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Goals for this tutorial 

1.  Get introduced to parallel programming for shared memory and 
distributed memory systems 

2.  Learn practical knowledge of MPI communication library 
3.  Learn practical knowledge of OpenMP directives for shared memory 

parallelism 
4.  Learn basic knowledge of OpenACC accelerator directives 
5.  Learn how to use all of the above in the same parallel application  



Why mixed programming? 
November 2013 top500 list 

(www.top500.org) 



Titan Cray XK7 hybrid system 

Processor:      AMD Interlagos (16) GPUs:                18,688 Tesla K20 
Cabinets:         200 Memory/node CPU:  32 GB 
# nodes:           18,688 Memory/node GPU:   6 GB 
# cores/node:   16 Interconnect:     Gemini 
Total cores:      299,008 Speed:                27 PF peak (17.6) 



Cray XK7 architecture 

Nework interconnect 

16-core AMD Opteron > 2000 “cores” nvidia K20X GPU node 



Why Parallel Computing? 

Why not run n instances of my code à la MapReduce/Hadoop? 
•  Want to speed up your calculation. 
•  Your problem is too large for a single node 
•  Want to use those extra cores on your multicore processor 
•  Solution: 

–  Split the work between several processor cores so that they can work in parallel 
–  Exchange data between them when needed 

•  How? 
–  Compiler auto-prallelization (only good for obvious parallelism) 
–  OpenMP directives on shared memory node 
–  Message Passing Interface (MPI) on distributed memory systems (works also on 

shared memory nodes) 
–  and others… 



Languages and libraries for parallel 
computing 

•  Multithreading or “shared memory parallelism” 
–  Directive-base OpenMP (deceptively easy) www.openmp.org (!$OMP DO) 
–  POSIX pthread programming (explicit parallelism, somewhat harder than MPI 

since one needs to manage threads access to memory). 
–  GPGPU (General-Purpose Graphical Processing Unit) programming with CUDA 

(nvidia) or OpenCL (similar to CUDA but more difficult) or OpenACC! 
•  PGAS global address space SPMD languages (using GASNet layer or other) 

–  Efficient single-sided communication on globally-addressable memory 
–  FORTRAN 2008 co-arrays 

•  Example: xarray(100,200)[*] where * is a process number 
•  “puts” and “gets” directly to and from remote memory via the network with little or no 

involvement from the CPU 
•  Works best on a specialized network, such as Cray XE6 Gemini interconnect 

–  UPC (http://upc.lbl.gov/): Similar to co-array Fortran but for C. 
•  MPI for distributed-memory parallelism (runs everywhere except GPUs) 



Let’s start with MPI… 



Reason to use MPI: Scalability and portability 

3D torus network interconnect 
(e.g. Cray XE6 or XK7) 3D torus interconnect 

On a large system! 

nodes 



MPI 

•  Context: distributed memory parallel computers 
–  Each processor has its own memory and cannot access the memory of other 

processors 
–  A copy of the same executable runs on each MPI process (processor core) 
–  Any data to be shared must be explicitly transmitted from one to another 

•  Most message passing programs use the single program multiple data 
(SPMD) model 
–  Each processor executes the same set of instructions 
–  Parallelization is achieved by letting each processor operate on a different piece 

of data 
–  Not to be confused with SIMD: Single Instruction Multiple Data a.k.a vector 

computing 



How to split the work between processors? 
Domain Decomposition 

•  Most widely used method for grid-based calculations 



How to split the work between processors? 
Split matrix elements in PDE solves 

•  See PETSc project:    



How to split the work between processors? 
“Coloring” 

•  Useful for particle simulations 

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4 



What is MPI? 

•  MPI stands for Message Passing Interface. 
•  It is a message-passing specification, a standard, for the vendors to 

implement. 
•  In practice, MPI is a set of functions (C) and subroutines (Fortran) used for 

exchanging data between processes. 
•  An MPI library exists on ALL parallel computing platforms so it is highly 

portable. 
•  The scalability of MPI is not limited by the number of processors/cores on 

one computation node, as opposed to shared memory parallel models. 



MPI standard 

•  MPI standard is a specification of what MPI is and how it should behave. 
Vendors have some flexibility in the implementation (e.g. buffering, 
collectives, topology optimizations, etc.). 

•   This tutorial focuses on the functionality introduced in the original MPI-1 
standard 

•  MPI-2 standard introduced additional support for 
–  Parallel I/O (many processes writing to a single file). Requires a parallel 

filesystem to be efficient 
–  One-sided communication: MPI_Put, MPI_Get 
–  Dynamic Process Management 

•  New MPI-3 standard starting to be implemented by compilers vendors 
–  Non-blocking collectives 
–  Improved one-sided communications 
–  Improved Fortran bindings for type check 
–  And more (see http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf) 



How much do I need to know? 

•  MPI has over 125 functions/subroutines 
•  Can actually do everything with about 6 of them although I would not 

recommend it 
•  Collective functions are EXTREMELY useful since they simplify the 

coding and vendors optimize them for their interconnect hardware 
•  One can access flexibility when it is required. 
•  One need not master all parts of MPI to use it.  



MPI Communicators 

•  A communicator is an identifier associated with a group of processes 
–  Each process has a unique rank within a specific communicator (the rank starts 

from 0 and has a maximum value of (nprocesses-1) ). 
–  Internal mapping of processes to processing units 
–  Always required when initiating a communication by calling an MPI function 

or routine. 
•  Default communicator MPI_COMM_WORLD, which contains all 

available processes. 
•  Several communicators can coexist 

–  A process can belong to different communicators at the same time, but has a 
unique rank in each communicator 



A sample MPI program in Fortran 90 

Program mpi_code 
  ! Load MPI definitions 
    use mpi (or include mpif.h) 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 



Header file 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

• Defines MPI-related parameters and 
functions 

• Must be included in all routines 
calling MPI functions 

• Can also use include file: 
              include mpif.h 



Initialization 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

• Must be called at the beginning of the 
code before any other calls to MPI 
functions 

•  Sets up the communication channels 
between the processes and gives each 
one a rank. 



How many processes do we have? 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

•  Returns the number of processes available 
under MPI_COMM_WORLD communicator 

•  This is the number used on the mpiexec (or 
mpirun) command: 

          mpiexec –n nproc a.out 



What is my rank? 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

•  Get my rank among all of the nproc processes 
under MPI_COMM_WORLD 

•  This is a unique number that can be used to 
distinguish this process from the others  



Termination 

Program mpi_code 
  ! Load MPI definitions 
    use mpi (or include mpif.h) 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

• Must be called at the end of the 
properly close all communication 
channels 

• No more MPI calls after finalize 



A sample MPI program in C 

#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
} 



Compiling and linking an MPI code 

•  Need to tell the compiler where to find the MPI include files and how to 
link to the MPI libraries. 

•  Fortunately, most MPI implementations come with scripts that take care of 
these issues: 
–  mpicc mpi_code.c –o a.out 
–  mpiCC mpi_code_C++.C –o a.out 
–  mpif90 mpi_code.f90 –o a.out 

•  Two widely used (and free) MPI implementations on Linux clusters are: 
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich) 
–  OPENMPI  (http://www.openmpi.org) 



Makefile 

•  Always a good idea to have a Makefile 

%cat Makefile 
CC=mpicc 
CFLAGS=-O 

% : %.c 
 $(CC) $(CFLAGS) $< -o $@ 



How to run an MPI executable 

•  The implementation supplies scripts to launch the MPI parallel calculation, 
for example: 
        mpirun –np #proc a.out 

     mpiexec –n #proc a.out 
     aprun –size #proc a.out (Cray XT) 
•  A copy of the same program runs on each processor core within its own 

process (private address space). 
•  Each process works on a subset of the problem. 
•  Exchange data when needed 

–  Can be exchanged through the network interconnect 
–  Or through the shared memory on SMP machines (Bus?) 

•  Easy to do coarse grain parallelism = scalable 

MPICH, OPENMPI 



mpirun and mpiexec 

•  Both are used for starting an MPI job 
•  If you don’t have a batch system, use mpirun 

   mpirun –np #proc –machinefile mfile a.out >& out < in & 

   %cat mfile 
    machine1.princeton.edu           machine1.princeton.edu 
    machine2.princeton.edu    OR     machine1.princeton.edu 
    machine3.princeton.edu           machine1.princeton.edu 
    machine4.princeton.edu           machine1.princeton.edu 

         1 MPI process per host                                4 MPI processes on same host 

•  PBS batch system usually takes care of arguments to mpiexec 



Batch System 

•  Submit a job script:  qsub script 
•  Check status of jobs:  qstat –a   (for all jobs) 
•  Stop a job:  qdel job_id 

###  --- PBS SCRIPT  --- 
#PBS –l nodes=4:ppn=2,walltime=02:00:00 
#PBS –q dque 
#PBS –V 
#PBS –N job_name 
#PBS –m abe 
cd $PBS_O_WORKDIR 
mpiexec a.out 



Basic MPI calls to exchange data 

•  Point-to-Point communications 
–  Only 2 processes exchange data 
–  It is the basic operation of all MPI calls 

•  Collective communications 
–  A single call handles the communication between all the processes in a 

communicator 
–  There are 3 types of collective communications 

•  Data movement (e.g. MPI_Bcast) 
•  Reduction (e.g. MPI_Reduce) 
•  Synchronization: MPI_Barrier  



Point-to-point communication 

Point to point:   2 processes at a time 

    MPI_Send(buf,count,datatype,dest,tag,comm,ierr) 

    MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr) 

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag, 
    recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr) 

where the datatypes are:  
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, 
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc… 

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc… 

Predefined Communicator: MPI_COMM_WORLD 



Collective communication: 
Broadcast 

•  One process (called “root”) sends data to all the other processes in the same 
communicator 

•  Must be called by all the processes with the same arguments 

MPI_Bcast(buffer,count,datatype,root,comm,ierr) 

P0 A B C D 

P1 

P2 

P3 

P0 A B C D 

P1 A B C D 

P2 A B C D 

P3 A B C D 

Broadcast 



Collective communication: 
Gather 

•  One root process collects data from all the other processes in the same 
communicator 

•  Must be called by all the processes in the communicator with the same 
arguments 

•  “sendcount” is the number of basic datatypes sent, not received (example 
above would be sendcount = 1) 

•  Make sure that you have enough space in your receiving buffer! 

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount, 
            recvtype,root,comm,ierr) 

P0 A 

P1 B 

P2 C 

P3 D 

P0 A B C D 

P1 

P2 

P3 

Gather 



Collective communication: 
Gather to All 

•  All processes within a communicator collect data from each other and end 
up with the same information 

•  Must be called by all the processes in the communicator with the same 
arguments 

•  Again, sendcount is the number of elements sent 

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount, 
              recvtype,comm,info) 

P0 A 

P1 B 

P2 C 

P3 D 

P0 A B C D 

P1 A B C D 

P2 A B C D 

P3 A B C D 

Allgather 



Collective communication: 
Reduction 

•  One root process collects data from all the other processes in the same 
communicator and performs an operation on the received data 

•  Called by all the processes with the same arguments 
•  Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical 

AND, OR, XOR, and a few more 
•  User can define own operation with MPI_Op_create() 

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr) 

P0 A 

P1 B 

P2 C 

P3 D 

Reduce (+) 

P0 A+B+C+D 

P1 

P2 

P3 



Collective communication: 
Reduction to All 

•  All processes within a communicator collect data from all the other 
processes and performs an operation on the received data 

•  Called by all the processes with the same arguments 
•  Operations are the same as for MPI_Reduce 

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr) 

P0 A 

P1 B 

P2 C 

P3 D 

Allreduce (+) 

P0 A+B+C+D 

P1 A+B+C+D 

P2 A+B+C+D 

P3 A+B+C+D 



More MPI collective calls 

One “root” process send a different piece of the data to each one of the other 
Processes (inverse of gather) 
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt, 
            recvtype,root,comm,ierr) 

Each process performs a scatter operation, sending a distinct message to all 
the processes in the group in order by index.  
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt, 
             recvtype,comm,ierr) 

Synchronization: When necessary, all the processes within a communicator can 
be forced to wait for each other although this operation can be expensive  
MPI_Barrier(comm,ierr) 



Blocking communications 

•  The call waits until the data transfer 
is done 
–  The sending process waits until all 

data are transferred to the system 
buffer 

–  The receiving process waits until all 
data are transferred from the system 
buffer to the receive buffer 

•  All collective communications are 
blocking 



Non-blocking 

•  Returns immediately after the 
data transferred is initiated 

•  Allows to overlap computation 
with communication 

•  Need to be careful though 
–  When send and receive buffers 

are updated before the transfer 
is over, the result will be 
wrong 



Non-blocking send and receive 

Point to point: 

    MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr) 

    MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr) 

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication 

    MPI_Wait(request,status,ierr) 

    MPI_Test(request,flag,status,ierr) 

MPI_Wait returns when the operation identified by “request” is complete. This is a non-
local operation. 

MPI_Test returns “flag = true” if the operation identified by “request” is complete. 
Otherwise it returns “flag = false”. This is a local operation. 

MPI-3 standard introduces “non-blocking collective calls” 



How to time your MPI code 

•  Several possibilities but MPI provides an easy to use function called 
“MPI_Wtime()”. It returns the number of seconds since an arbitrary point 
of time in the past. 

     FORTRAN: double precision MPI_WTIME() 
           C: double MPI_Wtime() 

     starttime=MPI_WTIME() 
       … program body … 
     endtime=MPI_WTIME() 
     elapsetime=endtime-starttime 



Debugging tips 

Use “unbuffered” writes to do “printf-debugging” and always write out the 
process id: 
   C:       fprintf(stderr,”%d: …”,myid,…); 
   Fortran: write(0,*)myid,’: …’ 

If the code detects an error and needs to terminate, use MPI_ABORT. The 
errorcode is returned to the calling environment so it can be any number. 
   C:       MPI_Abort(MPI_Comm comm, int errorcode); 
   Fortran: call MPI_ABORT(comm, errorcode, ierr) 

To detect a “NaN” (not a number): 
   C:       if (isnan(var)) 
   Fortran: if (var /= var) 

Use a parallel debugger such as Totalview or DDT if available 



References 

•  Just google “mpi”, or “mpi standard”, or “mpi tutorial”… 
•  http://www.mpi-forum.org (location of the MPI standard) 
•  http://www.llnl.gov/computing/tutorials/mpi/ 
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/ 
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html 
•  http://www-unix.mcs.anl.gov/mpi/tutorial/ 

•  MPI on Linux clusters: 
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/) 
–  Open MPI (http://www.open-mpi.org/) 

•  Books: 
–  Using MPI “Portable Parallel Programming with the Message-Passing Interface” by 

William Gropp, Ewing Lusk, and Anthony Skjellum 
–  Using MPI-2  “Advanced Features of the Message-Passing Interface” 



Example: calculating π using numerical 
integration 

#include <stdio.h>!
#include <math.h>!
int main( int argc, char *argv[] )!
{!
    int n, myid, numprocs, i;!
    double PI25DT = 3.141592653589793238462643;!
    double mypi, pi, h, sum, x;!
    FILE *ifp;!

    ifp = fopen("ex4.in","r");!
    fscanf(ifp,"%d",&n);!
    fclose(ifp);!
    printf("number of intervals = %d\n",n);!

    h   = 1.0 / (double) n;!
    sum = 0.0;!
    for (i = 1; i <= n; i++) {!
        x = h * ((double)i - 0.5);!
        sum += (4.0 / (1.0 + x*x));!
    }!
    mypi = h * sum;!

    pi = mypi;!
    printf("pi is approximately %.16f, Error is %.16f\n",!
            pi, fabs(pi - PI25DT));!

    return 0;!
}!

C version 



Root reads input and broadcast to all 
#include "mpi.h"!
#include <stdio.h>!
#include <math.h>!
int main( int argc, char *argv[] )!
{!
    int n, myid, numprocs, i, j, tag, my_n;!
    double PI25DT = 3.141592653589793238462643;!
    double mypi, pi, h, sum, x, pi_frac;!
    double tt0, tt1, ttf;!
    FILE *ifp;!
    MPI_Status  Stat;!
    MPI_Request request;!

    n = 1;!
    tag = 1;!

    MPI_Init(&argc,&argv);!
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs);!
    MPI_Comm_rank(MPI_COMM_WORLD,&myid);!

    tt0 = MPI_Wtime();!

    if (myid == 0) {!
       ifp = fopen("ex4.in","r");!
       fscanf(ifp,"%d",&n);!
       fclose(ifp);!
    }!
 /* Global communication. Process 0 "broadcasts" n to all other processes */!
    MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);!



Each process calculates its section of the integral 
and adds up results with MPI_Reduce 

… !
    h   = 1.0 / (double) n;!
    sum = 0.0;!
    for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {!
        x = h * ((double)i - 0.5);!
        sum += (4.0 / (1.0 + x*x));!
    }!
    mypi = h * sum;!

    pi = 0.;  /* It is not necessary to set pi = 0 */!

 /* Global reduction. All processes send their value of mypi to process 0!
    and process 0 adds them up (MPI_SUM) */!
    MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);!

    ttf = MPI_Wtime();!
    printf("myid=%d  pi is approximately %.16f, Error is %.16f  time = %10f\n",!
               myid, pi, fabs(pi - PI25DT), (ttf-tt0));!

    MPI_Finalize();!
    return 0;!
}!



OpenMP: a directive-based approach to 
shared memory parallelism 

http://www.openmp.org 



Why OpenMP? 

•  Each node consists of 2 x 16-core 
(or 12-core) sockets 

•  The sockets are linked together and 
share the entire memory on the node 

•  All 32 cores share the memory and 
the single access to the network 

•  If each core is running an MPI 
process and the code issues an MPI 
collective call (MPI_Alltoall), all 32 
processes will fight for access to the 
network at the same time! 

Cray XE6 architecture 



What is OpenMP? 

•  OpenMP is:  
–  An Application Program Interface (API) that may be used to explicitly direct 

multi-threaded, shared memory parallelism  
–  Comprised of three primary API components:  

•  Compiler Directives  
•  Runtime Library Routines  
•  Environment Variables  

–  Portable:  
•  The API is specified for C/C++ and Fortran  
•  All operating systems that can handle multithreading can in principle run OpenMP 

codes (Linux, Unix, MacOS X, Windows) 
–  Standardized:  

•  Jointly defined and endorsed by a group of major computer hardware and software 
vendors  

•  Expected to become an ANSI standard later? 



What are directives? 

•  In C or C++, preprocessor 
statements ARE directives. They 
“direct” the preprocessing stage. 

•  Parallelization directives tell the 
compiler to add some machine 
code so that the next set of 
instructions will be distributed to 
several processors and run in 
parallel. 

•  In FORTRAN, directives are 
special purpose comments 
inserted right before the loop or 
region to parallelize. 

C: 
#pragma omp parallel for private(idx) 
for (idx=1; idx <= n; idx++) { 
   a[idx] = b[idx] + c[idx];  
} 

Fortran: 
!$omp parallel do private(idx) 
do idx=1,n 
   a(idx) = b(idx) + c(idx) 
enddo  



Telling the compiler to process the 
directives 

•  Most, if not all compilers can process OpenMP directives and generate 
appropriate multi-threaded code. 

•  Be careful though. Some vendors are selling different versions of their 
compilers and the OpenMP support can come under a “parallel” or “high 
performance” version. 

•  This is achieved by using an option that instructs the compiler to activate 
and interpret all OpenMP directives. Here are a few examples: 
–  PGI compiler:  pgf90 –mp     and   pgcc –mp 
–  IBM xlf:  xlf90_r -qsmp=omp   and   xlc_r –qsmp=omp 
–  Linux gcc:  gcc –fopenmp 
–  Intel (Linux):  icc –openmp    and   ifort -openmp 

•  It is important to use the “thread-safe” versions of the XL compilers on 
the IBM systems (Blue Gene and Power systems). They have an extra 
“_r” added to their names (xlc_r, xlf90_r)  



Shared memory parallelism 

•  Multi-threaded parallelism (parallelism-on-demand) 
•  Fork-and-Join  Model (although we say “spawn” for threads and 

“fork” for processes). 

Spawn 
threads 

Parallel region Parallel region 

Serial 
region 

Serial 
region 

Serial 
region 

Spawn 
threads 

Destroy 
threads 

Destroy 
threads 



Process and thread: what’s the difference? 

•  You need an existing process to create a thread. 
•  Each process has at least one thread of execution. 
•  A process has its own virtual memory space that cannot be accessed by 

other processes running on the same or on a different processor. 
•  All threads created by a process share the virtual address space of that 

process. They read and write to the same address space in memory. They 
also share the same process and user ids, file descriptors, and signal 
handlers. However, they have their own program counter value and stack 
pointer, and can run independently on several processors. 



Amdahl’s law of scalability 

•  For p=0.8 the max 
speedup is 5!! 

•  The goal is to minimize 
the time spent in the 
serial regions 

•  Profile your code! 

where n is the number of 
processors and p the 
fraction of parallel 
work 



Goals of OpenMP 

•  Provide a standard among a variety of shared memory architectures/
platforms  

•  Establish a simple and limited set of directives for programming shared 
memory machines. Significant parallelism can be implemented by using 
just 3 or 4 directives.  

•  Provide capability to incrementally parallelize a serial program, unlike 
message-passing libraries which typically require an all or nothing 
approach  

•  Provide the capability to implement both coarse-grain and fine-grain 
parallelism. 
–  Coarse-grain = domain decomposition. 
–  Fine-grain = loop-level parallelism. 

•  Supports Fortran (77, 90, and 95), C, and C++ 
•  Public forum for API and membership  



Example of OpenMP code structure 

In FORTRAN: 
       PROGRAM HELLO  
              INTEGER VAR1, VAR2, VAR3 
              Serial code . . .  
              Beginning of parallel section. Fork a team of threads.  
             Specify variable scoping  
!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3) 
             Parallel section executed by all threads . . .  
            All threads join master thread and disband  
!$OMP END PARALLEL 
             Resume serial code . . .  
       END  



Example of code structure in C 

In C: 
#include <omp.h> 
main () { 
  int var1, var2, var3; 
 Serial code . . . 
 Beginning of parallel section. Fork a team of threads. 
 Specify variable scoping  
#pragma omp parallel private(var1, var2) shared(var3) 
 {  
    Parallel section executed by all threads . . . 
   All threads join master thread and disband  
 } 
 Resume serial code . . .  
}  



Directives format in Fortran 

sentinel directive-name [clause…] 
–  All Fortran OpenMP directives must begin with a sentinel. The accepted 

sentinels depend upon the type of Fortran source. Possible sentinels are:  !
$OMP, C$OMP, *$OMP 

–  Just use !$OMP and you will be fine… 
–  The sentinel must be followed by a valid directive name. 
–  Clauses are optional and can be in any order, and repeated as necessary 

unless otherwise restricted. 
–  All Fortran fixed form rules for line length, white space, continuation and 

comment columns apply for the entire directive line  

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)  



Fortran fixed form source 

•  Fixed Form Source:  
–  !$OMP C$OMP *$OMP are accepted sentinels and must start in column 1  
–  All Fortran fixed form rules for line length, white space, continuation and 

comment columns apply for the entire directive line  
–  Initial directive lines must have a space/zero in column 6.  
–  Continuation lines must have a non-space/zero in column 6.    

The following formats are equivalent: 

!234567 

!$OMP PARALLEL DO SHARED(A,B,C) 

C$OMP PARALLEL DO C$OMP+SHARED(A,B,C) 



Fortran free form source 

•  Free Form Source:  
–  !$OMP is the only accepted sentinel. Can appear in any column, but must be 

preceded by white space only.  
–  All Fortran free form rules for line length, white space, continuation and 

comment columns apply for the entire directive line  
–  Initial directive lines must have a space after the sentinel.  
–  Continuation lines must have an ampersand as the last non-blank character in 

a line. The following line must begin with a sentinel and then the 
continuation directives. 

!23456789 
    !$OMP PARALLEL DO & 
          !$OMP SHARED(A,B,C) 
  !$OMP PARALLEL & 
    !$OMP&DO SHARED(A,B,C) 



C / C++ Directives Format  

•  #pragma omp 
–  Required for all OpenMP C/C++ directives.  

•  directive-name 
–  A valid OpenMP directive. Must appear after the pragma and before any 

clauses.  
•  [clause, ...]  

–  This is optional. Clauses can be in any order, and repeated as necessary 
unless otherwise restricted.  

•  newline  
–  Required. Precedes the structured block which is enclosed by this 

directive.  

#pragma omp parallel default(shared) private(beta,pi) 



General rules for C/C++ format 

•  Directives follow conventions of the C/C++ standards for compiler 
directives  

•  Case sensitive  
•  Only one directive-name may be specified per directive (true with Fortran 

also)  
•  Each directive applies to at most one succeeding statement, which must be 

a structured block.  
•  Long directive lines can be "continued" on succeeding lines by escaping 

the newline character with a backslash ("\") at the end of a directive line.  



Conditional compilation: _OPENMP 

•  All OpenMP-compliant implementations define a macro named _OPENMP 
when the OpenMP compiler option is enabled. 

•  This macro can be used to include extra code at the preprocessing stage. 
•  Valid for both C and Fortran (requires .F or .F90 extension), although one 

can also use simply !$ in version 2.0 and higher for Fortran (see 
specification). 

#ifdef _OPENMP 
 iam = omp_get_thread_num() + index; 
#endif 

!$ iam = omp_get_thread_num() + & 
!$&      index 



PARALLEL Region Construct  

•  A parallel region is a block of code that will be executed by multiple 
threads. This is the fundamental OpenMP parallel construct. 

•  When a thread reaches a PARALLEL directive, it creates a team of threads 
and becomes the master of the team. The master is a member of that team 
and has thread number 0 within that team.  

•  Starting from the beginning of this parallel region, the code is duplicated 
and all threads will execute that code.  

•  There is an implied barrier at the end of a parallel section. Only the master 
thread continues execution past this point. 



Fortran format of PARALLEL construct 

!$OMP PARALLEL [ clauses … 
    PRIVATE (list) 
    SHARED (list) 
    DEFAULT (PRIVATE | SHARED | NONE) 
    FIRSTPRIVATE (list) 
    REDUCTION ({operator|intrinsic_procedure}: list) 
    COPYIN (list)  
    IF (scalar_logical_expression) 
    NUM_THREADS(scalar_integer_expression) 
    ] 
  block 
!OMP END PARALLEL 



C/C++ format of parallel construct 

#pragma omp parallel [ clauses ] new-line 
 { structured-block } 

Where clauses are: 
    private(list) 
    shared(list) 
    default(shared | none) 
    firstprivate(list) 
    reduction(operator : variable-list) 
    copyin(list) 
    if(scalar_expression) 
    num_threads(scalar_integer_expression) 



Data scope attribute clauses 

•  An important consideration for OpenMP programming is the understanding 
and use of data scoping. 

•  Because OpenMP is based on the shared memory programming model, 
most variables are shared by default between the threads. 

•  Global variables include (shared by default):  
–  Fortran: COMMON blocks, SAVE variables, MODULE variables  
–  C: File scope variables, static  

•  Private variables include (private by default):  
–  Loop index variables  
–  Stack variables in subroutines called from parallel regions  
–  Fortran: Automatic variables within a statement block  



Data scope attributes clauses 

•  The clauses private(list), shared(list), default and firstprivate
(list) allow the user to control the scope attributes of variables for the 
duration of the parallel region in which they appear. The variables are listed 
in brackets right after the clause. 

•  PRIVATE variables behave as follows:  
–  A new object of the same type is declared once for each thread in the team  

–  All references to the original object are replaced with references to the new 
object  

–  Variables declared PRIVATE are uninitialized for each thread  

•  The FIRSTPRIVATE clause combines the behavior of the PRIVATE 
clause with automatic initialization of the variables in its list. Listed 
variables are initialized according to the value of their original objects prior 
to entry into the parallel or work-sharing construct.  



REDUCTION clause 

•  reduction(operator : variable-list) 
•  This clause performs a reduction on the variables that appear in list, with 

the operator or the intrinsic procedure specified. 
•  Operator is one of the following:  

–  Fortran:  +, *, -, .AND., .OR., .EQV., .NEQV., MIN, MAX 
–  C/C++:   +, *, -, &, ^, |, &&, ||, min, max 

•  The following are only available for Fortran: IAND, IOR, IEOR 
•  Variables that appear in a REDUCTION clause must be SHARED in the 

enclosing context. A private copy of each variables in list is created for 
each thread as if the PRIVATE clause had been used. 



COPYIN clause 

•  The COPYIN clause provides a means for assigning the same value to 
THREADPRIVATE variables for all threads in the team. 
–  The THREADPRIVATE directive is used to make global file scope variables 

(C/C++) or common blocks (Fortran) local and persistent to a thread through 
the execution of multiple parallel regions.  

•  List contains the names of variables to copy. In Fortran, the list can contain 
both the names of common blocks and named variables.  

•  The master thread variable is used as the copy source. The team threads are 
initialized with its value upon entry into the parallel construct.  



IF clause 

•  If present, it must evaluate to .TRUE. (Fortran) or non-zero (C/C++) in 
order for a team of threads to be created. Otherwise, the region is executed 
serially by the master thread. 

•  Only a single IF clause can appear on the directive. 



How many threads? 

•  The number of threads in a parallel region is determined by the 
following factors, in order of precedence: 
1.  If the NUM_THREADS clause appears after the directive name, the 

number of threads specified is used for that parallel region.  
2.  Use of the omp_set_num_threads() library function  
3.  Setting of the OMP_NUM_THREADS environment variable  
4.  Implementation default  

•  The threads are numbered from 0 (master thread) to N-1 
•  By default, a program with multiple parallel regions will use the same 

number of threads to execute each region. This behavior can be 
changed to allow the run-time system to dynamically adjust the 
number of threads that are created for a given parallel section. The 
num_threads clause is an example of this. 



Fortran example of PARALLEL construct 
PROGRAM REDUCTION 
  INTEGER tnumber,I,J,K,OMP_GET_THREAD_NUM 
  I=0; J=1; K=5 
  PRINT *, "Before Par Region: I=",I," J=", J," K=",K 

!$OMP PARALLEL PRIVATE(tnumber) REDUCTION(+:I)& 
!$OMP  REDUCTION(*:J) REDUCTION(MAX:K) 
  tnumber=OMP_GET_THREAD_NUM() 
  I = I + tnumber 
  J = J*tnumber 
  K = MAX(K,tnumber) 
  PRINT *, "Thread ",tnumber," I=",I," J=", J," K=",K 
!$OMP END PARALLEL 

  PRINT *, "" 
  print *, "Operator            +     *    MAX" 
  PRINT *, "After Par Region:  I=",I," J=", J," K=",K 
END PROGRAM REDUCTION 



C example of PARALLEL construct 

#include <omp.h> 
main () { 
 int nthreads, tid;  /* Fork a team of threads giving 
                  them their own copies of variables */ 
#pragma omp parallel private(nthreads, tid) 
  {          /* Obtain and print thread id */ 
    tid = omp_get_thread_num(); 
    printf("Hello World from thread = %d\n", tid); 

    /* Only master thread does this */ 
    if (tid == 0){ 
       nthreads = omp_get_num_threads(); 
       printf("Number of threads = %d\n", nthreads); 
    } 
  } /* All threads join master thread and terminate */ 
}  



Work-Sharing Constructs  

•  A work-sharing construct divides the execution of the enclosed code region 
among the members of the team that encounter it.  

•  Work-sharing constructs do not launch new threads  
•  There is no implied barrier upon entry to a work-sharing construct, 

however there is an implied barrier at the end of a work sharing construct. 
•  Types of Work-Sharing Constructs:  

–  DO / for - shares iterations of a loop across the team. Represents a type of 
"data parallelism". 

–  SECTIONS - breaks work into separate, discrete sections. Each section is 
executed by a thread. Can be used to implement a type of "functional 
parallelism".  

–  SINGLE - serializes a section of code 
–  WORKSHARE - divides the execution of the enclosed structured block into 

separate units of work 



Work-Sharing Constructs Restrictions 

•  A work-sharing construct must be enclosed dynamically within a parallel 
region in order for the directive to execute in parallel.  

•  Work-sharing constructs must be encountered by all members of a team or 
none at all.  

•  Successive work-sharing constructs must be encountered in the same order 
by all members of a team. 



DO/for directive 

•  Purpose: 
–  The DO / for directive specifies that the iterations of the loop immediately 

following it must be executed in parallel by the team. This assumes a parallel 
region has already been initiated, otherwise it executes in serial on a single 
processor.  

•  Restrictions: 
–  The DO loop can not be a DO WHILE loop, or a loop without loop control. 

Also, the loop iteration variable must be an integer and the loop control 
parameters must be the same for all threads.  

–  Program correctness must not depend upon which thread executes a particular 
iteration.  

–  It is illegal to branch out of a loop associated with a DO/for directive. 



Format of DO construct 

!$OMP DO [clause ... 
       SCHEDULE (type [,chunk])  
       ORDERED 
       PRIVATE (list)  
       FIRSTPRIVATE (list)  
       LASTPRIVATE (list)  
       SHARED (list) 
       REDUCTION (operator | intrinsic : list) 
       ]  
   do_loop 

!$OMP END DO [ NOWAIT ]  



(C/C++) Format of “for” construct 

#pragma omp for [clause ...] newline  
 { for-loop } 

Where clauses are: 
    schedule (type [,chunk]) 
    ordered 
    private(list) 
    firstprivate(list) 
    lastprivate(list)  
    shared(list) 
    reduction(operator : variable-list) 
    nowait 



SCHEDULE clause 

•  Describes how iterations of the loop are divided among the threads in the 
team. For both C/C++ and Fortran. 

•  STATIC: 
–   Loop iterations are divided into pieces of size chunk and then statically 

assigned to threads. If chunk is not specified, the iterations are evenly (if 
possible) divided contiguously among the threads.  

•  DYNAMIC:  
–  Loop iterations are divided into pieces of size chunk, and dynamically 

scheduled among the threads; when a thread finishes one chunk, it is 
dynamically assigned another. The default chunk size is 1.  



SCHEDULE clause 

•  GUIDED:  
–  The chunk size is exponentially reduced with each dispatched piece of the 

iteration space. The chunk size specifies the minimum number of iterations to 
dispatch each time.. The default chunk size is 1.  

•  RUNTIME:  
–  The scheduling decision is deferred until runtime by the environment variable 

OMP_SCHEDULE. It is illegal to specify a chunk size for this clause.  

•  The default schedule is implementation dependent. Implementation may 
also vary slightly in the way the various schedules are implemented. 



DO/for directive clauses 

•  ORDERED: 
–  Must be present when ORDERED directives are enclosed within the DO/for 

directive.  

–  Should be used only for debugging… 

•  LASTPRIVATE(list) 
–  The LASTPRIVATE clause combines the behavior of the PRIVATE clause 

with a copy from the last loop iteration or section to the original variable 
object.  

–  The value copied back into the original variable object is obtained from the last 
(sequentially) iteration or section of the enclosing construct. For example, the 
team member which executes the final iteration for a DO section, or the team 
member which does the last SECTION of a SECTIONS context performs the 
copy with its own values.  



NOWAIT clause  

•  If specified, then the threads do not synchronize at the end of the parallel 
loop. Threads proceed directly to the next statements after the loop. 

•  In C/C++, must be in lowercase: nowait 

•  For Fortran, the END DO directive is optional at the end of the loop. 



Fortran example DO directive 
PROGRAM VEC_ADD_DO 
  INTEGER N, CHUNKSIZE, CHUNK, I 
  PARAMETER (N=1000) 
  PARAMETER (CHUNKSIZE=100) 
  REAL A(N), B(N), C(N) 
 ! Some initializations 
  DO I = 1, N 
     A(I) = I * 1.0 
     B(I) = A(I) 
  ENDDO 
  CHUNK = CHUNKSIZE 
 !$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I) 
 !$OMP DO SCHEDULE(DYNAMIC,CHUNK) 
  DO I = 1, N 
     C(I) = A(I) + B(I) 
  ENDDO 
 !$OMP END DO NOWAIT 
 !$OMP END PARALLEL 
END  



C/C++ example of “for” directive 
#include <omp.h> 
#define CHUNKSIZE 100 
#define N 1000 
main() 
{ 
 int i, chunk; 
 float a[N], b[N], c[N]; 
 /* Some initializations */ 
 for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 
 chunk = CHUNKSIZE; 

 #pragma omp parallel shared(a,b,c,chunk) private(i) 
 {  
   #pragma omp for schedule(dynamic,chunk) nowait 
   for (i=0; i < N; i++) 
       c[i] = a[i] + b[i]; 
 } /* end of parallel section */ 
}  



SECTIONS directive 

•  The SECTIONS directive is a non-iterative work-sharing construct. It 
specifies that the enclosed section(s) of code are to be divided among the 
threads in the team.  

•  Independent SECTION directives are nested within a SECTIONS directive 
Each SECTION is executed once by a thread in the team. Different 
sections will be executed by different threads. 



Fortran format of SECTIONS construct 

!$OMP SECTIONS [clause ... 
       PRIVATE (list)  
       FIRSTPRIVATE (list)  
       LASTPRIVATE (list)  
       REDUCTION (operator | intrinsic : list) 
       ] 
[!$OMP SECTION] 
   block 

[!$OMP SECTION 
   block ] 
  … 
!$OMP END SECTIONS [ NOWAIT ]  



(C/C++) Format of sections construct 

#pragma omp sections [clause ...] newline  
 { 
 [#pragma omp section newline] 
   structured-block 
 [#pragma omp section newline 
   structured-block ] 
  … 
 } 

Where clauses are: 
    private(list) 
    firstprivate(list) 
    lastprivate(list)  
    reduction(operator : variable-list) 
    nowait 



Fortran example SECTIONS directive 
PROGRAM VEC_ADD_SECTIONS 
  INTEGER N, I 
  PARAMETER (N=1000) 
  REAL A(N), B(N), C(N) 
! Some initializations 
  DO I = 1, N 
    A(I) = I * 1.0 
    B(I) = A(I) 
  ENDDO 
!$OMP PARALLEL SHARED(A,B,C), PRIVATE(I), NUM_THREADS(2) 
!$OMP SECTIONS 
!$OMP SECTION 
   DO I = 1, N/2 
     C(I) = A(I) + B(I) 
   ENDDO 
!$OMP SECTION 
   DO I = 1+N/2, N 
     C(I) = A(I) + B(I) 
   ENDDO 
!$OMP END SECTIONS NOWAIT 
!$OMP END PARALLEL 
END  



C/C++ example of “sections” directive 
#include <omp.h> 
#define N 1000 
main() 
{ 
 int i, chunk; 
 float a[N], b[N], c[N]; 
 /* Some initializations */ 
 for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 

#pragma omp parallel shared(a,b,c) private(i) num_threads(2) 
  {  
   #pragma omp sections nowait 
     { 
     #pragma omp section 
     for (i=0; i < N/2; i++) 
         c[i] = a[i] + b[i]; 
     #pragma omp section 
     for (i=N/2; i < N; i++) 
         c[i] = a[i] + b[i]; 
     } /* end of sections */ 
  } /* end of parallel section */ 
}  



SINGLE directive  

•  The SINGLE directive specifies that the enclosed code is to be executed by 
only one thread in the team.  

•  May be useful when dealing with sections of code that are not thread safe 
(such as I/O). 

•  Threads in the team that do not execute the SINGLE directive, wait at the 
end of the enclosed code block, unless a nowait (C/C++) or NOWAIT 
(Fortran) clause is specified.  

•  Format: 
–  Fortran:  !$OMP SINGLE [clause…] … !$OMP END SINGLE 
–  C/C++: #pragma omp single [clause ...] newline  
–  Clauses: private(list), firstprivate(list), nowait 



Combined Parallel Work-Sharing Constructs:  
PARALLEL DO 

•  This is one of the simplest and most useful constructs for fine-grain 
parallelism. 

PROGRAM VEC_ADD_DO 
  INTEGER N, I 
  PARAMETER (N=1000) 
  REAL A(N), B(N), C(N) 
 ! Some initializations 
 !$OMP PARALLEL DO      !By default, the static schedule 
  DO I = 1, N           !will be used and the loop will 
     A(I) = I * 1.0     !be divided in equal chunks 
     B(I) = A(I) 
  ENDDO    ! No need to put the END DO directive here 

 !$OMP PARALLEL DO SHARED(A,B,C) PRIVATE(I) 
  DO I = 1, N 
     C(I) = A(I) + B(I) 
  ENDDO 
END  



Combined Parallel Work-Sharing Constructs:  
“parallel for” 

#include <omp.h> 
#define N 1000 
main() 
{ 
 int i; 
 float a[N], b[N], c[N]; 

 /* Some parallel initialization */ 
 #pragma omp parallel for 
 for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 

 #pragma omp parallel for private(i) 
 for (i=0; i < N; i++) 
       c[i] = a[i] + b[i]; 
}  



Synchronization Constructs  

•  Let two threads on two different processors both trying to increment a 
variable x at the same time (assume x is initially 0):  

THREAD 1: 
increment(x) 
 { x = x + 1; } 

THREAD 1: 
10 LOAD A, (x address) 
20 ADD A, 1 
30 STORE A, (x address)  

THREAD 2: 
increment(x) 
 { x = x + 1; } 

THREAD 2: 
10 LOAD B, (x address) 
20 ADD B, 1 
30 STORE B, (x address)  

One possible execution sequence:  
1.  Thread 1 loads the value of x into 

register A.  
2.  Thread 2 loads the value of x into 

register B.  
3.  Thread 1 adds 1 to register A 

4. Thread 2 adds 1 to register B  
5. Thread 1 stores register A at 

location x  
6. Thread 2 stores register B at 

location x  
The resultant value of x will be 1, not 

2 as it should be.  



Synchronization Constructs  

•  To avoid the situation shown on the previous slide, the increment of x must 
be synchronized between the two threads to insure that the correct result is 
produced.  

•  OpenMP provides a variety of Synchronization Constructs that control how 
the execution of each thread proceeds relative to other team threads: 
–  OMP MASTER 
–  OMP CRITICAL 
–  OMP BARRIER 
–  OMP ATOMIC 
–  OMP FLUSH 
–  OMP ORDERED 



Example… 

real(8):: density(mzeta,mgrid) 
density=0. 

  do m=1,me 
     kk=kzelectron(m) 
     ij=jtelectron0(m) 
     density(kk,ij) = density(kk,ij) + wzelectron(m) 
  enddo 

What happens when trying to parallelize this loop with OpenMP? 

 Need to protect updates to density array! 



One solution… 

real(8) :: density(mzeta,mgrid),dnitmp(mzeta,mgrid) 

!$omp parallel private(dnitmp) 
  dnitmp=0.   ! Set array elements to zero 
!$omp do private(m,kk,ij) 
   do m=1,me 
      kk=kzelectron(m) 
      ij=jtelectron0(m) 
      dnitmp(kk,ij) = dnitmp(kk,ij) + wzelectron(m) 
   enddo 

!$omp critical 
  do ij=1,mgrid 
     do kk=1,mzeta 
        density(kk,ij) = density(kk,ij) + dnitmp(kk,ij) 
     enddo 
  enddo 
!$omp end critical 
!$omp end parallel 



THREADPRIVATE directive 

•  The THREADPRIVATE directive is used to make global file scope 
variables (C/C++) or Fortran common blocks and modules local and 
persistent to a thread through the execution of multiple parallel regions.  

•  The directive must appear after the declaration of listed variables/common 
blocks. Each thread then gets its own copy of the variable/common block, 
so data written by one thread is not visible to other threads.  

•  Format: 
–  Fortran:  !$OMP THREADPRIVATE (/cb/, …) 
–  C/C++:  #pragma omp threadprivate (list) 



THREADPRIVATE directive 

•  On first entry to a parallel region, data in THREADPRIVATE variables, 
common blocks, and modules should be assumed undefined, unless a 
COPYIN clause is specified in the PARALLEL directive. 

•  THREADPRIVATE variables differ from PRIVATE variables because 
they are able to persist between different parallel sections of a code. 

•  Data in THREADPRIVATE objects are guaranteed to persist only if the 
dynamic threads mechanism is "turned off" and the number of threads in 
different parallel regions remains constant. The default setting of dynamic 
threads is undefined (although usually “static” in practice). 



Fortran example of THREADPRIVATE 

      PROGRAM THREADPRIV 
      INTEGER ALPHA(10), BETA(10), I 
      COMMON /A/ ALPHA 
!$OMP THREADPRIVATE(/A/)  
C     Explicitly turn off dynamic threads 
      CALL OMP_SET_DYNAMIC(.FALSE.)  
C     First parallel region  
!$OMP PARALLEL PRIVATE(BETA, I) 
      DO I=1,10 
         ALPHA(I) = I 
         BETA(I) = I 
      END DO  
!$OMP END PARALLEL  
C     Second parallel region  
!$OMP PARALLEL 
      PRINT *, 'ALPHA(3)=',ALPHA(3), ' BETA(3)=',BETA(3)  
!$OMP END PARALLEL  
      END  



C/C++ example of threadprivate construct 
#include <omp.h> 

int alpha[10], beta[10], i; 
#pragma omp threadprivate(alpha) 

main() { 
/* Explicitly turn off dynamic threads */ 
 omp_set_dynamic(0); 

/* First parallel region */ 
 #pragma omp parallel private(i,beta) 
 for (i=0; i < 10; i++) 
    alpha[i] = beta[i] = i; 

/* First parallel region */ 
 #pragma omp parallel 
 printf(“alpha[3]= %d and beta[3]= %d\n”,alpha[3],beta[3]); 

}  



OpenMP library routines 

•  The OpenMP standard defines an API for library calls that perform a 
variety of functions:  
–  Query the number of threads/processors, set number of threads to use  
–  General purpose locking routines (semaphores)  
–  Set execution environment functions: nested parallelism, dynamic 

adjustment of threads.  
•  For C/C++, it is necessary to specify the include file "omp.h".  
•  For the Lock routines/functions:  

–  The lock variable must be accessed only through the locking routines  
–  For Fortran, the lock variable should be of type integer and of a kind large 

enough to hold an address.  
–  For C/C++, the lock variable must have type omp_lock_t or type 

omp_nest_lock_t, depending on the function being used.  



OMP_SET_NUM_THREADS  
•  Sets the number of threads that will be used in the next parallel region.  
•  Format:  

–  Fortran     
•  SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)  

–  C/C++  
•  void omp_set_num_threads(int num_threads)  

•    Notes & Restrictions:  
•  The dynamic threads mechanism modifies the effect of this routine.  

–  Enabled: specifies the maximum number of threads that can be used for any 
parallel region by the dynamic threads mechanism.  

–  Disabled: specifies exact number of threads to use until next call to this routine.  
•  This routine can only be called from the serial portions of the code  
•  This call has precedence over the OMP_NUM_THREADS environment 

variable  



OMP_GET_NUM_THREADS  

•  Purpose:  
–  Returns the number of threads that are currently in the team executing the 

parallel region from which it is called.  
•  Format:  

–  Fortran  
•  INTEGER FUNCTION OMP_GET_NUM_THREADS()  

–  C/C++ 
•  int omp_get_num_threads(void)  

•  Notes & Restrictions:  
–  If this call is made from a serial portion of the program, or a nested parallel 

region that is serialized, it will return 1.  
–  The default number of threads is implementation dependent.  



OMP_GET_THREAD_NUM  

•  Returns the thread number of the thread, within the team, making this call. 
This number will be between 0 and OMP_GET_NUM_THREADS-1. The 
master thread of the team is thread 0  

•  Format:  
–  Fortran 

•  INTEGER FUNCTION OMP_GET_THREAD_NUM() 
–  C/C++ 

•  int omp_get_thread_num(void)  

•  Notes & Restrictions:  
–  If called from a nested parallel region, or a serial region, this function will 

return 0.  



Example of omp_get_thread_num 

CORRECT: 

PROGRAM HELLO 

  INTEGER TID, OMP_GET_THREAD_NUM 

!$OMP PARALLEL PRIVATE(TID) 
    TID = OMP_GET_THREAD_NUM() 
    PRINT *, 'Hello World from thread = ', TID ...  
!$OMP END PARALLEL 

END  

INCORRECT: 
•  TID must be PRIVATE 

PROGRAM HELLO 

  INTEGER TID, OMP_GET_THREAD_NUM 

!$OMP PARALLEL 
    TID = OMP_GET_THREAD_NUM() 
    PRINT *, 'Hello World from thread = ', 
TID ...  

!$OMP END PARALLEL 

END  



Other functions and subroutines 

•  OMP_GET_MAX_THREADS() 
–  Returns the maximum value that can be returned by a call to the 

OMP_GET_NUM_THREADS function.  

•  OMP_GET_NUM_PROCS() 
–  Returns the number of processors that are available to the program. 

•  OMP_IN_PARALLEL 
–  May be called to determine if the section of code which is executing is parallel 

or not.  



More functions… 

•  OMP_SET_DYNAMIC() 
–  Enables or disables dynamic adjustment (by the run time system) of the number 

of threads available for execution of parallel regions.  

•  OMP_GET_DYNAMIC() 
–  Used to determine if dynamic thread adjustment is enabled or not. 

•  OMP_SET_NESTED() 
–  Used to enable or disable nested parallelism. 

•  OMP_GET_NESTED 
–  Used to determine if nested parallelism is enabled or not. 



OpenMP “locking” functions 

•  OMP_INIT_LOCK() 
–  This subroutine initializes a lock associated with the lock variable. 

•  OMP_DESTROY_LOCK() 
–  This subroutine disassociates the given lock variable from any locks.  

•  OMP_SET_LOCK() 
–  This subroutine forces the executing thread to wait until the specified lock is 

available. A thread is granted ownership of a lock when it becomes available.  
•  OMP_UNSET_LOCK() 

–  This subroutine releases the lock from the executing subroutine.  
•  OMP_TEST_LOCK() 

–  This subroutine attempts to set a lock, but does not block if the lock is 
unavailable.  



OpenMP timing functions 

•  OMP_GET_WTIME() 
–  This function returns a double precision value equal to the elapsed wallclock 

time in seconds since some arbitrary time in the past. 
–  The times returned are “per-thread times”. 

•  OMP_GET_WTICK() 
–  This function returns a double precision value equal to the number of seconds 

between successive clock ticks. 

•  Consults the OpenMP specification for more details on all the subroutines 
and functions: 
–  http://www.openmp.org/specs 



OpenMP environment variables 

•  OpenMP provides four environment variables for controlling the execution 
of parallel code.  

•  All environment variable names are uppercase. The values assigned to 
them are not case sensitive. 

•  OMP_SCHEDULE  
–  Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/C++) 

directives which have their schedule clause set to RUNTIME. The value of this 
variable determines how iterations of the loop are scheduled on processors. For 
example:  

•  setenv OMP_SCHEDULE "guided, 4"  
•  setenv OMP_SCHEDULE "dynamic"  



OpenMP environment variables… 

•  OMP_NUM_THREADS   (the most used…) 
–  Sets the maximum number of threads to use during execution. For example:     

setenv OMP_NUM_THREADS 8  

•  OMP_DYNAMIC 
–  Enables or disables dynamic adjustment of the number of threads available for 

execution of parallel regions. Valid values are TRUE or FALSE. For example:    
setenv OMP_DYNAMIC TRUE  

•  OMP_NESTED  (rarely implemented on current systems) 
–  Enables or disables nested parallelism. Valid values are TRUE or FALSE. For 

example:    setenv OMP_NESTED TRUE  



Example: parallelize our π test code with 
OpenMP 

      program fpi!
      double precision  PI25DT!
      parameter        (PI25DT = 3.141592653589793238462643d0)!
      double precision  mypi, pi, h, sum, x, f, a!
      integer n, myid, numprocs, i, j, ierr!

      open(12,file='ex4.in',status='old')!
      read(12,*) n!
      close(12)!
      write(*,*)'  number of intervals=',n!
c!
      h = 1.0d0/n!
      sum  = 0.0d0!

!omp parallel do private(i,x) shared(h,n) reduction(+:sum)!
      do i = 1, n!
         x = h * (dble(i) - 0.5d0)!
         sum = sum + 4.d0/(1.d0 + x*x)!
      enddo!
      mypi = h * sum!
c!
      pi = mypi!
      write(*,*)' pi=',pi,'  Error=',abs(pi - PI25DT)!

      end!



Summation ordering issues 

•  What happens when we use a different integrand? such as: 

•  If the numbers that you add up together are separated by a large order of 
magnitude (very small and very large numbers together), the order of the 
summation matters. Ideally you need to sort all the numbers and add them 
in ascending order (smallest to largest) otherwise you will get a different 
answer. If the variation is in the last 3 or 4 digits of a double precision 
number it might not matter. 

•  During an OpenMP reduction, the order in which the threads add up the 
numbers varies from one run to another. Something to keep in mind… 



Books on OpenMP 



References 

•  Excellent tutorial from SC’08 conference posted at: 
–  http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf 
–  See references within document 

•  More tutorials: 
–  http://static.msi.umn.edu/tutorial/scicomp/general/openMP/index.html 
–  https://computing.llnl.gov/tutorials/openMP/ 

•  See http://openmp.org/wp/resources/ 



Mixing MPI and OpenMP 
together in the same application 



Why use both MPI and OpenMP in the 
same code? 

•  To save memory by not having to replicate data common to all processes, 
not using ghost cells, sharing arrays, etc. 

•  To optimize interconnect bandwidth usage by having only one MPI process 
per NUMA node. 

•  Although MPI generally scales very well it has its limit, and OpenMP gives 
another avenue of parallelism. 

•  Some compilers have now implemented OpenMP-like directives to run 
sections of a code on general-purpose GPU (GPGPU). Fine-grain 
parallelism with OpenMP directives is easy to port to GPUs. 

•  Processes are “heavy” while threads are “light” (fast creation and context 
switching).   



Implementing mixed-model 

•  Easiest and safest way: 
–  Coarse grain MPI with fine grain loop-level OpenMP 
–  All MPI calls are done outside the parallel regions 
–  This is always supported 

•  Allowing the master thread to make MPI calls inside a parallel region 
–  Supported by most if not all MPI implementations 

•  Allowing ALL threads to make MPI calls inside the parallel regions 
–  Requires MPI to be fully thread safe 
–  Not the case for all implementations 
–  Can be tricky… 



Find out the level of support of your MPI library 

int MPI_Init_thread(  int * argc, char ** argv[], 
   int thread_level_required, 

   int * thead_level_provided); 
int MPI_Query_thread(  int * thread_level_provided); 

int MPI_Is_main_thread(int * flag); 

MPI-2 “Init” functions for multi-threaded MPI processes: 

•  “Required” values can be: 
•  MPI_THREAD_SINGLE:   Only one thread will execute 
•  MPI_THREAD_FUNNELED: Only master thread will make 

MPI-calls 
•  MPI_THREAD_SERIALIZED:  Multiple threads may make 

MPI-calls, but only one at a time 
•  MPI_THREAD_MULTIPLE:  Multiple threads may call 

MPI,without  restrictions 
•  “Provided” returned value can be less than “required” value  



Compiling and linking mixed code 

•  Just add the “openmp” compiler option to the compile AND link lines (if 
separate from each other): 
–  mpicc –openmp mpi_omp_code.c –o a.out 
–  mpif90 –openmp mpi_omp_code.f90 –o a.out 



Launching a mixed job 

•  Set OMP_NUM_THREADS and then launch job with “mpirun” or 
“mpiexec”  

•  If you have an “UMA-type” node where all the cores have the same level 
of access to memory, use a single MPI process per node by using a hostfile 
(or machinefile) on a cluster 

    export OMP_NUM_THREADS=4    
    mpiexec –n 4 –hostfile mfile a.out >& out < in & 

   %cat mfile 
    machine1.princeton.edu 
    machine2.princeton.edu 
    machine3.princeton.edu 
    machine4.princeton.edu 

•  This job will use 16 cores: 4 MPI processes with 4 OpenMP threads each 



How to deal with the batch system 

•  When submitting a job to a batch system, such as PBS, you do not know in 
advance which nodes you will get. 

•  However, that information is stored in $PBS_NODEFILE 
•  If you launch a single MPI process per node you can do: 

     /bin/cat $PBS_NODEFILE | uniq > mfile 

     nprocs=`wc -l mfile | awk '{print $1}’` 

     export OMP_NUM_THREADS=8 

     mpiexec –n $nprocs –hostfile mfile ./mpi_omp_code 

•  Make sure that the number of cores that you are asking for equals   
nprocs*OMP_NUM_THREADS  



•  On non-uniform memory access (NUMA) nodes, one needs to be careful 
how the memory gets assigned to reach good performance. 

•  When in doubt, use 1 MPI process per “NUMA node”  

Watch out for NUMA 

CRAY XE6 node 

NUMA 
node 



Launching a NUMA-aware job on the 
CRAY XE6 

•  Commands to launch a job that uses 1 MPI process per NUMA node on the 
XE6: 

  #PBS -l mppwidth=96 
  #PBS -V 
  #PBS -l walltime=1:00:00 
  cd $PBS_O_WORKDIR 
  export OMP_NUM_THREADS=6 
  aprun -n 16 -d 6 -N 4 -S 1 -ss ./hybrid.x  

•  You can still use a single MPI process per node but should use a “first-
touch” method to allocate memory close to the threads 



What about OpenACC??? 



Running codes on GPUs? 
What’s the big deal? 

•  NVIDIA GeForce GTX 690 
•  Based on latest Kepler technology 
•  2X GK104 GPU chips 
•  3072 CUDA cores 
•  384 GB/s memory bandwidth 
•  4.58 Teraflops single precision 

performance 
•  0.19 Tflops double precision 
•  Frequency 1.019 GHz 
•  4 GB GDDR5 memory 
•  For awesome double precision 

performance, go for the Tesla 
K20/K40 hardware 



Side-by-side comparison of 
CPU vs. GPU 

Processor Intel Xeon E5-2690 
“Sandy Bridge” 

NVIDIA K20 Tesla GPU 
“Kepler”  (Fermi) 

No. of cores per “node” 16 cores (2x 8/chip) 2,880  (512) 

Frequency 2.9 GHz ~1 GHz 

Memory bandwidth 51.2 GB/sec ~320 GB/s (177) 

Peak Flops 371 GFlops ~2000 Gflops (665) 

Memory (shared) 32 – 64 GB 6 GB 



What is the difference between 
a GPU and a CPU? 

•  How different is the GPU in terms of hardware architecture? 
–  NVIDIA has been introducing more “scientific-code-friendly” 

hardware in its GPUs, such as more and faster double precision units, 
memory error correction (ECC), IEEE standard operations, etc. 

–  The introduction of the “TESLA” model of GPU by NVIDIA has taken 
the hardware beyond the “gaming” business   

•  What makes it achieve such high performance compared to CPU? 
•  Why do we need CPUs at all then?!!? 



Start with a “CPU-style” core… 

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 



Remove everything that makes a single 
instruction stream go fast  

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 



Put many of these simple cores together 

•  Let’s not forget the original 
purpose of the GPU though: 
•  Same operations applied to 

a large number of vertices, 
pixels, polygons, … 

= DATA PARALLEL or 
   SIMD (Single Instruction 

   Multiple Data) 

Better known in our 
community as  

VECTOR PROCESSING 

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 



So let’s add some arithmetic units and have 
them share a stream of instructions 

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 



The secret to GPU high throughput: 
massive multi-threading + interleaving 

NOT SIMD 
But rather 

SIMT! 
Single 

Instruction 
Multiple 
Threads 

255 registers 
per thread!! 

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 



Classic picture of CPU vs. GPU 



NVIDIA Kepler GPU  

GK110 chip (15 SMX, 2048 threads/SMX, 7.1 billion transistors) 



Using and programming GPUs 

•  Several possibilities 
–  OpenGL: computer graphics functions used by game developers. NOT 

a good idea for scientific codes!!  
–  CUDA: NVIDIA-specific programming language built as an extension 

of standard C language. Best approach to get the most out of your 
GPU. CUDA kernels not portable though. Also available for 
FORTRAN but only through the PGI compiler. 

–  OpenACC compiler directives similar to OpenMP. Portable code. Easy 
to get started. Available for a few compilers. 

–  Libraries, commercial software, domain-specific environments, . . . 
–  OpenCL: open standard, platform- and vendor independent 

•  Works on both GPU AND CPU!! 
•  Even harder than CUDA though… 



Hardware considerations affecting GPU 
programming 

•  Keep “kernel” data resident on GPU memory as much as possible 
•  Avoid frequent copying between CPU and GPU 
•  Use asynchronous, non-blocking, communication, multi-level overlapping 

GPU 
~ 1TF 

CPU 
~150GF 

6 GB 
GDDR5 

32 GB 
DDR3 

~200 GB/sec ~42 GB/sec 

PCIe-2 
8 GB/sec 

Bottleneck! 



What to do first… 

•  MOST IMPORTANT: 
–  Find and expose as much parallelism as you can in your code. 
–  You need LOTS of parallel operations to keep the GPU busy! 
–  Try to remove as many dependencies as you can between successive iterations 

in a loop. 
–  The ideal case is when each iteration is completely independent from the others  

 VECTORIZATION 



Goals of OpenACC 

•  Same idea as OpenMP 
–  Simplify the programming of complex hardware by using directives (hides a lot 

of the complexity) 
–  Least changes to your code 
–  Portable across different accelerators (nvidia, ATI, Intel Xeon Phi) as opposed 

to CUDA, which works only on nvidia GPUs 
•  Works for Fortran, C, C++ 
•  When running the same code on a multi-core CPU you can use OpenMP 

directives instead of OpenACC and run in parallel on the CPU as well 
–  Use preprocessor macros “_OPENACC” and “_OPENMP” to direct 

compilation according to available hardware 
•  http://www.openacc-standard.org 
•  http://www.pgroup.com/doc/openACC_gs.pdf 
•  Version 1.0 was limited in terms of features but 2.0 is much, much better 



Example of OpenACC directive 

subroutine smooth( a, b, w0, w1, w2, n, m) 
 real, dimension(:,:) :: a,b 
 real :: w0, w1, w2 
 integer :: n, m 
 integer :: i, j 
!$acc parallel loop 
   do i = 2,n-1 
    do j = 2,m-1 
     a(i,j)= w0 * b(i,j) + & 
        w1 * (b(i-1,j) + b(i,j-1) + b(i+1,j) + b(i,j+1)) + & 
        w2 * (b(i-1,j-1) + b(i-1,j+1) + b(i+1,j-1) + b(i+1,j+1)) 
    enddo 
   enddo 

It can be as simple as the following: 



CUDA vs OpenACC 

•  Simple example:  REDUCTION 

       a=0.0!
       do i = 1,n!
          a = a + b(i)!
       end do!



“Simple” CUDA implementation 

Ref: SC13 OpenACC tutorial, Luiz DeRose, Alistair Hart, Heidi Poxon, & James Beyer 



Simple “CUDA” implementation (cont.) 



OpenACC version of the Reduction code 

   !$acc data present(a,b,n)!
      a = 0.0!
   !$acc update device(a)!
   !$acc parallel!
   !$acc loop reduction(+:a)!
      do i = 1,n!
         a = a + b(i)!
      end do!
   !$acc end parallel!
   !$acc end data!



Another example 
and why it won’t work well 

PROGRAM main!
 INTEGER :: a(N)!
 <stuff>!
!$acc parallel loop!
  DO i = 1,N!
     a(i) = I!
  ENDDO!
!$acc end parallel loop!
!$acc parallel loop!

  DO i = 1,N!
     a(i) = 2*a(i)!
  ENDDO!
!$acc end parallel loop!
<stuff>!
END PROGRAM main!

•  Two accelerator parallel region 
•  Compiler creates two kernels 

–  Loop iterations automatically divided 
across gangs,workers,vectors 

–  Breaking parallel region acts as barrier 
•  First kernel initialises array 

–  Compiler will determine copyout(a) 
•  Second kernel updates array 

–  Compiler will determine copy(a)  
•  Breaking parallel region=barrier 
•  Array a(:) unnecessarily moved from 

and to GPU between kernels 
–  "data sloshing" 



Another version that works better… 

PROGRAM main!
 INTEGER :: a(N)!
 <stuff>!
!$acc data copyout(a)!
!$acc parallel loop!
  DO i = 1,N!
     a(i) = I!
  ENDDO!
!$acc end parallel loop!

!$acc parallel loop!
  DO i = 1,N!
     a(i) = 2*a(i)!
  ENDDO!
!$acc end parallel loop!
!$acc end data!
<stuff>!
END PROGRAM main!

•  Now added a data region 
•  Specified arrays only moved at 

boundaries of data region 
•  Unspecified arrays moved by each 

kernel 
•  No compiler-determined movements for 

data regions 
•  Data region can contain host code and 

accelerator regions 
•  Copies of arrays independent 
•  No automatic synchronisation of 

copies within data region 
–  User-directed synchronisation via 

update directive 



Most important OpenACC directives 
http://www.openacc.org/sites/default/filesOpenACC_API_QuickRefGuide.pdf 

•  parallel loop reduction(op, var)   where op = +, *, min, max, … 
•  copyin:    a shared variable that is used read-only in the loopnest  
•  copyout:  a shared variable that is used write-only in the loopnest  
•  copy:       a shared variable that is used read-write in the loopnest  
•  create:     a shared variable that is a temporary in the loopnest 
•  present:   tells the compiler that the data is already on GPU. No need to copy 
•  present_or_copy:  if data not present on GPU copy from host 

Data clauses can accept array section arguments 
• Data scoping: 

•  shared:  all loop iterations all process the same version of the variable 
•  private: each loop iteration uses variable separately 
•  firstprivate: same as private except for initialization 

• Compile with pgcc or pgf95 with “-acc” option! 



That’s all for now… 
Please check www.openacc.org 


Thanks and 
Happy parallel programming! 


