What is GPU Computing?

Stéphane Ethier

CPPG seminar
Friday October 19, 2012

First things first: What is a GPU?

GPU stands for “Graphics Processing Unit”

It is a specialized hardware optimized for the display/
rendering of complex 3D graphics (think “video
games”) , the so-called “graphics pipeline”

o Vertex operations

o Rasterization

o Fragment operations

o Composition
The technology evolved from “fixed-pipeline” to
“programmable” (shader programs)

To render a complex scene in real time from a 3D
description in a file requires massive compute power

How much compute power
are we talking about?

NVIDIA GeForce GTX 690

Based on latest Kepler technology
2X GK104 GPU chips

3072 CUDA cores

384 GB/s memory bandwidth

4.58 Teraflops single precision
performance

0.19 Tflops double precision
Frequency 1.019 GHz
4 GB GDDR5 memory

Why not exploit this computing power for
running scientific codes?

That is exactly what several researchers tried to do starting in ~2000 by
using graphics functions: the term “GPGPU” (General Purpose GPU
computing) was coined.

Only single precision though and required mapping the scientific problem
in terms of operations done on triangles and polygons!

In 2003, a team of researchers at Stanford U. developed a programming
model for GPU that was based on extensions to the C language
(http://graphics.stanford.edu/papers/brookgpu/brookgpu.pdf)

Improving on that work, the NVIDIA company launched the CUDA
language in 2006, along with CUDA-enabled GPU hardware

GPGPU computing: marketing and reality

* Raw marketing numbers always quoted
o >4 Tflops peak floating point performance
o Many papers claim > 100X speedup !!
* Looking more closely
o Single or double precision? Same on both devices?
o Sequential code vs. parallel code?
o Standard operations or low-precision graphics constructs?
* The reality
o GPUs are undoubtedly fast, but so are CPUs
o CPU code not as carefully tuned as GPU version
o Anything between 3 — 30X speedup is realistic

Side-by-side comparison of

CPU vs. GPU
Processor Intel Xeon E.5-2690 “Sandy NVIDIA K20 Tesla (.EPU
Bridge” “Kepler” (Fermi)
No. of cores per “node” 16 cores (2x 8/chip) 2,880 (512)

Frequency 2.9 GHz ~1 GHz
Memory bandwidth 51.2 GB/sec ~320 GB/s (177)

Peak Flops 371 GFlops ~2000 Gflops (665)

Memory (shared) 32-64GB 6 GB

* The Kepler K20 will be the GPU in the Titan system at ORNL
» The Cray Cascade system “Edison” at NERSC will have the
latest version of the Intel Sandy Bridge processor

®)PPPL

Current model: a CPU is required
to drive the GPU

20-180 GB/s 6-35 GB/s

|

Bottleneck in many cases

1-2 GB/s

Ideally, both GPU and
CPU should be
working concurrently

The standard performance plots
comparing GPU and CPU

meoretial FlO@ting point performance meoretialce/s VMlemory bandwidth
GFLOP/s GeForceGTX 680
3250 200
3000 GeForceGTX48(0
—a—NVIDIA GPU Single Precision 180
2750 «=s==NVIDIA GPU Double Predision == CPU
2500 —e—Intel CPU Single Precision 160
= Intel CPU Dauble Predision =8=GPU (. rorceGTX 280

2250 140
2000 120
1750 /
1500 _?Fli‘tfil..,T/
1250 80 /
1000 60 LeForce7800GTX Sandy Bridge

750 Tesla C2050 T / wes'““e’e/

500 Sandy Bridge 40 Bloomfield

TeslaC1060 T E‘J::// Woodcrest /_/
252 Woodcrest v. 0 Mertown
- Westmere Northwiood T T T T T T T T 1
Sep-BFNHUM4 jun-04 Mar-07 12PN e 09 Aug-12 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

*Plots from CUDA C Programming Guide Version 4.2 é) m

What is the difference between
a GPU and a CPU?

e How different is the GPU in terms of hardware architecture?

o NVIDIA has been introducing more “scientific-code-friendly” hardware
in its GPUs, such as more and faster double precision units, memory
error correction (ECC), IEEE standard operations, etc.

o The introduction of the “TESLA” model of GPU by NVIDIA has taken
the hardware beyond the “gaming” business

What makes it achieve such high performance compared to CPU?
* Why do we need CPUs at all then?!!?

Start with a “CPU-style” core...

==

Data Cache
(A big one)

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Remove everything that makes a single

instruction stream go fast

ALU

(Execute)

==

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

Put many of these simple cores together

* Let’s not forget the original
purpose of the GPU though:
» Same operations
applied to a large
number of vertices,
pixels, polygons, ...

= DATA PARALLEL or
SIMD (Single Instruction
Multiple Data)

Better known in our
community as
VECTOR PROCESSING

ALU

[0 [0ED (R [
[0 [0ED (R0 [
[0 [HED (R [

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf @) m

So let’s add some arithmetic units and
have them share a stream of instructions

ALU1| | ALU2 | [ALU3 | | ALUS4

ALU5 | | ALUG6| (ALUZ7 | | ALUS8

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

The secret to GPU high throughput:
massive multi-threading + interleaving

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25... 32
(clocks) o [o T o [oooooooo oooooooo ooDoooooo N OT S I M D

(1) 9) 9) Q) But rather

SIMT!
Single
Instruction
Multiple
Threads

Runnable

255 registers
per thread!!

Runnable

- Runnable

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf 6 m

Classic picture of CPU vs. GPU

m [[[[[[TTTTTTTTT]
m [[[[[[TTTTTTTTT]

m [[[T TTTTTTTTTT]

| [[[[[TTTTTTTTTT]

mm [[[[[TTTTTTTTTT]

ALU

ALU

ALU

ALU

Control

m [[[[[[[[[TIITT]]

m [[[[[[TTTTTTTTT]

m [[[[[ITTTTTITTT]

GPU

CPU

Latest NVIDIA Kepler GPU

GK110 chip (15 SMX, 2048 threads/SMX, 7.1 billion transistors)

Using and programming GPUs

* Many possibilities

Q

OpenGL: computer graphics functions used by game developers. NOT
a good idea for scientific codes!!

CUDA: NVIDIA-specific programming language built as an extension of
standard C language. Best approach to get the most out of your GPU.
CUDA kernel not portable. Also available for FORTRAN but only for the
PGl compiler.

OpenACC compiler directives similar to OpenMP. Portable code. Easy
to get started. Available for a few compilers.

Libraries, commercial software, domain-specific environments, . . .

OpenCL: open standard, platform- and vendor independent
* Works on both GPU AND CPU!!
* Even harder than CUDA though...

What to do first...

* MOST IMPORTANT:

0 Find and expose as much parallelism as you can in your
code.

o Try to remove as many dependencies as you can between
successive iterations in a loop.

0 The ideal case is when each iteration is completely
independent from the others = VECTORIZATION

Try OpenACC directives first

http://www.openacc-standard.org

http://www.pgroup.com/doc/openACC gs.pdf

Least changes to your code
It is portable across different platforms and compilers
Not all compilers support Open ACC though

o CRAY, PGI, and CAPS are the only ones at this point

When running the same code on a multi-core CPU you can use OpenMP
directives instead of OpenACC and run in parallel there too!

Hides a lot of the complexity
Works for Fortran, C, C++

Example of OpenACC directive

It can be as simple as the following:

subroutine smooth(a, b, w0, wl, w2, n, m, niters)
real, dimension(:,:) :: a,b
real :: w0, wl, w2
integer :: n, m, niters
integer :: i, j, iter
do iter = 1,niters
!1Sacc kernels loop
do 1 = 2,n-1
do j = 2,m-1
a(i,j)= w0 * b(i,]j) + &
wl * (b(i-1,j) + b(i,j-1) + b(i+l,j) + b(i,j+1)) + &
w2 * (b(i-1,3j-1) + b(i-1,j+1) + b(i+l,j-1) + b(i+1,j+1))
enddo
enddo

OpenACC not giving good performance?
move to CUDA

* CUDAC

o http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/doc/CUDA C Programming Guide.pdf

* CUDA FORTRAN

o http://www.pgroup.com/doc/pgicudaforug.pdf

Some GPGPU references

http://www.gputechconf.com/gtcnew/on-demand-gtc.php

http://www.nvidia.com

http://gpgpu.org
o In particular: http://gpgpu.org/ppam2011

http://www.olcf.ornl.gov/event/cray-technical-workshop-on-xk6-programming/

http://www.pgroup.com/resources/index.htm

http://www.caps-entreprise.com/products/openacc-compiler/

Conclusion

No matter where you will run your code tomorrow, you need
to exploit all the parallelism and think in terms of shared
memory multi-threading

This is valid for both CPU and GPU

In the future, CPU and GPU will merge to become a highly
power efficient, highly multi-threaded compute hardware

