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The kinetic effects of trapped electron dynamics and finite gyroradii and

magnetic drift motion of ions are shown to give rise to a large parallel elec-

tric field and hence a parallel current that greatly enhances the stabilizing

effect of field line tension for ballooning modes in low aspect ratio toroidal

plasmas. For large aspect ratio the stabilizing effect increases (reduces) the

β(= 2P/B2) threshold for the first (second) stability of the kinetic ballooning

mode (KBM) from the magnetohydrodynamics (MHD) β threshold value by

a factor proportional to the trapped electron density fraction. For small as-

pect ratio the stabilizing effect can greatly increase the β threshold of the first

stability of KBMs from the MHD β threshold by Sc ' 1 + (ne/neu)δ, where

ne/neu is the ratio of the total electron density to the untrapped electron den-

sity, and δ depends on the trapped electron dynamics and finite gyroradii and

magnetic drift motion of ions. If ne/neu >> 1 as in the National Spherical

Torus Experiment (NSTX) [NSTX, M. Ono, Nucl. Fusion, 40, 557 (2000)]

with an aspect ratio of ' 1.4, the KBM should be stable for β ≤ 1 for finite

magnetic shear. Therefore, unstable KBMs are expected only in the weak

shear region near the radial location of the minimum of the safety factor in

NSTX reverse shear discharges.
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I. INTRODUCTION

One of the most serious instabilities in magnetically confined nonuniform plasmas is the

ballooning instability which results from the release of free energy of nonuniform pressure

with a gradient in the same direction as the magnetic field curvature [1–3]. Analogous to the

expansion of a balloon due to higher inner air pressure around weak surface tension spot, the

ballooning instability will relax higher plasma pressure and hence move the plasma across the

magnetic field lines toward the weaker pressure direction around the weak field line tension

region as a result of the plasma frozen-in condition. Much effeorts have devoted in the theo-

retical investigations of the ballooning instability based on the ideal magnetohydrodynamics

(MHD) model by employing numerical toroidal equilibria [4–8]. However, particle kinetic

effects have been shown to affect the stability property of the ballooning modes [9–18]. In

particular, keeping the leading order ion finite Larmor radius (FLR) effect, the unstable

β domain of ballooning modes is reduced due to the ion diamagnetic drift. However, the

numerical results of more complete kinetic ballooning mode equations without the trapped

electron effects have also shown that the ballooning stability threshold is not affected by

the ion FLR effects for zero ion temperature gradient and is lower for finite ion temperature

gradient [9,10]. Moreover, the numerical solutions further showed that the trapped electron

effect produces a strong stabilizing effect, in particular in low aspect ratio tokamaks [10,12].

Although the trapped electron effect was shown numerically, the analytical understanding

has not been provided.

In this paper we present analytical theories and numerical solutions of the kinetic bal-

looning modes and show that the combined kinetic effects of trapped electron dynamics,

ion finite Larmor radii, particle magnetic drift motion, and wave-particle resonances can

greatly stabilize the ballooning modes. In particular, our analytical theory shows that the

combined kinetic effects of trapped electron dynamics and the difference in the electron

and ion motions perpendicular the ambient magnetic field (finite Larmor radii and mag-

netic drift motion) give rise to a large parallel electric field and hence a parallel current
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that greatly enhances the stabilizing effect of field line tension. For large aspect ratio with

R0/r >> 1, where R0 is the major radius and r is the minor radius, the stabilizing effect

increases (reduces) the β(= 2P/B2) threshold for the first (second) stability of the kinetic

ballooning mode (KBM) from the MHD β threshold value by a factor proportional to the

trapped electron density fraction (∼
√

2r/R0). For low aspect ratio (R0/r ∼ 1) such as in

the National Spherical Torus Experiment (NSTX), we expect the total electron density to

be much larger than the untrapped electron density (ne/neu ' 1/[1−
√

2r/(R0 + r)] >> 1)

and the stabilizing kinetic effects increase the critical β of the first KBM stability over the

MHD prediction by a factor proportional to ne/neu.

Most studies of the ballooning instability have been based on the ideal MHD model. The

fundamental shortcomings of the MHD model are: (a) based on the Ohm’s law the plasma is

assumed to be frozen in the field lines and moves across the field with a E×B drift velocity

and the parallel electric field vanishes; (b) the plasma pressure changes adiabatically accord-

ing to the adiabatic pressure law; and (c) the gyro-viscous tensor that contains finite particle

Larmor radius effects is ignored in the momentum equation. The Ohm’s law and adiabatic

pressure law are appropriate only if the frequency, ω, and perturbation wavenumber, k,

satisfy the ordering assumptions that ωci >> ω >> ωb, ωd for both electrons and ions and

L > k−1 >> ρi, where ωci is the ion cyclotron frequency, ωb is the particle bounce frequency,

ωd is the particle magnetic (∇B and curvature) drift frequency, L is the background plasma

and magnetic field scale length, and ρi is the ion Larmor radius. These assumptions can

easily break down for many critical plasma phenomena.

We shall consider the phase speed of KBMs along the field line to be much smaller than

the electron thermal speed, but much larger than the ion thermal speed. This condition is

satisfied for collisionless high temperature plasmas in most laboratory fusion devices because

the frequency of ballooning modes is on the order of the ion diamagnetic drift frequency and

the temperatures of electrons and ions are of the same order. Therefore, with respect to

the wave motion along the ambient magnetic field lines electrons move very rapidly with

either transit or bounce motion depending on the particle pitch angle. On the other hand,
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ions move very slowly with respect to the parallel wave motion and their parallel dynamics

can be considered as static. Moreover, electron and ion motions across the magnetic field

lines are very different if the perpendicular wavelength is on the order of ion gyroradii;

the electron perpendicular motion is essentially the combination of E × B and magnetic

drift motion because of small gyroradii, but the ion perpendicular motion is governed by

the E × B, magnetic drifts as well as the polarization drift due to finite gyroradii. The

difference in electron and ion motion across magnetic field lines causes charge separation.

In order to maintain the charge quasi-neutrality a parallel electric field must be produced

to accelerate (or decelerate) electrons to positions where there is excess positive charge.

A parallel electric field can easily accelerate (or decelerate) untrapped electrons to change

its density distribution. However, it is relatively harder to change the trapped electron

density distribution by a parallel electric field because of their rapid bounce motion along

the field lines. Thus, a parallel electric field enhanced by a factor of 1 + O(ne/neu), where

ne and neu are the total electron density and the untrapped electron density respectively,

will be produced to move the untrapped electrons to maintain charge quasi-neutrality. The

large parallel electric field will then drive an enhanced parallel current which can greatly

increase the stabilizing field line tension over the value expected from the MHD theory

just like the high-pressured water in a hose increases the tension of the hose. For large

aspect ratio with ε = r/R0 << 1, the fraction of trapped electron population is much

smaller than the untrapped fraction and ne/neu ∼ 1+O(
√
ε), and the critical β (βc) for the

first (second) kinetic ballooning stability is larger (smaller) than the ideal MHD threshold

βMHD
c by a factor proportional to

√
ε. For small aspect ratio with r/R0 ∼ O(1), the

fraction of trapped electron population is much larger than the untrapped fraction and

neu/ne ' 1−
√

1− (R0 − r)/(R0 + r) ' (R0 − r)/2(R0 + r) << 1. Then, the first stability

βc of the kinetic ballooning mode is enhanced over βMHD
c by O(ne/neu). For an aspect ratio

of R0/r = 1.5 as in NSTX, βc can be a factor of neu/ne ' 10 larger than βMHD
c and we

expect the KBM to be stable in the finite magnetic shear region. However, if NSTX has a

reverse shear, then the KBM is expected to be unstable around the radial location of the
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minimum safety factor, where the magnetic shear is very weak.

It is to be noted that the physical mechanism of trapped electron stabilization effect

presented here differs from the energetic trapped particle stabilization mechanism proposed

by Rosenbluth et al. [18]. They considered that the density of the energetic trapped particles

is much smaller than the background plasma density and ωbh >> 〈ωdh 〉 > ω, where ωbh

and 〈ωdh〉 are the energetic particle bounce frequency and bounce-averaged magnetic drift

frequency, respectively. Also, only particles trapped on the outside are considered such

that their diamagnetic drift frequency has the same sign as the bounce-averaged magnetic

drift frequency. Under these assumptions, only the perturbed pressure of the energetic

trapped particles is considered in the low-frequency kinetic energy principle. The kinetic

term due to non-MHD particles almost cancels out the energetic particle pressure gradient

instability drive due to the fluid contribution if the bounce-averaged wave amplitude is

similar to the local wave amplitude [19]. However, by choosing a poloidal localization of

the energetic trapped particle distribution, the difference between the bounce-averaged wave

amplitude and the local wave amplitude gives rise to a stabilization effect. This stabilization

effect was shown to reduce the second stability β threshold fractionally as shown in their

numerical solutions. The stabilization effects due to this mechanism is much weaker than the

stabilization mechanism of enhanced parallel ecectric field due to trapped electrons presented

in the paper. Moreover, their mechanism is included in our work because we have not made

any assumptions on the ordering between the wave frequency and the electron bounce-

averaged magnetic drift frequency. However, because the ballooning mode frequency is on

the order of the ion diamagnetic drift frequency, which is larger than the electron bounce-

averaged magnetic drift frequency for tokamaks, the stabilization mechanism considered by

Rosenbluth et al. does not work for the thermal electrons.

In the following, we first present a set of kinetic eigenmode equations for KBMs. Then,

we present a simplified set of kinetic ballooning mode equations and to provide the analytical

theory of the KBM based on the simplified equations. The numerical solutions of KBMs for

both the analytical large aspect ratio (ŝ − αp) equilibrium and the low aspect ratio NSTX
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equilibria are presented to support the analytical theory. Finally, we summarize the main

results of the paper.

II. KINETIC EIGENMODE EQUATIONS

To properly address kinetic effects on the ballooning instability we will employ the gy-

rokinetic formulation [20] to describe the particle dynamics. We shall consider collisionless

plasmas with isotropic pressure. The particle velocity distribution function is assumed to

have no appreciable bulk drift. Quasi-static equilibria with isotropic pressure are deter-

mined by the system of equations in the rationalized MKS unit: J×B = ∇P , ∇×B = J,

and ∇ · B = 0. Assuming that the three-dimensional equilibrium has nested magnetic sur-

faces, the magnetic field can be expressed in a straight field line (ψ, α, θ) flux coordinate as

B = ∇ψ × ∇α, where ψ is the magnetic flux function, α = ζ − q(ψ)θ, θ is a generalized

poloidal angle, ζ = φ − δ(ψ, φ, θ) is a generalized toroidal angle, φ is the azimuthal angle

in the cylindrical (R, φ, Z) coordinate, q(ψ) is the safety factor, and δ(ψ, φ, θ) is periodic in

both φ and θ. The intersection of constant ψ and α surfaces defines the magnetic field line.

The flux coordinate system is in general not orthogonal, and ∇ψ · ∇θ 6= 0, ∇ψ · ∇α 6= 0,

and ∇α · ∇θ 6= 0. Note that α is a cyclic function with a period of 2π for all constant ψ

surfaces.

We consider low frequency perturbations with ω << ωci and k⊥L >> k‖L > 1, where ω

is the wave frequency, ωci is the ion cyclotron frequency, L is the equilibrium scale length,

and ‖ and ⊥ denotes the parallel and perpendicular component to the ambient magnetic

field B, respectively. Because the electron mass is much smaller than the ion mass and the

temperatures of electrons and ions are of the same order, the electron thermal velocity is

much larger than the ion thermal velocity. We consider electromagnetic perturbations with

the orderings: k⊥ρi ∼ O(1) and vthe > (ω/k‖) > vthi [9,10], where ρi is the ion gyroradius.

With these orderings the following kinetic effects must be considered: trapped electron

dynamics, ion FLR effect and wave-particle resonance with ω−ωdi = 0, where ωdi is the ion
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magnetic drift frequency. We shall obtain approximate solutions of the perturbed particle

distributions based on the gyrokinetic formulation [22].

For k⊥ >> k‖ we assume a WKB representation for perturbed quantities, i.e.,

δf(x,v, t) = δf(s,k⊥,v) exp [i (S − ωt)], where s is the distance along a field line, k⊥ = ∇S,

S is the WKB eikonal. Including full FLR effects the perturbed particle distribution function

for species j can be expressed in terms of the rationalized MKS unit as

δf(s,k⊥,v) =
q

m

∂F

∂E
[
ωT

?

ω
+

(
1− ωT

?

ω

) (
1− J0e

iδL
)]

Φ + geiδL, (1)

where the j subscript has been omitted, q is the particle charge, m is the particle mass, B

is the magnetic field intensity, E = v2/2, the guiding center particle equilibrium distribution

is assumed to be F = F (E, ψ) so that the equilibrium pressure is a function of E and

ψ only, ωT
? = B× k⊥ · ∇F/(ωcB∂F/∂E), ωc = qB/m is the cyclotron frequency, δL =

k⊥ × v · B/ωcB, Jl is the l-th order Bessel function of the argument k⊥v⊥/ωc, Φ is the

perturbed electrostatic potential, and g is the nonadiabatic part of the perturbed distribution

function. Based on the WKB formalism the gyrokinetic equation for g in the low frequency

(ω � ωc) limit is given by

(ω − ωd + iv‖ · ∇‖)g = − q

m

∂F

∂E
(

1− ωT
?

ω

)[(
ωdΦ − iv‖ · ∇‖Ψ

)
J0 +

ωv⊥
k⊥

J1δB‖
]
, (2)

where Ψ is the parallel perturbed electric field potential with E‖ = −∇‖Ψ, δB‖ is the

perturbed parallel magnetic field, ωd = k⊥ · vd is the magnetic drift frequency, vd =

(mB/qB2)×(v2
‖κ+µ∇B) is the magnetic drift velocity, κ = (B/B)·∇(B/B) is the magnetic

field curvature, and µ = v2
⊥/2B is the magnetic moment. Note that the vector potential,

defined by A = A‖ +A⊥B×k⊥/(Bk⊥), is related to Φ, Ψ and δB‖ by ωA‖ = −i∇‖(Φ−Ψ)

and δB‖ = ik⊥A⊥.

In the following we will derive three coupled equations from perpendicular and parallel

Ampere’s law and quasineutrality condition for three unknowns, Φ, Ψ and δB‖. The deriva-

tion is based on the solution of Eq.(2) for ions and electrons with Maxwellian equilibrium

distribution functions with temperature T . To obtain the perturbed ion distribution func-

tion we assume that ω ,ωdi � |v‖∇‖|, and thus the ion dynamics is mainly determined by
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its perpendicular motion, and the nonadiabatic perturbed ion distribution function is given

by

gi ' qiFi

Ti

ω − ωT
∗i

ω − ωdi

(
ωdi

ω
J0Φ +

v⊥
k⊥
J1δB‖

)
, (3)

where the subscript i refers to the ion species. Note that the ion dynamics is mainly deter-

mined by its perpendicular motion.

For electrons we shall neglect FLR effects and consider |v‖∇‖| � ω, ωde. Clearly, trapped

and un-trapped electrons have very different parallel dynamics. The un-trapped electron

dynamics is mainly determined by its fast parallel transit motion, and to the lowest order

in (ω/|v‖∇‖|) the perturbed un-trapped electron distribution function is given by

geu ' −qeFe

Te

(
1− ωT

∗e
ω

)
Ψ. (4)

where the subscript e refers to the electrons. The trapped electron dynamics is mainly

determined by its fast parallel bounce motion. We perform the bounce averaging of Eq.(2)

and to the lowest order in (ω/ωbe) we obtain

get ' qeFe

Te

{(
ωT
∗e
ω
− 1

)(
Ψ− 〈(ω − ωde) Ψ〉

ω − 〈ωde〉
)

+
ω − ωT

∗e
ω − 〈ωde〉〈

ωde

ω
Φ +

mev
2
⊥

2qeB
δB‖〉

}
, (5)

where 〈X〉 =
∮
dsX/v‖/

∮
ds/v‖ is the trapped particle orbit average of X and is a function

of particle pitch angle. The magnetic drift frequencies for ions and electrons are given by

ωdj =
mjE
Tj

{
ω̂kj

(
1− µB

2E
)
− ω∗j

µB

2E [βe (1 + ηe) + βi (1 + ηi)]
}
, (6)

where we make use ω∗j [βe (1 + ηe) + βi (1 + ηi)] + ω̂Bj = ω̂kj from the equilibrium relation

∇⊥(P +B2/2) = κB2, βe = 2neTe/B
2, βi = 2niTi/B

2, ηe = dlnTe/dlnne, ηi = dlnTi/dlnni,

ω̂Bj = 2B×∇B ·k⊥Tj/qjB
3, ω̂kj = 2B×κ ·k⊥Tj/qjB

2, and ω∗j = B×∇ lnnj ·k⊥Tj/qjB
2.

Substituting the perturbed distribution functions for all particle species into the

quasineutrality condition,
∑

j

∫
qjfjd

3v = 0, where the summation over j is over all par-

ticle species, we obtain:

−
∫
d3v

q2
i

mi

∂Fi

∂E
(

1− ωT
∗i
ω

)(
1− J2

0

)
Φ =

∑
j

qj

∫
d3vJ0gj. (7)
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Using solutions of the drift kinetic equation, Eq.(7) is reduced to the following expression

for the parallel electric field potential:

(
neu + net∆1

ne

)(
1− ω∗e

ω

)
Ψ = E1aΦ− niq

2
i Te

neq2
eTi

[(
1− ω∗pi

ω

)
(1− Γ0) +G− I1

]
Φ

+
Te

qeB
E1bδB‖ +

(
niq

2
i Te

neq2
eTi

)
I2
Ti

qiB
δB‖ (8)

where net/ne ≡ R1 =
√

1− B/Bmax and neu/ne = 1 − R1 are the fraction of trapped and

passing (untrapped) electron densities, respectively, Bmax is the maximum magnetic field

along a field line, ∆1 is an operator involving trapped electron orbit average of the parallel

electric potential Ψ and is given by

∆1Ψ =
∫
d3v

Fet

net

(
ω − ωT

∗e
ω − ω∗e

)[
Ψ− 〈(ω − ωde)Ψ〉

ω − 〈ωde〉
]
, (9)

G = (ηiω∗i/ω) [(1− Γ0)− bi(Γ0 − Γ1)], Γ0,1(bi) = I0,1(bi) exp(−bi), bi = k2
⊥Ti/miω

2
ci =

k2
⊥ρ

2
i /2, I0 and I1 are the modified Bessel function of the zeroth order and first order,

respectively, ω∗pj = ω∗j(1 + ηj), ηj = ∇ lnTj/∇ lnnj ,

I1 =
∫
d3v

Fi

ni

ω − ωT
∗i

ω − ωdi

ωdi

ω
J2

0 , (10)

I2 =
∫
d3v

Fi

ni

ω − ωT
∗i

ω − ωdi

qiB

T1

v⊥
k⊥
J0J1, (11)

and E1a and E1b are operators involving trapped electron orbit average of perturbed variables

and are given by

E1aΦ =
∫
d3v

Fet

ne

ω − ωT
∗e

ω − 〈ωde〉
〈ωdeΦ〉
ω

, (12)

and

E1bδB‖ =
∫
d3v

Fet

ne

ω − ωT
∗e

ω − 〈ωde〉
mev

2
⊥

2Te
〈δB‖〉. (13)

We can express the electron bounce-averaged magnetic drift frequency as ωde =

ω̂demeE/Te ≡ ω̂dev̂
2, where ω̂de is a function of particle pitch angle but not energy. Then,

E1aΦ can be integrated over the particle energy and is given by
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E1aΦ =
∫ h

hm

dλ

2h
√

1− λ/h
Ê1
〈ω̂deΦ〉
〈ω̂de〉 , (14)

where
∫
d3v =

∑
σ π

∫∞
0 dvv2

∫ h
0 dλ/(h

√
1− λ/h), λ = µB0/E, h = B0/B, the sum σ accounts

for two directions of particle motion along the field line, B0 is a reference magnetic field

intensity that can be chosen arbitrarily, hm = B0/Bmax and

Ê1 ≡ 4√
π

∫ ∞

0
dv̂v̂4e−v̂2 ω − ωT

∗e
ω − 〈ωde〉

〈ω̂de〉
ω

=
3ηeω∗e

2ω
−
{
1− ω∗e

ω

[
1 + ηe

(
ξ2
e −

3

2

)]} [
1 + 2ξ2

e (1 + ξeZ(ξe))
]
, (15)

where Z (ξe) = π−1/2
∫∞
−∞ e−t2 (t− ξe)

−1 dt is the plasma dispersion function, and ξ2
e =

ω/〈ω̂de〉. Similarly, E1bδB‖ is reduced to

E1bδB‖ =
∫ h

hm

dλ

2h
√

1− λ/h

(
λ

h

)
ω

〈ω̂de〉 Ê1〈δB‖〉. (16)

I1, and I2 can also be integrated over v‖ and they are given by

I1 =
ω

ω̂ki

∫ ∞

0
dxe−xJ2

0

{(−Z(ξi)

ξi

)[
1− ω∗i

ω

(
1− ηi

(
3

2
− x− ξ2

i

))]
+ ηi

ω∗i
ω

}

−
[(

1− ω∗i
ω

)
Γ0 +

ηiω∗i
ω

bi(Γ0 − Γ1)
]
, (17)

and

I2 =
ω

ω̂ki

∫ ∞

0
dxe−xJ0 (J0 + J2) x

{(−Z(ξi)

ξi

)[
1− ω∗i

ω

(
1− ηi

(
3

2
− x− ξ2

i

))]
+ ηi

ω∗i
ω

}
, (18)

where ξ2
i = (ω − ω̂Bix/2) /ω̂ki, and the argument of the Bessel functions is (bix)

1/2.

To obtain an equation for δB‖, we employ the perpendicular component of the Ampere’s

law, ∇× δB = δJ, which relates the perturbed magnetic field with the perturbed current,

where δJ is the perturbed current density. Using Eq.(1) we can write

δB‖ = −∑
j

qj

∫
d3v

v⊥
k⊥
J1

[
gj − qj

mj

∂Fj

∂E
(

1− ωT
∗j
ω

)
J0Φ

]
. (19)

Using the solutions of the gyrokinetic equations, we obtain(
1 +

βi

2
I3

)
δB‖ +

βe

2
ξ2
eE2bδB‖

=
qeB

2Te
βe

{(
ω∗pe

ω
− 1−E2a + I2

)
Φ +

(
1− 3R2

2

)(
1− ω∗pe

ω

)
Ψ + ∆2Ψ

}
, (20)
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where R2 = 2R1 (1 +B/2Bmax) /3,

I3 =
∫
d3v

Fi

ni

ω − ωT
∗i

ω − ωdi

(
qiBv⊥
Tik⊥

)2

J2
1 , (21)

E2a and E2b, and ∆2 are operators involving trapped electron orbit average of perturbed

variables and are given by

E2aΦ =
∫
d3v

Fet

ne

(
mev

2
⊥

2Te

)
ω − ωT

∗e
ω − 〈ωde〉

〈ωdeΦ〉
ω

, (22)

E2bδB‖ =
∫
d3v

Fet

ne

(
mev

2
⊥

2Te

)2
ω − ωT

∗e
ω − 〈ωde〉

〈ω̂de〉
ω

〈δB‖〉. (23)

and

∆2Ψ =
∫
d3v

Fet

net

(
mev

2
⊥

2Te

)(
1− ωT

∗e
ω

)[
Ψ− 〈(ω − ωde)Ψ〉

ω − 〈ωde〉
]
. (24)

Again, integrating over the particle parallel velocity can be carried for I3 and integrating

over the particle energy can be performed in E2a and E2b, we have

I3 =
ω

ω̂ki

∫ ∞

0
dxe−x (J0 + J2)

2 x2

{(−Z(ξi)

ξi

)[
1− ω∗i

ω

(
1− ηi

(
3

2
− x− ξ2

i

))]
+ ηi

ω∗i
ω

}
, (25)

E2aΦ =
∫ h

hm

dλ

2h
√

1− λ/h

(
λ

h

)
Ê2
〈ω̂deΦ〉
〈ω̂de〉 , (26)

E2bδB‖ =
∫ h

hm

dλ

2h
√

1− λ/h

(
λ

h

)2

Ê2〈δB‖〉, (27)

where

Ê2 ≡ 4√
π

∫ ∞

0
dv̂v̂6e−v̂2 ω − ωT

∗e
ω − 〈ωde〉

〈ω̂de〉
ω

=
15ηeω∗e

4ω
−
{
1− ω∗e

ω

[
1 + ηe

(
ξ2
e −

3

2

)]} [
3

2
+ ξ2

e + 2ξ4
e (1 + ξeZ(ξe))

]
, (28)

Finally, we obtain the vorticity equation to close the coupled equations for Φ, Ψ and

δB‖. By multiplying the gyrokinetic equation, Eq.(2), with particle charge, integrating over

the velocity space, summing over all species, and making use of the parallel component of
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the Ampere’s law which relates the perturbed parallel current to the perturbed field by

δJ‖ ' −ik2
⊥∇‖ (Φ −Ψ) /ω, we obtain the vorticity equation

B · ∇
(
k2
⊥
B2

B · ∇ (Φ −Ψ)

)
− ω2

∑
j

∫
d3v

q2
j

mj

∂Fj

∂E
(

1− ωT
∗j
ω

)[(
1− J2

0

)
Φ− v⊥

k⊥
J0J1δB‖

]

−ω∑
j

∫
d3vωdj

[
qjJ0gj −

q2
j

mj

∂Fj

∂E
(

1− ωT
∗j
ω

)
J2

0Φ

]
= 0. (29)

Again, substituting the solutions from the gyrokinetic equations, the vorticity equation

becomes

V 2
ATi

miω2
ci

B · ∇
(
k2
⊥
B2

B · ∇ (Φ−Ψ)

)
+ ω2

[(
1− ω∗pi

ω

)
(1− Γ0) +G− I1

]
Φ

+
qeTi

qiTe

[
(ω − ω∗pe)

(
ω̂Be + ω̂ke

2

)
+ ω2E3a

]
Φ + ω2

(
1− ω∗pe

ω
− I2 −E3b

)
Ti

qiB
δB‖

−qeTi

qiTe

{
(ω − ω∗pe)

2

[
ω̂Be

(
1− 3R2

2

)
+ ω̂ke (1 + 3(R2 −R1))

]
+ ω2∆3

}
Ψ = 0. (30)

where VA = B/(nimi)
1/2 is the Alfvén speed, E3a, E3b, and ∆3 are operators involving

trapped electron orbit average of perturbed variables and are given by

E3aΦ =
∫
d3v

Fet

ne

ω − ωT
∗e

ω − 〈ωde〉
ωde

ω

〈ωdeΦ〉
ω

, (31)

E3bδB‖ =
∫
d3v

Fet

ne

(
mev

2
⊥

2Te

)
ω − ωT

∗e
ω − 〈ωde〉

ωde

ω
〈δB‖〉. (32)

and

∆3Ψ =
∫
d3v

Fet

net

ωde

ω

(
1− ωT

∗e
ω

) [
Ψ− 〈(ω − ωde)Ψ〉

ω − 〈ωde〉
]
. (33)

Again, we can integrate over the particle energy in E3aΦ, and E3bδB‖, and we have

E3aΦ =
∫ h

hm

dλ

2h
√

1− λ/h

(
ω̂Be(λ/2h) + ω̂ke(1− λ/h)

ω

)
Ê2
〈ω̂deΦ〉
〈ω̂de〉 , (34)

E3bδB‖ =
∫ h

hm

dλ

2h
√

1− λ/h

(
λ

h

)(
ω̂Be(λ/2h) + ω̂ke(1− λ/h)

ω

)
ω

〈ω̂de〉 Ê2〈δB‖〉, (35)

Equations (8), (20) and (30) constitute the WKB-ballooning equations for the stability

of low frequency modes such as the kinetic ballooning modes. However, they are integro-

differential equations and are difficult to solve. Thus, to gain understanding of the mode

stability further approximations must be made to simplify these equations.

12



A. Simplified Kinetic Ballooning Equations

To simplify the numerical procedures for solving Equations (8), (20) and (30) numerically,

we make further assumptions to eliminate the bounce-averaged quantities for symmetric

modes by assuming that 〈(ω − ωde)Ψ〉 ' (ω − 〈ωde〉)Ψ, 〈ωdeΦ〉 ' 〈ωde〉Φ, and 〈δB‖〉 ' δB‖.

Then, Equations (8), (20) and (30) reduce to a set of differential equations. Moreover,

∆1Ψ ' ∆2Ψ ' ∆3Ψ ' 0. If we further assume that 〈ωde〉 does not depend on the parti-

cle pitch angle, then the pitch angle integrations in E1a, E1b, E2a, E2b, E3a, E3b can be car-

ried out and we have E1a = R1Ê1, E1b = (ω/〈ω̂de〉)R2Ê1, E2a = R2Ê2, E2b = R3Ê2,

E3a = [R2ω̂Be/2ω + (R1 −R2)ω̂ke/ω]Ê2, and E3b = [R3ω̂Be/2〈ω̂de〉+ (R2 −R3)ω̂ke/〈ω̂de〉]Ê2,

where R3 = (8R1/15)
[
1 +B/2Bmax + (3/8) (B/Bmax)

2
]
. Then, Eqns. (8), (20) and (30)

are further reduced to

neu

ne

(
1− ω∗e

ω

)
Ψ =

qiTe

qeTi

[(
1− ω∗pi

ω

)
(1− Γ0) +G− I1

]
Φ +R1Ê1Φ

+

(
ω

〈ω̂de〉R2Ê1 − I2

)
Te

qeB
δB‖, (36)

(
1 +

1

2
βiI3 +

1

2
βeR3Ê2ω/〈ω̂de〉

)
δB‖

=
qeB

2Te

βe

{(
ω∗pe

ω
− 1−R2Ê2 + I2

)
Φ +

(
1− 3R2

2

)(
1− ω∗pe

ω

)
Ψ
}
, (37)

and

V 2
ATi

miω2
ci

B · ∇
(
k2
⊥
B2

B · ∇ (Φ−Ψ)

)
+ ω2

[(
1− ω∗pi

ω

)
(1− Γ0) +G− I1

]
Φ

+
qeTi

qiTe

{
(ω − ω∗pe)

(
ω̂Be + ω̂ke

2

)
+ Ê2ω

(
ω̂Be

R2

2
+ ω̂ke (R1 − R2)

)}
Φ

+ω2

[
1− ω∗pe

ω
+ Ê2

(
ω̂Be

〈ω̂de〉
R3

2
+

ω̂ke

〈ω̂de〉 (R2 − R3)

)
− I2

]
Ti

qiB
δB‖

−qeTi

qiTe
(ω − ω∗pe)

[
ω̂Be

(
2− 3R2

4

)
+ ω̂ke

(
1 + 3(R2 −R1)

2

)]
Ψ = 0. (38)

To examine the kinetic ballooning stability for NSTX, a low aspect ratio tokamak, we

shall present numerical solutions of equations (36)-(38) for numerical NSTX equilibria.

13



III. ANALYTICAL THEORY OF KINETIC BALLOONING INSTABILITY

To obtain an analytical understanding of the combined effects of trapped electron dy-

namics and finite ion Larmor radii, we consider the limits: ω ∼ ω∗ � ωd for both elec-

trons and ions, small ion Larmor radii k⊥ρi � 1, low plasma beta βi, βe < 1. Then,

1 − Γ0 ' bi, and G ' O(b2i ) and the integrals, Ê1, Ê2, I1, I2, and I3, can be reduced to

the leading order as Ê1 = (3〈ω̂de〉/2ω)(1 − ω∗pe/ω), Ê2 = (15〈ω̂de〉/4ω)[1 − (1 + 2ηe)ω∗e/ω],

I1 = (1− ω∗pi/ω)(ω̂Bi + ω̂ki)/2ω, I2 = 1− ω∗pi/ω, and I3 = 2[1− (1 + 2ηi)ω∗i/ω].

First, we consider the large aspect ratio limit, i.e., ε ≡ a/R0 << 1, then to the leading

order R1 = R2 = R3 ∼ O(
√
ε) which represents the trapped electron density fraction.

Equation (36), which determines the parallel electric field potential, is then simplified to the

lowest order to

(
1− ω∗e

ω

)
Ψ ' (1 +R1)

qiTe

qeTi

(
1− ω∗pi

ω

)[(
bi − ω̂Bi + ω̂ki

2ω

)
Φ− Ti

qiB
δB‖

]

+
3R1

2

(
1− ω∗pe

ω

)(〈ω̂de〉
ω

Φ +
Te

qeB
δB‖

)
. (39)

Note that the right-hand side is due to the perturbed ion density resulting from effects of

finite ion Larmor radii and magnetic drifts. The contribution to the parallel electric field

term on the left-hand-side is mainly due to the perturbed untrapped electron density. This

is because the trapped electron density is not changed by the parallel electric field due to

their fast bounce motion relative to the parallel wave motion. In comparison with the limit

without trapped electron effects, the parallel electric field is enhanced by ne/neu. Similarly,

Eq. (37), which determines the parallel perturbed magnetic field, is simplified to the lowest

order to

Te

qeB
δB‖ ' βe

2

{(
ω∗pe − ω∗pi

ω

)
Φ +

(
1− ω∗pe

ω

)
Ψ

−3R1

2

[
5〈ω̂de〉

2ω

(
1− (1− 2ηe)ω∗e

ω

)
Φ +

(
1− ω∗pe

ω

)
Ψ

]}
. (40)

Note that this relation is equivalent to the perturbed total pressure balance relation, B ·
δB + δP⊥ ' 0, which is derived from MHD equations for low frequency instabilities with

14



ω � k⊥VA [19,21,22]. The vorticity equation, Eq. (38), is simplified to

V 2
ATi

miω2
ci

B · ∇
(
k2
⊥
B2

B · ∇ (Φ −Ψ)

)
+

[
ω (ω − ω∗pi) bi + (ω∗pi − ω∗pe)

(
ω̂Bi + ω̂ki

2}
)]

Φ

− (ω − ω∗pe)

(
ω̂Bi + ω̂ki

2

)
Ψ + ω (ω∗pi − ω∗pe)

Ti

qiB
δB‖

+R1ω
2

[
15

8

〈ω̂de〉
ω

(
1− (1 + 2ηe)ω∗e

ω

)(
ω̂Bi

ω
Φ +

ω̂Be

〈ω̂de〉
Ti

qiB
δB‖

)
+

3

4
(ω − ω∗pe) ω̂BiΨ

]
' 0. (41)

Next, we eliminate δB‖ from the above three equations and to the leading order in O(R1)

Eq. (39) reduces to

(
1− ω∗e

ω

)
Ψ ' (1 +R1)

qiTe

qeTi

(
1− ω∗pi

ω

)(
bi − ω̂ki

ω

)
Φ

+
3R1

2

(
1− ω∗pe

ω

) [〈ω̂de〉
ω

+
βe

2

(ω∗pe − ω∗pi)

ω

]
Φ, (42)

where we have made use of the equilibrium relation, βi(ω∗pi − ω∗pe) + ω̂Bi = ω̂ki, which is

equivalent to the equilibrium relation ∇⊥(P +B2/2) = κB2. Similarly, Eq. (41) reduces to

V 2
ATi

miω2
ci

B · ∇
(
k2
⊥
B2

B · ∇ (Φ−Ψ)

)
+ ω (ω − ω∗pi) biΦ + (ω∗pi − ω∗pe) ω̂kiΦ

+
15R1

8

[
ω̂ki〈ω̂de〉+

βe

2
ω̂Bi (ω∗pe − ω∗pi)

] (
1− (1 + 2ηe)ω∗e

ω

)
Φ

−
(
1− 3R1

4

)
(ω − ω∗pe) ω̂kiΨ ' 0, (43)

where we have made use of the relations: −(ω−ω∗pi)(ω̂Bi + ω̂ki)+(qeTi/qiTe)(ω−ω∗pe)(ω̂ke +

ω̂Be)− (qeTi/qiTe)(ω∗pi − ω∗pe)
2βe = 2(ω∗pi − ω∗pe)ω̂ki and ω̂Be − βe(ω∗pi − ω∗pe) = ω̂ke. Eqs.

(42) and (43) describe kinetic ballooning mode and retain the leading order effects of trapped

electron density fraction, finite ion Larmor radii (bi = k2
⊥Ti/miω

2
ci < 1), small magnetic drift

frequency (ωd/ω < 1) and small plasma β (β < 1). Making use of Eq. (42), Eq. (43) can be

re-written as

B · ∇
(
k2
⊥
B2

B · ∇ (Φ −Ψ)

)
+ β

(
B×∇lnP · k

B

)(
B× κ · k

B

)
(Φ−Ψ) +

k2
⊥
V 2

A

ω (ω − ω∗pi) Φ

+R1
miω

2
ci

TiV 2
A

{[
(ω∗pi − ω∗pe)− (ω − ω∗pe)

4

]
ω̂ke

(ω − ω∗pi)

(ω − ω∗e)

(
bi − ω̂ki

ω

)

−3

2

(
1− ω∗pi

ω

)
(ω − ω∗pe)

(ω − ω∗e)

[
ω̂ki〈ω̂de〉+

β2

2
ω̂ki(ω∗pe − ω∗pi)

]

15



+
15

8

(
1− (1 + 2ηe)ω∗e

ω

) [
ω̂ki〈ω̂de〉+

βe

2
ω̂Bi (ω∗pe − ω∗pi)

]}
Φ ' 0, (44)

where we have made use of (ω∗i − ω∗pe) ω̂ki = (V 2
ATi/miω

2
ci)β(B×∇lnP · k)(B× κ · k)/B2.

Equation (44) provides the analytical understanding of the KBM stability property. It

is clear that the first two terms of Eq. (44) are essentially the ideal MHD contribution

with the first term representing the stabilizing field line bending term and the second term

representing the instability drive if the pressure gradient is in the same direction as the field

line curvature. The third term represents the ion inertia effect modified by the finite ion

Larmor radius effect in the ion diamagnetic drift frequency. The fourth term is proportional

to the trapped electron density fraction and represents the kinetic contributions from the

trapped electron density fraction as well as effects due to ion Larmor radii, particle gradient

B and curvature drifts as well as density and temperature gradient drifts.

From our previous works [9,10] and the numerical solutions presented below we realize

that at marginal stability the frequency of the kinetic ballooning mode (KBM) is given by

ω = ω∗i for ηi = 0 and ω > ω∗pi ≡ (1 + ηi)ω∗i for ηi 6= 0. For ηi = 0, at marginal stability

ω = ω∗i, the third term and the first and second terms in the curly bracket of the fourth

term vanish. Thus, without the trapped electron density fraction, Eq. (44) is essentially the

ideal MHD equation and the critical β of KBMs is identical to the ideal MHD critical β

even though the other kinetic effects reduce the growth rate from the ideal MHD case [9,10].

With a finite trapped electron density fraction, the coefficient of the fourth term in Eq. (44)

is negative and thus the trapped electron effect gives a stabilizing effect with the critical β

increased (decreased) by a factor proportional to O(
√
ε) for the first (second) stability as

the numerical results show in Fig. 1.

For ηi 6= 0, we realize from the numerical solutions that at the marginal stability ω > ω∗pi.

Then, the coefficient of third term in Eq. (44) is positive. Thus, in the absence of trapped

electrons, the kinetic effect due to the third term is destabilizing and the critical β for the

first stability is reduced from the ideal MHD critical β, which is verified by the numerical

solutions presented in Figure 6 of Ref. [9]. The coefficient of the fourth term in Eq. (44)
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consists of three terms; the first and third terms are negative, but the second term is positive.

However, the second term is smaller than the third term and the coefficient of the fourth

term in Eq. (44) is negative, and thus, the trapped electron effect is stabilizing.

Next, we consider the small aspect ratio limit, neu/ne ≡ 1 − R1 ∼ O(B/2Bmax) << 1,

then R2 ' 2/3 +O(B/2Bmax)
2, and R3 ' 8/15 +O(B/2Bmax)

2. Then, Eqn. (37) becomes

Te

qeB
δB‖ =

βe

2

(
ω∗pe − ω∗pi

ω

)
(45)

and substituting this expression into Eqn. (36) and Eqn. (38) we obtain

neu

ne

(
1− ω∗e

ω

)
Ψ =

[
qiTe

qeTi

(
1− ω∗pi

ω

)(
bi − ω̂Bi + ω̂ki

2ω

)

+
3

2

(
1− ω∗pe

ω

) 〈ω̂de〉
ω

− βe

2

(
ω∗pi − ω∗pe

ω

)2
]
Φ, (46)

and

B · ∇
(
k2
⊥
B2

B · ∇ (Φ−Ψ)

)
+ ω (ω − ω∗pi)

k2
⊥
V 2

A

Φ

+β

(
B×∇lnP · k

B

)(
B× κ · k

B

)
Φ = 0. (47)

Note that Eq. (47) differs from the ideal MHD ballooning mode equation by the parallel

electric field potential Ψ term in the field line bending term. Because the coefficient of

the Φ term in Eq. (46) is negative, thus the Ψ term in Eq. (47) enhances the stabilizing

field line bending effect. From Eq. (46) the parallel electric field arises from the difference

between ions and trapped electron in their perpendicular motion (finite ion Larmor radius

effect, ion magnetic drift, trapped electron perpendicular drift, and the response due to

compressional magnetic field perturbation. Moreover, the parallel electric field is enhanced

by ne/neu >> 1.

Equations (46) and (47) can be combined to give

B · ∇
(
k2
⊥
B2

B · ∇ScΦ

)
+
ω(ω − ω∗pi)

V 2
A

k2
⊥Φ + β

(
B× κ · k⊥

B

)(
B×∇P · k⊥

BP

)
Φ ' 0, (48)

where
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Sc = 1 +
ne

neu

[
βe

2

(
ω∗pi − ω∗pe

ω

)2

− qiTe

qeTi

(
ω − ω∗pi

ω − ω∗e

)
bi

−3

2

(
ω − ω∗pe

ω − ω∗e

) 〈ω̂de〉
ω

+
(
ω − ω∗pi

ω − ω∗e

)
ω̂Be + ω̂ke

2ω

]
. (49)

Note that the coefficient of ne/neu in the above expression is positive and thus Sc > 1.

For ne/neu >> 1 and bi ∼ O(1) or β ∼ O(1), the ne/neu term is much larger than unity,

and Sc >> 1. Physically, Sc is related to the perturbed parallel current, given by δJ‖ '
i∇2

⊥∇‖ (ScΦ) /ω, which gives rise to an enhanced stabilizing field line tension due to an

enhanced parallel electric field (−∇‖Ψ) resulting from the combined kinetic effects of trapped

electron dynamics and ion FLR and magnetic drift motion. The local dispersion relation is

given by

ω(ω − ω∗pi)

V 2
A

+ β

(
B× κ · k⊥

k⊥B

)(
B×∇lnP · k⊥

k⊥B

)
' Sck

2
‖. (50)

At marginal stability the critical β for the KBM is given by

βc ' Scβ
MHD
c − ω(ω − ω∗pi)RcLp

V 2
A

, (51)

where βMHD
c = k2

‖RcLp is the ballooning instability threshold based on the ideal MHD

theory, Rc is the radius of the magnetic field curvature and Lp is the pressure gradient scale

length. For ηi = 0, ω = ω∗i at the marginal stability. Then, the second term on the right

hand side of Eq. (51) vanishes and βc = Scβ
MHD
c is enhanced over the ideal MHD threshold

by Sc. For ηi 6= 0, ω > ω∗pi at the marginal stability, thus ω(ω − ω∗pi) > 0 and the second

term on the right hand side of Eq. (51) reduces the βc. However, Sc is also modified by the

ω value at the marginal stability.

IV. STABILITY ANALYSIS OF KINETIC BALLOONING MODES FOR

ANALYTICAL (ŝ− αP ) EQUILIBRIUM

More accurate solutions of KBMs must be carried out by performing numerical solutions

of the eigenmode equations, Eqs. (36)-(38), which are a second order ordinary differential
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equation along the field line. Numerical studies of high-n (n is the toroidal mode number)

KBMs based on Eqs. (36)-(38) have been performed for circular cross section tokamaks

previously [9,10] by employing the (ŝ− αp) analytical model equilibrium where ŝ = rq′/q is

the magnetic shear, αp = −2P ′R0q
2/B2

0 , q is the safety factor, r is the minor radius, R0 is the

major radius, P is the plasma pressure, B0 is the averaged magnetic field intensity over a flux

surface. We adopt the high-n WKB-ballooning formalism, and to the lowest order in (1/n)

the radially local high-n eigenmode equation is obtained by choosing S = n(qθ−ζ− ∫ θkdq),

where θk is to be determined from a higher order radially non-local analysis [2,3]. Based on

the (ŝ−αp) equilibrium model for circular cross section tokamaks, we have k2
⊥ = k2

θ [1+hθ2],

kθ = nq/r, h(θ) = ŝ(θ − θk) − αpsinθ, B × κ · ∇S = −(Bkθ/R0)[cosθ + h(θ)sinθ]. In

general we need to solve the radially local eigenmode equation for all θk in order to perform

a two-dimensional eigenmode analysis. However, we shall choose θk = 0 because the most

unstable modes are usually related to θk = 0.

We define the parameters Ln = (dlnni/dr)
−1, εn = Ln/R0, ηe = dlnTe/dlnne, ηi =

dlnTi/dlnni, αp = (q2/εn)[βe(1 + ηe) + βi(1 + ηi)], βe = 2neTe/B
2, βi = 2niTi/B

2, β =

βe + βi, bθ = k2
θρ

2
i /2, ε = r/R0 is the inverse aspect ratio. Then, ω∗pi = (1 + ηi)ω∗i, and

ω∗pe = (1 + ηe)ω∗e.

Figure 1 shows critical βc values of the first and second stability boundaries for KBMs

versus the inverse aspect ratio ε, which demonstrates the stabilizing effect of trapped elec-

trons on βc. The fixed parameters are bθ = εn = 0.1, ŝ = 0.5, q = Te/Ti = 1, ηe = ηi = 0.

It is clear that for small ε the increase in βc from the ε = 0 case for the first stability

boundary and the reduction in βc from the ε = 0 case for the second stability boundary are

proportional to
√
ε, which represents the trapped electron fraction.

The numerical results of the high-n eigenmode equations clearly confirm the qualitative

results of the local solutions. A more complete eigenmode calculation including extensive

kinetic effects based on numerical equilibria has also indicated that the kinetic ballooning

mode will be stabilized in the small aspect ratio tokamaks [12]. However, the physical mech-

anism of the KBM stabilization was not specifically identified in these studies. Therefore, it
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would be worthwhile to carry out a more extensive calculation to address the kinetic effects

of trapped electrons and finite ion Larmor radii in realistic NSTX equilibria or other low

aspect ratio toroidal devices.

V. STABILITY ANALYSIS OF KINETIC BALLOONING MODES FOR NSTX

EQUILIBRIUM

To study the stability of KBMs in NSTX numerical equilibria, we choose the baseline

NSTX equilibrium parameters: major radius at the geometrical center is R0 = 0.86m,

minor radius of last magnetic surface is a = 0.68m, and the aspect ratio is R0/a = 1.27,

the last surface ellipticity is κ = 1.63 and triangularity is δ = 0.417, the vacuum magnetic

field at the geometrical axes R = R0 is B0 = 0.3T . To simplify the interpretation of the

numerical solutions we chose constant temperature with Te = Ti = 1keV so that ηi = ηe = 0,

which eliminates the temperature gradient driven modes. The central electron density is

ne0 = 2.9 × 1013cm−3, and the density profile is identical to the plasma beta profile. The

beta at the magnetic axis is β0 ≡ 2P (0)/B2
0 = 38%, and the volume-averaged beta is

2〈P 〉/B2
0 = 9.075%. The q-profile is non-monotonic and has a region of negative shear

inside of qmin = q(r/a = 0.3) = 0.93, where r2/a2 ≡ Ψtor, and Ψtor is the toroidal magnetic

flux normalized to zero at the magnetic axis and unity at the plasma edge. The left figure

in Figure 2 shows the radial profiles of plasma β and q, and the right figure in Figure 2

shows the nested magnetic flux surfaces of the NSTX equilibrium. The numerical NSTX

equilibrium is computed using the computationally efficient ESC code [23].

The high-n WKB-Ballooning kinetic equations, Eqs. (36)-(38), are solved by employing

the HINST code [24] with θk = 0. Figure 3 shows the dependence of the KBM growth

rate and real frequency (normalized by ωA0 = VA(0)/q(0)R0) on the minor radius r/a for

the baseline NSTX equilibrium for n = 12. The KBM is unstable in the range of 0.4 >

r/a > 0.28, which is much smaller than the unstable region (r/a < 0.45) of the ideal MHD

ballooning mode, whose growth rates are also shown in Figure 3. Note that at the marginal
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stability of the KBM, its real frequency equals the local ion diamagnetic drift frequency

ω∗i, which is consistent with our previous studies [9,10], and the KBM growth rate is much

smaller than the ideal MHD growth rate. Also, when the KBM is unstable, its real frequency

is smaller than the local ω∗i, and the most unstable KBM occurs near r/a = 0.33.

Figure 4 shows the dependence of the KBM growth rate and frequency (normalized by

ωA0) on the plasma beta at r/a = 0.35 for n = 12. For each β value we compute a new

equilibrium by varying the temperature, while keeping the other plasma profiles fixed. For

unstable KBMs the real frequency is close to but below the local background ion diamagnetic

drift frequency, ω∗i. The instability is stabilized by increasing beta. The KBM is stable for

β > 0.25, which corresponds to equilibria with a central beta value of β(0) = 0.5. Note

that at this critical point the mode frequency matches approximately the ion diamagnetic

frequency, which is in agreement with our previous studies [9,10]. For β ≤ 0.05 the magnetic

shear is weak and the eigenmode solutions extend to a very large θ distance. It is thus difficult

to identify the first stability boundary numerically.

Figure 5 shows the dependence of the complex KBM eigenfrequency (normalized by ωA0)

on the toroidal mode number n at r/a = 0.35 with a local β ' 0.17 for the baseline NSTX

equilibrium. Note that the unstable n-spectrum is broad and the growth rate is reduced for

higher n’s due to FLR effects.

Figure 6 shows the marginal stability boundary for the KBMs and the ideal MHD bal-

looning modes in the local β and r/a plane for n = 12. To compute the critical β values for

each flux surface, we construct new equilibria by varying the central density value ne(0) (or

β(0) while keeping other equilibrium quantities fixed. For the baseline NSTX equilibrium

the plasma beta is larger than the critical beta for unstable ideal MHD ballooning modes in

a very broad region for r/a < 0.46 as shown in Fig. 6. However, the stability boundary for

KBMs forms a closed curve and KBMs are stable in the region outside this closed curve. For

the NSTX equilibrium KBMs are unstable from r/a = 0.28 to r/a = 0.37. Note that our

HINST calculations do not find unstable KBMs up to β(0) = 1. Because the average beta

for the NSTX equilibrium is 〈β〉 = 9.1% and the experimentally achieved values are about
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a factor of three larger, we expect full stabilization of KBMs in high β NSTX discharges.

To study the aspect ratio effect, we perform stability calculations for an equilibrium

with a slightly larger aspect ratio (R0/a = 1.67) than that in the baseline NSTX case

(R0/a = 1.27). Other parameters are the same as in the baseline NSTX equilibrium. Figure 7

shows the marginal stability boundary for the ideal MHD ballooning modes and KBMs in

the β and r/a plane for n = 12. For this equilibrium the ideal MHD ballooning modes

are unstable for r/a < 0.5 and there is no second stability boundary in this case, However,

for KBMs there is a second stability boundary for 0.28 > r/a > 0.18. Note that for this

equilibrium KBMs are unstable in a larger radial domain (0.28 < r/a < 0.44) mainly

because it requires larger minor radii for the stabilizing trapped electron effect to become

effective in a larger aspect ratio device. For KBMs the stabilizing effect comes from the

larger number of trapped electrons above r/a = 0.4. For r/a < 0.3 the KBMs are stabilized

due to weakly negative shear and and stronger FLR stabilization, where k⊥ ∼ 1/r is large

near the magnetic axis. It is important to note again that the most unstable region is near

the zero shear surface at r/a ' 0.3.

To study more realistic plasma profiles, we introduce the plasma temperature gradient

effect for the baseline NSTX equilibrium presented in Fig. 2 by choosing both the electron

and ion temperature profiles to be the same as the density profile so that ηe = ηi = 1 for all

minor radii. Note that the density profile is proportional to the square root of the pressure

profile and is different from that in the constant temperature case presented in Figures 3-6.

Figure 8 shows the KBM frequency and growth rate, and ion diamagnetic drift frequency

(normalized by ωA0) versus r/a for n = 12. Note that the real frequency of the KBM is

larger than (1 + ηi)ω∗i. Figure 9 shows the critical betas for the KBM and the ideal MHD

ballooning mode. For the chosen temperature gradient values KBMs are unstable in the

domain bounded by the βcrKBM curve. Near the qmin location (r/a ' 0.3) the first stability

critical beta is larger than the zero temperature gradient case presented in Fig 6. It is clear

that the temperature gradients make KBMs more unstable and the second stability critical

beta is much larger than the zero temperature gradient case. For the specific NSTX pressure
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profile KBMs are unstable in the radial range 0.35 > r/a > 0.27 and there seems to be no

second stability.

Finally, we note that the numerical solutions of kinetic ballooning modes are obtained

from the simplified eigenmode equations, Eqs. (36)-(38) for numerical NSTX equilibria.

These simplified eigenmode equations are obtained by making simplifying assumptions on

the full integro-differential eigenmode equations, Eqs. (8), (20) and (30). To make sure

that these simplifying assumptions are self-consistent, we have checked the errors of these

simplifying assumptions by comparing the approximated terms with their original forms by

using the numerical wave solutions of the simplified eigenmode equations. In general, the

difference is less than 5 % and thus the stability property of the kinetic ballooning mode

obtained from the simplified eigenmode equations should be quite accurate.

VI. SUMMARY

In this paper we have identified a physical process of stabilizing the ballooning instability

in collisionless tokamak plasmas by the combined kinetic effects of trapped electron dynam-

ics and the difference in the motion perpendicular to the ambient magnetic field between

electrons and ions due to finite ion Larmor radii and magnetic drift. For large aspect ratio

r/R0 << 1, the first stability β threshold for exciting KBMs is increased and the second

stability β threshold is reduced in comparison with the ideal MHD ballooning mode βc by

a factor proportional to
√
r/R0. The unstable β region is much reduced because the kinetic

effects give rise to a large parallel electric field and hence a parallel current that enhances

the stabilizing effect of field line tension. For small aspect ratio r/R0 ∼ 1, the KBM βc is

enhanced over the ideal MHD threshold by a factor proportional to ne/neu. For R0/r = 1.5,

ne/neu ' 10 and we expect the KBM to be stable except in the very weak shear region.

Numerical solutions for the low aspect ratio, baseline NSTX equilibrium with a weak reverse

shear support this stabilizing kinetic effects for the KBM. For the baseline NSTX equilibrium

the KBM is expected to be stable in most the radial region except in the weak magnetic
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shear region near qmin. However, in the unstable region the KBM growth rate is very weak

and is much smaller than the ideal MHD ballooning mode growth rate by more than a factor

of 10.

ACKNOWLEDGMENT

This work was supported by US DoE contract DE-AC02-76-CHO-3073.

24



[1] Dobrott, D., D. B. Nelson, J. M. Greene, A. H. Glasser, M. S. Chance, E. A. Frieman, Phys.

Rev. Lett., 39, 943 (1977).

[2] Connor, J. W., R. J. Hastie, J. B. Taylor, Proc. R. Soc. London A, 365, 1 (1979).

[3] Dewar, R. L., J. Manickam, R. C. Grimm, M. S. Chance, Nucl. Fusion, 21, 1493 (1981).

[4] Chance, M. S., S. C. Jardin and T. H. Stix, Phys. Rev. Lett., 51, 1963 (1983).

[5] Lao, L. L., T. S. Taylor, M. S. Chu, V. S. Chan, J. R. Ferron, E. J. Strait, Phys. Fluids B, 4,

232 (1992).

[6] Holties, H. A., G. T. A. Huysmans, J. P. Goedbloed, W. Kerner, V. V. Parail, F. X. Soldner,

Nucl. Fusion, 36, 973 (1996).

[7] Miller, R. L., Y. R. Lin-Liu, T. H. Osborne, T. S. Taylor, Plasma Phys. Cont. Fusion, 40, 753

(1998).

[8] Ferron, J. R., L. L. Lao, T. C. Luce, R. L. Miller, T. H. Osborne, B. W. Rice, E. J. Strait, T.

S. Taylor, Nucl. Fusion, 40, 1411 (2000).

[9] Cheng, C. Z., Phys. Fluids, 25, 1020 (1982).

[10] Cheng, C. Z., Nucl. Fusion, 22, 773 (1982).

[11] Tang, W. M., G. Rewoldt, C. Z. Cheng, M. S. Chance, Nucl. Fusion, 25, 151 (1985).

[12] Rewoldt, G., W. M. Tang, S. Kaye, and J. Menard, Phys. Plasmas, 3, 1667 (1996).

[13] Yamagishi, T., Nucl. Fusion, 31, 1540 (1991).

[14] Zheng, L. J. and M. Tessarotto, Phys. Plasmas, 1, 3928 (1994).

[15] Hirose, A. and M. Elia, Phys. Rev. Lett., 76, 628 (1996).

25



[16] Hastie, R. J., P. J. Catto, J. J. Ramos, Phys. Plasmas, 7, 4561 (2000).

[17] Uchida, M., A. Fukuyama, K. Itoh, S. I. Itoh, M. Yagi, Plasma Phys. Cont. Fusion, 44, 2495

(2002).

[18] Rosenbluth, M. N., S. T. Tsai, J. W. Van Dam, M. G. Engquist, Phys. Rev. Lett., 51, 1967

(1983).

[19] Cheng, C. Z., and Q. Qian, J. Geophys. Res., 99, 11193 (1994).

[20] Catto, P. J., W. M. Tang, and D. E. Baldwin, Plasma Phys., 23, 639 (1981).

[21] Cheng, C. Z., J. Geophys. Res., 96, 21159 (1991).

[22] Cheng, C. Z., N. N. Gorelenkov, and C. T. Hsu, Nucl. Fusion, 35, 1639 (1995).

[23] Zakharov, L. E., and A. Pletzer, Phys. Plasmas, 6, 4693 (1999).

[24] Gorelenkov, N. N., C. Z. Cheng, W. Tang, Phys. Plasmas, 5, 3389 (1998).

26



FIG. 1. Critical betas of the first and second stability of the kinetic ballooning mode

versus the inverse aspect ratio ε = r/R0 for a large aspect ratio (ŝ − αp) equilibrium. The

fixed parameters are bθ = 0.1, εn = 0.1, ŝ = 0.5, q = 1, ηe = ηi = 0, Te/Ti = 1.

FIG. 2. (a) β and q profiles as functions of r/a, which is the square root of the normalized

toroidal flux of the baseline NSTX equilibrium, and (b) the nested magnetic surfaces.

FIG. 3. The kinetic ballooning mode frequency and growth rate (normalized by ωA0 =

VA(0)/q(0)R0) versus the minor radius for n = 12 for the baseline NSTX equilibrium. Also

shown are the MHD ballooning mode growth rate and ion diamagnetic drift frequency.

FIG. 4. The kinetic ballooning mode frequency and growth rate (normalized by ωA0 =

VA(0)/q(0)R0) versus the plasma β value at r/a = 0.35 for the n = 12 modes. ω∗i is also

shown.

FIG. 5. The kinetic ballooning mode frequency and growth rate, and ion diamagnetic

drift frequency (normalized by ωA0 = VA(0)/q(0)R0) versus the toroidal mode number at

r/a = 0.35 and with local β ' 0.17 for the baseline NSTX equilibrium.

FIG. 6. The critical beta for the n = 12 kinetic ballooning mode and the ideal MHD

ballooning mode for the baseline NSTX equilibria with aspect ratio R0/a = 1.27. Also

shown are the NSTX β and q profiles.

FIG. 7. The critical beta for the n = 12 kinetic ballooning mode and the ideal MHD

ballooning mode for an NSTX equilibrium with a larger aspect ratio R0/a = 1.67 than the

baseline NSTX equilibrium. Also shown are the NSTX β and q profiles.

FIG. 8. The kinetic ballooning mode frequency and growth rate, and ion diamagnetic

drift frequency (normalized by ωA0 = VA(0)/q(0)R0) versus r/a for n = 12 and ηe = ηi = 1

for the baseline NSTX equilibrium.

FIG. 9. The critical beta for the kinetic ballooning mode and the ideal MHD ballooning

mode for the baseline NSTX equilibria with R/a = 1.27 and ηe = ηi = 1 for the n = 12

mode. Also shown are the NSTX β and q profiles.
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