVATE(/A/)
C Explicitly turn off dynamic threads
 CALL OMP_SET_DYNAMIC(.FALSE.)
C First parallel region
!$OMP PARALLEL PRIVATE(BETA, I)
 DO I=1,10
 ALPHA(I) = I
 BETA(I) = I
 END DO
!$OMP END PARALLEL
C Second parallel region
!$OMP PARALLEL
 PRINT *, 'ALPHA(3)=',ALPHA(3), ' BETA(3)=',BETA(3)
!$OMP END PARALLEL
 END

C/C++ example of threadprivate construct
#include <omp.h>

int alpha[10], beta[10], i;
#pragma omp threadprivate(alpha)

main() {
/* Explicitly turn off dynamic threads */
 omp_set_dynamic(0);

/* First parallel region */
 #pragma omp parallel private(i,beta)
 for (i=0; i < 10; i++)
 alpha[i] = beta[i] = i;

/* First parallel region */
 #pragma omp parallel
 printf(“alpha[3]= %d and beta[3]= %d\n”,alpha[3],beta[3]);

}

OpenMP library routines

•  The OpenMP standard defines an API for library calls that perform a
variety of functions:
–  Query the number of threads/processors, set number of threads to use
–  General purpose locking routines (semaphores)
–  Set execution environment functions: nested parallelism, dynamic

adjustment of threads.
•  For C/C++, it is necessary to specify the include file "omp.h".
•  For the Lock routines/functions:

–  The lock variable must be accessed only through the locking routines
–  For Fortran, the lock variable should be of type integer and of a kind large

enough to hold an address.
–  For C/C++, the lock variable must have type omp_lock_t or type

omp_nest_lock_t, depending on the function being used.

OMP_SET_NUM_THREADS
•  Sets the number of threads that will be used in the next parallel region.
•  Format:

–  Fortran
•  SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

–  C/C++
•  void omp_set_num_threads(int num_threads)

•  Notes & Restrictions:
•  The dynamic threads mechanism modifies the effect of this routine.

–  Enabled: specifies the maximum number of threads that can be used for any
parallel region by the dynamic threads mechanism.

–  Disabled: specifies exact number of threads to use until next call to this routine.
•  This routine can only be called from the serial portions of the code
•  This call has precedence over the OMP_NUM_THREADS environment

variable

OMP_GET_NUM_THREADS

•  Purpose:
–  Returns the number of threads that are currently in the team executing the

parallel region from which it is called.
•  Format:

–  Fortran
•  INTEGER FUNCTION OMP_GET_NUM_THREADS()

–  C/C++
•  int omp_get_num_threads(void)

•  Notes & Restrictions:
–  If this call is made from a serial portion of the program, or a nested parallel

region that is serialized, it will return 1.
–  The default number of threads is implementation dependent.

OMP_GET_THREAD_NUM

•  Returns the thread number of the thread, within the team, making this call.
This number will be between 0 and OMP_GET_NUM_THREADS-1. The
master thread of the team is thread 0

•  Format:
–  Fortran

•  INTEGER FUNCTION OMP_GET_THREAD_NUM()
–  C/C++

•  int omp_get_thread_num(void)

•  Notes & Restrictions:
–  If called from a nested parallel region, or a serial region, this function will

return 0.

Example of omp_get_thread_num

CORRECT:

PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

!$OMP PARALLEL PRIVATE(TID)
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID ...
!$OMP END PARALLEL

END

INCORRECT:
•  TID must be PRIVATE

PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

!$OMP PARALLEL
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ',
TID ...

!$OMP END PARALLEL

END

Other functions and subroutines

•  OMP_GET_MAX_THREADS()
–  Returns the maximum value that can be returned by a call to the

OMP_GET_NUM_THREADS function.

•  OMP_GET_NUM_PROCS()
–  Returns the number of processors that are available to the program.

•  OMP_IN_PARALLEL
–  May be called to determine if the section of code which is executing is parallel

or not.

More functions…

•  OMP_SET_DYNAMIC()
–  Enables or disables dynamic adjustment (by the run time system) of the number

of threads available for execution of parallel regions.

•  OMP_GET_DYNAMIC()
–  Used to determine if dynamic thread adjustment is enabled or not.

•  OMP_SET_NESTED()
–  Used to enable or disable nested parallelism.

•  OMP_GET_NESTED
–  Used to determine if nested parallelism is enabled or not.

OpenMP “locking” functions

•  OMP_INIT_LOCK()
–  This subroutine initializes a lock associated with the lock variable.

•  OMP_DESTROY_LOCK()
–  This subroutine disassociates the given lock variable from any locks.

•  OMP_SET_LOCK()
–  This subroutine forces the executing thread to wait until the specified lock is

available. A thread is granted ownership of a lock when it becomes available.
•  OMP_UNSET_LOCK()

–  This subroutine releases the lock from the executing subroutine.
•  OMP_TEST_LOCK()

–  This subroutine attempts to set a lock, but does not block if the lock is
unavailable.

OpenMP timing functions

•  OMP_GET_WTIME()
–  This function returns a double precision value equal to the elapsed wallclock

time in seconds since some arbitrary time in the past.
–  The times returned are “per-thread times”.

•  OMP_GET_WTICK()
–  This function returns a double precision value equal to the number of seconds

between successive clock ticks.

•  Consults the OpenMP specification for more details on all the subroutines
and functions:
–  http://www.openmp.org/specs

OpenMP environment variables

•  OpenMP provides four environment variables for controlling the execution
of parallel code.

•  All environment variable names are uppercase. The values assigned to
them are not case sensitive.

•  OMP_SCHEDULE
–  Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/C++)

directives which have their schedule clause set to RUNTIME. The value of this
variable determines how iterations of the loop are scheduled on processors. For
example:

•  setenv OMP_SCHEDULE "guided, 4"
•  setenv OMP_SCHEDULE "dynamic"

OpenMP environment variables…

•  OMP_NUM_THREADS (the most used…)
–  Sets the maximum number of threads to use during execution. For example:

setenv OMP_NUM_THREADS 8

•  OMP_DYNAMIC
–  Enables or disables dynamic adjustment of the number of threads available for

execution of parallel regions. Valid values are TRUE or FALSE. For example:
setenv OMP_DYNAMIC TRUE

•  OMP_NESTED (rarely implemented on current systems)
–  Enables or disables nested parallelism. Valid values are TRUE or FALSE. For

example: setenv OMP_NESTED TRUE

Example: parallelize our π test code with
OpenMP

 program fpi!
 double precision PI25DT!
 parameter (PI25DT = 3.141592653589793238462643d0)!
 double precision mypi, pi, h, sum, x, f, a!
 integer n, myid, numprocs, i, j, ierr!

 open(12,file='ex4.in',status='old')!
 read(12,*) n!
 close(12)!
 write(*,*)' number of intervals=',n!
c!
 h = 1.0d0/n!
 sum = 0.0d0!

!omp parallel do private(i,x) shared(h,n) reduction(+:sum)!
 do i = 1, n!
 x = h * (dble(i) - 0.5d0)!
 sum = sum + 4.d0/(1.d0 + x*x)!
 enddo!
 mypi = h * sum!
c!
 pi = mypi!
 write(*,*)' pi=',pi,' Error=',abs(pi - PI25DT)!

 end!

Summation ordering issues

•  What happens when we use a different integrand? such as:

•  If the numbers that you add up together are separated by a large order of
magnitude (very small and very large numbers together), the order of the
summation matters. Ideally you need to sort all the numbers and add them
in ascending order (smallest to largest) otherwise you will get a different
answer. If the variation is in the last 3 or 4 digits of a double precision
number it might not matter.

•  During an OpenMP reduction, the order in which the threads add up the
numbers varies from one run to another. Something to keep in mind…

Books on OpenMP

References

•  Excellent tutorial from SC’08 conference posted at:
–  http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf
–  See references within document

•  More tutorials:
–  http://static.msi.umn.edu/tutorial/scicomp/general/openMP/index.html
–  https://computing.llnl.gov/tutorials/openMP/

•  See http://openmp.org/wp/resources/

Mixing MPI and OpenMP
together in the same application

Why use both MPI and OpenMP in the
same code?

•  To save memory by not having to replicate data common to all processes,
not using ghost cells, sharing arrays, etc.

•  To optimize interconnect bandwidth usage by having only one MPI process
per NUMA node.

•  Although MPI generally scales very well it has its limit, and OpenMP gives
another avenue of parallelism.

•  Some compilers have now implemented OpenMP-like directives to run
sections of a code on general-purpose GPU (GPGPU). Fine-grain
parallelism with OpenMP directives is easy to port to GPUs.

•  Processes are “heavy” while threads are “light” (fast creation and context
switching).

Implementing mixed-model

•  Easiest and safest way:
–  Coarse grain MPI with fine grain loop-level OpenMP
–  All MPI calls are done outside the parallel regions
–  This is always supported

•  Allowing the master thread to make MPI calls inside a parallel region
–  Supported by most if not all MPI implementations

•  Allowing ALL threads to make MPI calls inside the parallel regions
–  Requires MPI to be fully thread safe
–  Not the case for all implementations
–  Can be tricky…

Find out the level of support of your MPI library

int MPI_Init_thread(int * argc, char ** argv[],
 int thread_level_required,

 int * thead_level_provided);
int MPI_Query_thread(int * thread_level_provided);

int MPI_Is_main_thread(int * flag);

MPI-2 “Init” functions for multi-threaded MPI processes:

•  “Required” values can be:
•  MPI_THREAD_SINGLE: Only one thread will execute
•  MPI_THREAD_FUNNELED: Only master thread will make

MPI-calls
•  MPI_THREAD_SERIALIZED: Multiple threads may make

MPI-calls, but only one at a time
•  MPI_THREAD_MULTIPLE: Multiple threads may call

MPI,without restrictions
•  “Provided” returned value can be less than “required” value

Compiling and linking mixed code

•  Just add the “openmp” compiler option to the compile AND link lines (if
separate from each other):
–  mpicc –openmp mpi_omp_code.c –o a.out
–  mpif90 –openmp mpi_omp_code.f90 –o a.out

Launching a mixed job

•  Set OMP_NUM_THREADS and then launch job with “mpirun” or
“mpiexec”

•  If you have an “UMA-type” node where all the cores have the same level
of access to memory, use a single MPI process per node by using a hostfile
(or machinefile) on a cluster

 export OMP_NUM_THREADS=4
 mpiexec –n 4 –hostfile mfile a.out >& out < in &

 %cat mfile
 machine1.princeton.edu
 machine2.princeton.edu
 machine3.princeton.edu
 machine4.princeton.edu

•  This job will use 16 cores: 4 MPI processes with 4 OpenMP threads each

How to deal with the batch system

•  When submitting a job to a batch system, such as PBS, you do not know in
advance which nodes you will get.

•  However, that information is stored in $PBS_NODEFILE
•  If you launch a single MPI process per node you can do:

 /bin/cat $PBS_NODEFILE | uniq > mfile

 nprocs=`wc -l mfile | awk '{print $1}’`

 export OMP_NUM_THREADS=8

 mpiexec –n $nprocs –hostfile mfile ./mpi_omp_code

•  Make sure that the number of cores that you are asking for equals
nprocs*OMP_NUM_THREADS

•  On non-uniform memory access (NUMA) nodes, one needs to be careful
how the memory gets assigned to reach good performance.

•  When in doubt, use 1 MPI process per “NUMA node”

Watch out for NUMA

CRAY XE6 node

NUMA
node

Launching a NUMA-aware job on the
CRAY XE6

•  Commands to launch a job that uses 1 MPI process per NUMA node on the
XE6:

 #PBS -l mppwidth=96
 #PBS -V
 #PBS -l walltime=1:00:00
 cd $PBS_O_WORKDIR
 export OMP_NUM_THREADS=6
 aprun -n 16 -d 6 -N 4 -S 1 -ss ./hybrid.x

•  You can still use a single MPI process per node but should use a “first-
touch” method to allocate memory close to the threads

What about OpenACC???

Running codes on GPUs?
What’s the big deal?

•  NVIDIA GeForce GTX 690
•  Based on latest Kepler technology
•  2X GK104 GPU chips
•  3072 CUDA cores
•  384 GB/s memory bandwidth
•  4.58 Teraflops single precision

performance
•  0.19 Tflops double precision
•  Frequency 1.019 GHz
•  4 GB GDDR5 memory
•  For awesome double precision

performance, go for the Tesla
K20/K40 hardware

Side-by-side comparison of
CPU vs. GPU

Processor Intel Xeon E5-2690
“Sandy Bridge”

NVIDIA K20 Tesla GPU
“Kepler” (Fermi)

No. of cores per “node” 16 cores (2x 8/chip) 2,880 (512)

Frequency 2.9 GHz ~1 GHz

Memory bandwidth 51.2 GB/sec ~320 GB/s (177)

Peak Flops 371 GFlops ~2000 Gflops (665)

Memory (shared) 32 – 64 GB 6 GB

What is the difference between
a GPU and a CPU?

•  How different is the GPU in terms of hardware architecture?
–  NVIDIA has been introducing more “scientific-code-friendly”

hardware in its GPUs, such as more and faster double precision units,
memory error correction (ECC), IEEE standard operations, etc.

–  The introduction of the “TESLA” model of GPU by NVIDIA has taken
the hardware beyond the “gaming” business

•  What makes it achieve such high performance compared to CPU?
•  Why do we need CPUs at all then?!!?

Start with a “CPU-style” core…

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Remove everything that makes a single
instruction stream go fast

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Put many of these simple cores together

•  Let’s not forget the original
purpose of the GPU though:
•  Same operations applied to

a large number of vertices,
pixels, polygons, …

= DATA PARALLEL or
 SIMD (Single Instruction

 Multiple Data)

Better known in our
community as

VECTOR PROCESSING

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

So let’s add some arithmetic units and have
them share a stream of instructions

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

The secret to GPU high throughput:
massive multi-threading + interleaving

NOT SIMD
But rather

SIMT!
Single

Instruction
Multiple
Threads

255 registers
per thread!!

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Classic picture of CPU vs. GPU

NVIDIA Kepler GPU

GK110 chip (15 SMX, 2048 threads/SMX, 7.1 billion transistors)

Using and programming GPUs

•  Several possibilities
–  OpenGL: computer graphics functions used by game developers. NOT

a good idea for scientific codes!!
–  CUDA: NVIDIA-specific programming language built as an extension

of standard C language. Best approach to get the most out of your
GPU. CUDA kernels not portable though. Also available for
FORTRAN but only through the PGI compiler.

–  OpenACC compiler directives similar to OpenMP. Portable code. Easy
to get started. Available for a few compilers.

–  Libraries, commercial software, domain-specific environments, . . .
–  OpenCL: open standard, platform- and vendor independent

•  Works on both GPU AND CPU!!
•  Even harder than CUDA though…

Hardware considerations affecting GPU
programming

•  Keep “kernel” data resident on GPU memory as much as possible
•  Avoid frequent copying between CPU and GPU
•  Use asynchronous, non-blocking, communication, multi-level overlapping

GPU
~ 1TF

CPU
~150GF

6 GB
GDDR5

32 GB
DDR3

~200 GB/sec ~42 GB/sec

PCIe-2
8 GB/sec

Bottleneck!

What to do first…

•  MOST IMPORTANT:
–  Find and expose as much parallelism as you can in your code.
–  You need LOTS of parallel operations to keep the GPU busy!
–  Try to remove as many dependencies as you can between successive iterations

in a loop.
–  The ideal case is when each iteration is completely independent from the others

 VECTORIZATION

Goals of OpenACC

•  Same idea as OpenMP
–  Simplify the programming of complex hardware by using directives (hides a lot

of the complexity)
–  Least changes to your code
–  Portable across different accelerators (nvidia, ATI, Intel Xeon Phi) as opposed

to CUDA, which works only on nvidia GPUs
•  Works for Fortran, C, C++
•  When running the same code on a multi-core CPU you can use OpenMP

directives instead of OpenACC and run in parallel on the CPU as well
–  Use preprocessor macros “_OPENACC” and “_OPENMP” to direct

compilation according to available hardware
•  http://www.openacc-standard.org
•  http://www.pgroup.com/doc/openACC_gs.pdf
•  Version 1.0 was limited in terms of features but 2.0 is much, much better

Example of OpenACC directive

subroutine smooth(a, b, w0, w1, w2, n, m)
 real, dimension(:,:) :: a,b
 real :: w0, w1, w2
 integer :: n, m
 integer :: i, j
!$acc parallel loop
 do i = 2,n-1
 do j = 2,m-1
 a(i,j)= w0 * b(i,j) + &
 w1 * (b(i-1,j) + b(i,j-1) + b(i+1,j) + b(i,j+1)) + &
 w2 * (b(i-1,j-1) + b(i-1,j+1) + b(i+1,j-1) + b(i+1,j+1))
 enddo
 enddo

It can be as simple as the following:

CUDA vs OpenACC

•  Simple example: REDUCTION

 a=0.0!
 do i = 1,n!
 a = a + b(i)!
 end do!

“Simple” CUDA implementation

Ref: SC13 OpenACC tutorial, Luiz DeRose, Alistair Hart, Heidi Poxon, & James Beyer

Simple “CUDA” implementation (cont.)

OpenACC version of the Reduction code

 !$acc data present(a,b,n)!
 a = 0.0!
 !$acc update device(a)!
 !$acc parallel!
 !$acc loop reduction(+:a)!
 do i = 1,n!
 a = a + b(i)!
 end do!
 !$acc end parallel!
 !$acc end data!

Another example
and why it won’t work well

PROGRAM main!
 INTEGER :: a(N)!
 <stuff>!
!$acc parallel loop!
 DO i = 1,N!
 a(i) = I!
 ENDDO!
!$acc end parallel loop!
!$acc parallel loop!

 DO i = 1,N!
 a(i) = 2*a(i)!
 ENDDO!
!$acc end parallel loop!
<stuff>!
END PROGRAM main!

•  Two accelerator parallel region
•  Compiler creates two kernels

–  Loop iterations automatically divided
across gangs,workers,vectors

–  Breaking parallel region acts as barrier
•  First kernel initialises array

–  Compiler will determine copyout(a)
•  Second kernel updates array

–  Compiler will determine copy(a)
•  Breaking parallel region=barrier
•  Array a(:) unnecessarily moved from

and to GPU between kernels
–  "data sloshing"

Another version that works better…

PROGRAM main!
 INTEGER :: a(N)!
 <stuff>!
!$acc data copyout(a)!
!$acc parallel loop!
 DO i = 1,N!
 a(i) = I!
 ENDDO!
!$acc end parallel loop!

!$acc parallel loop!
 DO i = 1,N!
 a(i) = 2*a(i)!
 ENDDO!
!$acc end parallel loop!
!$acc end data!
<stuff>!
END PROGRAM main!

•  Now added a data region
•  Specified arrays only moved at

boundaries of data region
•  Unspecified arrays moved by each

kernel
•  No compiler-determined movements for

data regions
•  Data region can contain host code and

accelerator regions
•  Copies of arrays independent
•  No automatic synchronisation of

copies within data region
–  User-directed synchronisation via

update directive

Most important OpenACC directives
http://www.openacc.org/sites/default/filesOpenACC_API_QuickRefGuide.pdf

•  parallel loop reduction(op, var) where op = +, *, min, max, …
•  copyin: a shared variable that is used read-only in the loopnest
•  copyout: a shared variable that is used write-only in the loopnest
•  copy: a shared variable that is used read-write in the loopnest
•  create: a shared variable that is a temporary in the loopnest
•  present: tells the compiler that the data is already on GPU. No need to copy
•  present_or_copy: if data not present on GPU copy from host

Data clauses can accept array section arguments
• Data scoping:

•  shared: all loop iterations all process the same version of the variable
•  private: each loop iteration uses variable separately
•  firstprivate: same as private except for initialization

• Compile with pgcc or pgf95 with “-acc” option!

That’s all for now…
Please check www.openacc.org

Thanks and
Happy parallel programming!

