Trapped electron stabilization of ballooning modes

in low aspect ratio toroidal plasmas

C. Z. Cheng and N. N. Gorelenkov
Princeton Plasma Physics Laboratory, Princeton University,
Princeton, NJ 08543

(June 28, 2004)

The kinetic effects of trapped electron dynamics and finite gyroradii and
magnetic drift motion of ions are shown to give rise to a large parallel elec-
tric field and hence a parallel current that greatly enhances the stabilizing
effect of field line tension for ballooning modes in low aspect ratio toroidal
plasmas. For large aspect ratio the stabilizing effect increases (reduces) the
B(= 2P/ B?) threshold for the first (second) stability of the kinetic ballooning
mode (KBM) from the magnetohydrodynamics (MHD) (3 threshold value by
a factor proportional to the trapped electron density fraction. For small as-
pect ratio the stabilizing effect can greatly increase the 3 threshold of the first
stability of KBMs from the MHD [ threshold by S, ~ 1 + (n¢/ne,)d, where
Ne/Ney 18 the ratio of the total electron density to the untrapped electron den-
sity, and ¢ depends on the trapped electron dynamics and finite gyroradii and
magnetic drift motion of ions. If n./ne, >> 1 as in the National Spherical
Torus Experiment (NSTX) [NSTX, M. Ono, Nucl. Fusion, 40, 557 (2000)]
with an aspect ratio of ~ 1.4, the KBM should be stable for § < 1 for finite
magnetic shear. Therefore, unstable KBMs are expected only in the weak
shear region near the radial location of the minimum of the safety factor in

NSTX reverse shear discharges.



I. INTRODUCTION

One of the most serious instabilities in magnetically confined nonuniform plasmas is the
ballooning instability which results from the release of free energy of nonuniform pressure
with a gradient in the same direction as the magnetic field curvature [1-3]. Analogous to the
expansion of a balloon due to higher inner air pressure around weak surface tension spot, the
ballooning instability will relax higher plasma pressure and hence move the plasma across the
magnetic field lines toward the weaker pressure direction around the weak field line tension
region as a result of the plasma frozen-in condition. Much effeorts have devoted in the theo-
retical investigations of the ballooning instability based on the ideal magnetohydrodynamics
(MHD) model by employing numerical toroidal equilibria [4-8]. However, particle kinetic
effects have been shown to affect the stability property of the ballooning modes [9-18]. In
particular, keeping the leading order ion finite Larmor radius (FLR) effect, the unstable
[ domain of ballooning modes is reduced due to the ion diamagnetic drift. However, the
numerical results of more complete kinetic ballooning mode equations without the trapped
electron effects have also shown that the ballooning stability threshold is not affected by
the ion FLR effects for zero ion temperature gradient and is lower for finite ion temperature
gradient [9,10]. Moreover, the numerical solutions further showed that the trapped electron
effect produces a strong stabilizing effect, in particular in low aspect ratio tokamaks [10,12].
Although the trapped electron effect was shown numerically, the analytical understanding
has not been provided.

In this paper we present analytical theories and numerical solutions of the kinetic bal-
looning modes and show that the combined kinetic effects of trapped electron dynamics,
ion finite Larmor radii, particle magnetic drift motion, and wave-particle resonances can
greatly stabilize the ballooning modes. In particular, our analytical theory shows that the
combined kinetic effects of trapped electron dynamics and the difference in the electron
and ion motions perpendicular the ambient magnetic field (finite Larmor radii and mag-

netic drift motion) give rise to a large parallel electric field and hence a parallel current



that greatly enhances the stabilizing effect of field line tension. For large aspect ratio with
Ry/r >> 1, where Ry is the major radius and r is the minor radius, the stabilizing effect
increases (reduces) the 8(= 2P/B?) threshold for the first (second) stability of the kinetic
ballooning mode (KBM) from the MHD f threshold value by a factor proportional to the
trapped electron density fraction (~ 4/2r/Ry). For low aspect ratio (Ro/r ~ 1) such as in
the National Spherical Torus Experiment (NSTX), we expect the total electron density to
be much larger than the untrapped electron density (ne/ne, ~ 1/[1 —/2r/(Ry + 1)) >> 1)
and the stabilizing kinetic effects increase the critical 3 of the first KBM stability over the
MHD prediction by a factor proportional to n./mney.

Most studies of the ballooning instability have been based on the ideal MHD model. The
fundamental shortcomings of the MHD model are: (a) based on the Ohm’s law the plasma is
assumed to be frozen in the field lines and moves across the field with a E x B drift velocity
and the parallel electric field vanishes; (b) the plasma pressure changes adiabatically accord-
ing to the adiabatic pressure law; and (c) the gyro-viscous tensor that contains finite particle
Larmor radius effects is ignored in the momentum equation. The Ohm’s law and adiabatic
pressure law are appropriate only if the frequency, w, and perturbation wavenumber, Kk,
satisfy the ordering assumptions that w., >> w >> wy, wy for both electrons and ions and
L > k= >> p;, where w,; is the ion cyclotron frequency, wy is the particle bounce frequency,
wq is the particle magnetic (VB and curvature) drift frequency, L is the background plasma
and magnetic field scale length, and p; is the ion Larmor radius. These assumptions can
easily break down for many critical plasma phenomena.

We shall consider the phase speed of KBMs along the field line to be much smaller than
the electron thermal speed, but much larger than the ion thermal speed. This condition is
satisfied for collisionless high temperature plasmas in most laboratory fusion devices because
the frequency of ballooning modes is on the order of the ion diamagnetic drift frequency and
the temperatures of electrons and ions are of the same order. Therefore, with respect to
the wave motion along the ambient magnetic field lines electrons move very rapidly with

either transit or bounce motion depending on the particle pitch angle. On the other hand,



ions move very slowly with respect to the parallel wave motion and their parallel dynamics
can be considered as static. Moreover, electron and ion motions across the magnetic field
lines are very different if the perpendicular wavelength is on the order of ion gyroradii;
the electron perpendicular motion is essentially the combination of E x B and magnetic
drift motion because of small gyroradii, but the ion perpendicular motion is governed by
the E x B, magnetic drifts as well as the polarization drift due to finite gyroradii. The
difference in electron and ion motion across magnetic field lines causes charge separation.
In order to maintain the charge quasi-neutrality a parallel electric field must be produced
to accelerate (or decelerate) electrons to positions where there is excess positive charge.
A parallel electric field can easily accelerate (or decelerate) untrapped electrons to change
its density distribution. However, it is relatively harder to change the trapped electron
density distribution by a parallel electric field because of their rapid bounce motion along
the field lines. Thus, a parallel electric field enhanced by a factor of 1 + O(ne/ne,), where
ne and n., are the total electron density and the untrapped electron density respectively,
will be produced to move the untrapped electrons to maintain charge quasi-neutrality. The
large parallel electric field will then drive an enhanced parallel current which can greatly
increase the stabilizing field line tension over the value expected from the MHD theory
just like the high-pressured water in a hose increases the tension of the hose. For large
aspect ratio with ¢ = r/Ry << 1, the fraction of trapped electron population is much
smaller than the untrapped fraction and n./ne, ~ 1+ O(y/¢), and the critical 3 (3.) for the
first (second) kinetic ballooning stability is larger (smaller) than the ideal MHD threshold
BMHD by a factor proportional to y/z. For small aspect ratio with r/Ry ~ O(1), the

fraction of trapped electron population is much larger than the untrapped fraction and

New/ne =2 1— /1= (Ry — 1) /(Ro +7) = (Ro — 1) /2(Ro + 1) << 1. Then, the first stability
f3. of the kinetic ballooning mode is enhanced over SM#72 by O(n,/ne,). For an aspect ratio
of Ry/r = 1.5 as in NSTX, (3. can be a factor of ne,/n. ~ 10 larger than BMHP and we
expect the KBM to be stable in the finite magnetic shear region. However, if NSTX has a

reverse shear, then the KBM is expected to be unstable around the radial location of the
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minimum safety factor, where the magnetic shear is very weak.

It is to be noted that the physical mechanism of trapped electron stabilization effect
presented here differs from the energetic trapped particle stabilization mechanism proposed
by Rosenbluth et al. [18]. They considered that the density of the energetic trapped particles
is much smaller than the background plasma density and wp, >> (wan ) > w, where wyy,
and (wgp) are the energetic particle bounce frequency and bounce-averaged magnetic drift
frequency, respectively. Also, only particles trapped on the outside are considered such
that their diamagnetic drift frequency has the same sign as the bounce-averaged magnetic
drift frequency. Under these assumptions, only the perturbed pressure of the energetic
trapped particles is considered in the low-frequency kinetic energy principle. The kinetic
term due to non-MHD particles almost cancels out the energetic particle pressure gradient
instability drive due to the fluid contribution if the bounce-averaged wave amplitude is
similar to the local wave amplitude [19]. However, by choosing a poloidal localization of
the energetic trapped particle distribution, the difference between the bounce-averaged wave
amplitude and the local wave amplitude gives rise to a stabilization effect. This stabilization
effect was shown to reduce the second stability § threshold fractionally as shown in their
numerical solutions. The stabilization effects due to this mechanism is much weaker than the
stabilization mechanism of enhanced parallel ecectric field due to trapped electrons presented
in the paper. Moreover, their mechanism is included in our work because we have not made
any assumptions on the ordering between the wave frequency and the electron bounce-
averaged magnetic drift frequency. However, because the ballooning mode frequency is on
the order of the ion diamagnetic drift frequency, which is larger than the electron bounce-
averaged magnetic drift frequency for tokamaks, the stabilization mechanism considered by
Rosenbluth et al. does not work for the thermal electrons.

In the following, we first present a set of kinetic eigenmode equations for KBMs. Then,
we present a simplified set of kinetic ballooning mode equations and to provide the analytical
theory of the KBM based on the simplified equations. The numerical solutions of KBMs for

both the analytical large aspect ratio (§ — ) equilibrium and the low aspect ratio NSTX
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equilibria are presented to support the analytical theory. Finally, we summarize the main

results of the paper.

II. KINETIC EIGENMODE EQUATIONS

To properly address kinetic effects on the ballooning instability we will employ the gy-
rokinetic formulation [20] to describe the particle dynamics. We shall consider collisionless
plasmas with isotropic pressure. The particle velocity distribution function is assumed to
have no appreciable bulk drift. Quasi-static equilibria with isotropic pressure are deter-
mined by the system of equations in the rationalized MKS unit: J x B=VP, Vx B =17,
and V- B = 0. Assuming that the three-dimensional equilibrium has nested magnetic sur-
faces, the magnetic field can be expressed in a straight field line (¢, o, #) flux coordinate as
B = Vi x Va, where 1 is the magnetic flux function, a = ¢ — ¢q(¢)6, 0 is a generalized
poloidal angle, ( = ¢ — 0(¢, ¢,0) is a generalized toroidal angle, ¢ is the azimuthal angle
in the cylindrical (R, ¢, Z) coordinate, ¢(1) is the safety factor, and §(v, ¢, ) is periodic in
both ¢ and 6. The intersection of constant ¢) and « surfaces defines the magnetic field line.
The flux coordinate system is in general not orthogonal, and Vv - V8 # 0, VY - Va # 0,
and Va - VO # 0. Note that « is a cyclic function with a period of 27 for all constant
surfaces.

We consider low frequency perturbations with w << we; and ki L >> kj L > 1, where w
is the wave frequency, w,; is the ion cyclotron frequency, L is the equilibrium scale length,
and || and L denotes the parallel and perpendicular component to the ambient magnetic
field B, respectively. Because the electron mass is much smaller than the ion mass and the
temperatures of electrons and ions are of the same order, the electron thermal velocity is
much larger than the ion thermal velocity. We consider electromagnetic perturbations with
the orderings: ki p; ~ O(1) and vipe > (w/kj) > v [9,10], where p; is the ion gyroradius.
With these orderings the following kinetic effects must be considered: trapped electron

dynamics, ion FLR effect and wave-particle resonance with w — wgy; = 0, where wy; is the ion



magnetic drift frequency. We shall obtain approximate solutions of the perturbed particle
distributions based on the gyrokinetic formulation [22].

For k; >> kj we assume a WKB representation for perturbed quantities, i.e.,
df(x,v,t) =0f(s, ki, v)expli (S — wt)], where s is the distance along a field line, k| = V5,
S is the WKB eikonal. Including full FLR effects the perturbed particle distribution function

for species j can be expressed in terms of the rationalized MKS unit as

OF [wT wl : ,
6f(s, ki, v)= %% [7* + (1 — j) (1 - JoeﬁL)] ® + gel, (1)

where the j subscript has been omitted, ¢ is the particle charge, m is the particle mass, B
is the magnetic field intensity, £ = v?/2, the guiding center particle equilibrium distribution
is assumed to be F' = F(&,1) so that the equilibrium pressure is a function of £ and
¢ only, wI' = B xk, - VF/(w.BOF/OE), w. = qB/m is the cyclotron frequency, §L =
k, x v-B/w.B, J; is the [-th order Bessel function of the argument kv, /w., ® is the
perturbed electrostatic potential, and ¢ is the nonadiabatic part of the perturbed distribution
function. Based on the WKB formalism the gyrokinetic equation for ¢ in the low frequency

(w < w,) limit is given by

, q OF wr [ , W
— Vi)g=—"— 11— —= o — V) Jo+—50By|, 2
(W —wa + vy - V))g m68< w) (wcz -V ) 0t %, N0 (2)
where W is the parallel perturbed electric field potential with Ey = —V ¥, 4B is the
perturbed parallel magnetic field, wy = k, - v4 is the magnetic drift frequency, vy =

(mB/qB?) x (vik+uV B) is the magnetic drift velocity, & = (B/B)-V(B/B) is the magnetic
field curvature, and p = v? /2B is the magnetic moment. Note that the vector potential,
defined by A = A+ A B x k| /(Bk.), is related to ®, ¥ and 0B by wA| = —iV(® - V)
and 0B =ik Ay,

In the following we will derive three coupled equations from perpendicular and parallel
Ampere’s law and quasineutrality condition for three unknowns, ®, ¥ and 6 5. The deriva-
tion is based on the solution of Eq.(2) for ions and electrons with Maxwellian equilibrium
distribution functions with temperature 7. To obtain the perturbed ion distribution func-

tion we assume that w ,wg > |v V|, and thus the ion dynamics is mainly determined by
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its perpendicular motion, and the nonadiabatic perturbed ion distribution function is given

by

¢ F;w—wl (wdz >
;o — 2 (=] —J(SB 3
9 T o N 0 0B (3)

where the subscript i refers to the ion species. Note that the ion dynamics is mainly deter-
mined by its perpendicular motion.

For electrons we shall neglect FLR effects and consider |v V| > w,wg.. Clearly, trapped
and un-trapped electrons have very different parallel dynamics. The un-trapped electron
dynamics is mainly determined by its fast parallel transit motion, and to the lowest order

n (w/|vyV|) the perturbed un-trapped electron distribution function is given by

gl wye
ey = — T (1 — 7) v, (4)

where the subscript e refers to the electrons. The trapped electron dynamics is mainly
determined by its fast parallel bounce motion. We perform the bounce averaging of Eq.(2)

and to the lowest order in (w/wp.) we obtain

o geFe {(w_ﬁ_1> (Q_ <(W—wde)‘1’>> n W — W (Yo gy 4 e UL(SBH>} (5)

T, w W — (Wde ) W — (Wae) ' w 2q.B

where (X) = §dsX/v/ § ds/v| is the trapped particle orbit average of X and is a function

of particle pitch angle. The magnetic drift frequencies for ions and electrons are given by

i = T2 g (1= B2 = o 180 (1) + 51 (L4l ©)

J
where we make use w.y; [Be (1 + 1) + 3; (1 +n;)] + @wp; = @y, from the equilibrium relation
Vi(P+ B?/2) = kB2 3. =2n.T./B? B3; = 2n;T;/B?, n. = dInT,./dInn., n; = dinT;/dlnn;,
wp; =2BxVB-k,T;/q;B? & = 2B x K-k, T;/q;B? and w,; = Bx Vinn,; -k, T;/q;B
Substituting the perturbed distribution functions for all particle species into the
quasineutrality condition, =; [ ¢; fid®v = 0, where the summation over j is over all par-
ticle species, we obtain:

T
/d3 7‘711 661; ( “’“) (1-J3) @ :}j:qj/d3w0gj. (7)

w




Using solutions of the drift kinetic equation, Eq.(7) is reduced to the following expression

for the parallel electric field potential:
eu e A *e 7 T *p1
(%)(1_“1 >xp:Emc1>—7“1z [(1—wp>(1—ro)+(;—11]q>

N, w neq?T; w
n;q; T, T;
(5B 8
(ne eT> 5B ®

where net/ne = Ry = (/1 — B/Bpax and ne,/ne = 1 — Ry are the fraction of trapped and

passing (untrapped) electron densities, respectively, Bpax is the maximum magnetic field

+qu

along a field line, A; is an operator involving trapped electron orbit average of the parallel

electric potential ¥ and is given by

A= [ate (“’ — wi) qu Gl DL (9)

Net \W — Wee w — (Wae)

G = (wwi/w)[(1 =To) = bi(To =T1)], Toa(bs) = Ioa(bs)exp(=bi), bi = kiTi/mwy =
k3 p?/2, Iy and I; are the modified Bessel function of the zeroth order and first order,

respectively, wiy; = wy; (1 +n;), n; = VInT;/Vinn;,

I = /d3 Fiw = wswai g (10)
N W— W W
Frw—wlgBu,

I = /d3 W BZYL 1

2 nw—wg 11 ki 01 (11)

and E1, and Ey, are operators involving trapped electron orbit average of perturbed variables

and are given by

E1 P — /dg et W — w <wdeq>> (12)
¢ - (wde> w

and

Fo w— wl mev?
e W — (wde> 2T,

EwdB) = / dv (6B)). (13)

We can express the electron bounce-averaged magnetic drift frequency as wge =
WaemeE [T, = Qge®?, where &g is a function of particle pitch angle but not energy. Then,

E1,® can be integrated over the particle energy and is given by
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~ {07, D
f e}
(Wde)

(14)

BLd— /h dA
b ST = Mh
where [ d3v = Y, 7 [5° dvv? [ d)\/(h\/m), A = uBy/E, h = By/B, the sum o accounts
for two directions of particle motion along the field line, By is a reference magnetic field
intensity that can be chosen arbitrarily, h,, = Bo/Bma. and

2 4 ey e W= Wl (Gae)

Ei=—
RN vee w— (Wee) w
377@w*e Wie 2 3>:|} 2
= — — <1 - 1 o - = 14 2¢2 (1 (&), 15
e 1= i (@ -S| 1+ 22 0+ 6200) (15)
where Z (&) = 77 V2 [ e " (t — &) dt is the plasma dispersion function, and &2 =

w/{Wge). Similarly, Ey,0 By is reduced to
B /h dA (é) w
b 20y /1 — AR \ ') (@dc)

I, and I can also be integrated over v and they are given by

I, = ;; /OOO dxe_ng{<_if€i)> [1 - w; (1 — (g —x—f?))] +niwj}

EwdB E(0B)). (16)

_ [(1 — w;) Iy + ni:)*ibi(ro — Fl)] , (17)
and
b= g fy AR B { (%@U - (e (g —o-g))|+ ni} . (18)

where €2 = (w — gz /2) /Wi, and the argument of the Bessel functions is (b;z)'/2.

To obtain an equation for ¢ B, we employ the perpendicular component of the Ampere’s
law, V x 0B = 4J, which relates the perturbed magnetic field with the perturbed current,

where 0J is the perturbed current density. Using Eq.(1) we can write

vy q; OF; wl;
6By = - i [ dvr g — LTI (1= 22 ) gpo| 19
I zj: qJ vkl 1 [gj mj ag W 0 ( )
Using the solutions of the gyrokinetic equations, we obtain
(1 + %g) 0B + %gﬁEQbaBH

(e Jour (1-5) (1= %) v+ v}
= . —1—FEy+1)® 1——(1- U+ AsW s, 20
o1, P\ 2t ) O 2 w )T (20
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where Ry = 2R (1 4+ B/2Buax) /3,

Fw—wr /¢;Bv\?
I:/d?’—’ ( >J2, 21
’ vniw_wdi Tik 1 ! ( )

Es, and FEs, and A, are operators involving trapped electron orbit average of perturbed

variables and are given by

Fu (mev?\ w—wl (wg®)
Eaéz/dg tet eVl *e e ’ 29
2 vne<2Te>w—(wde> w (22)

Fuy (mev?\ w—wl (@)
E(SB:/d?’—Et Ul we \de) (5. 23
200 Bj Ve \ 2T ) = (ow) w (0B)) (23)

and

F. (mev? wl (W — Wae)P)
A\If:/d?’—e cL)(1— =) |- =) 24
2 vnet ( 2T, w W — (Wde ) (24)
Again, integrating over the particle parallel velocity can be carried for I3 and integrating

over the particle energy can be performed in Es, and Fq,, we have

Iy = = [T dwe (o4 0 { (%@» -2 (1 (g —a-¢))] +77“;} (25)

(Wge®)

hdA A\ -
Faa® = /m 2h\/1— A/h <E> B (26)

2

s [ (A 27
2% II_/mm h 200By), 0
where
o 4 X6 —p2 W Wi, <wde>
EQZWO v0"e w— (wae) @
15 eWsxe *e 3 3
s b LA G  ERC ARSI L

Finally, we obtain the vorticity equation to close the coupled equations for &, ¥ and
dB). By multiplying the gyrokinetic equation, Eq.(2), with particle charge, integrating over

the velocity space, summing over all species, and making use of the parallel component of
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the Ampere’s law which relates the perturbed parallel current to the perturbed field by

6Jj = —iki V) (® — ¥) /w, we obtain the vorticity equation

k2 q2 OF; wr N
B-V(2B-V(@®-0)]-wY [do LI (12 [1—]2 @——JJ&B]
V( VI ) wZ/ mjac‘)( w>( 0) kl()l I
q; OF;

, T
—WZ/d?)/Ude [qjjogj — m—ja—gj ( wj> JOQCD] =0. (29)
J

Again, substituting the solutions from the gyrokinetic equations, the vorticity equation

becomes
V2T, k i
ATig. v(iB V(0 xp)) [(1—“’p>(1—r0)+G—11]c1>
miw? w
eT; WBe +w e Wxpe T‘z
+Zz‘Te [(w - w*pe) (%) +W2E3a] o +w2 (1 - Tp — Iy — E3b> qu

~Lh {(w ~ ) [ (1212 4 o (14 (R, — R + w2A3} U=0. (30

where V4 = B/(n;m;)"/? is the Alfvén speed, Es,, s, and Az are operators involving

trapped electron orbit average of perturbed variables and are given by

B /d3 Fo w—wl, wie (wa®) (31)
sa Ne w—(wde> woow

Fe
E3,0B) = /dgv—t

e

2 T
mevt \ w—wl wae
e 0B)). 32
(QTe)w_<wde>w< ) (32)

and

e P A PR CET AL -

Net W w w — (Wde)
Again, we can integrate over the particle energy in E3,®, and E3,0 B), and we have

Ope(N/2h) + pe(1 — A/h)) 7 (@0 D)

B, ® /h d (
3a¥ — 277X 5
b 2hy /1 — A/ w (@ae)

+ Gpe(1 — A/R)

= [ g () (D e 9

Equations (8), (20) and (30) constitute the WKB-ballooning equations for the stability

(34)

of low frequency modes such as the kinetic ballooning modes. However, they are integro-
differential equations and are difficult to solve. Thus, to gain understanding of the mode

stability further approximations must be made to simplify these equations.
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A. Simplified Kinetic Ballooning Equations

To simplify the numerical procedures for solving Equations (8), (20) and (30) numerically,
we make further assumptions to eliminate the bounce-averaged quantities for symmetric
modes by assuming that ((w — wae)¥) ~ (W — (We)) ¥V, (Wae®P) =~ (wae)P, and (0B)) ~ I By.
Then, Equations (8), (20) and (30) reduce to a set of differential equations. Moreover,
AU~ ApU ~ AsU ~ (. If we further assume that (wg.) does not depend on the parti-
cle pitch angle, then the pitch angle integrations in Fi,, Ey, Eoq, Eop, E3q, E3, can be car-
ried out and we have Ei, = RlEl, By = (w/(djde>)R2E1, By, = RQEQ, Ey = RgEQ,
E3q = [Rope/2w + (Ry — Ro)ige /w] B, and Esy = [Rs®pe/2(@ae) + (Ra — Rs)re/(@ae)] B,
where R3 = (8R;/15) [1 + B/2Bpax + (3/8) (B/Bmax)ﬂ. Then, Eqns. (8), (20) and (30)

are further reduced to

eu *e iTe *Di N
n (1—“’ >x11:q [(1—w—p>(1—F0)+G—Il]<1>+R1E1<I>

Te w QeT% w
(b - 1) Lo (36)
<(;jde> 2471 2 qu ||7
1 1.
(1 B+ 55633E2w/<wde>> 5B
oo (2 o+ D) oo+ (1-232) (1- 22 ) )
_ ) L ReBy+ L)@+ (1222 (1— vl 37
QTeﬁ " olvo + 1o + 5 » (37)

and

miw2B~V<§B~V(<I>—\If) —|—w2[(1— wp>(1—F0)+G—Il]<I>

ci

eT; A e > e R R X
+ZiTe {(w — Wipe) (W) + Fow (wgef + Wie (R — R2)> } o

A vBe R w T;
2 1— Wipe b WBe _3 ke B _ I % B
+w l " + Lo (@a) 2 + ©a) (R2 — R3) 9 B(S I

T R 2—-3R R 14+3(R; — R
_ZT (W—W*pE) lee< 4 2> +Wke< i ( 22 1>>] ¥ =0. (38)

1

To examine the kinetic ballooning stability for NSTX, a low aspect ratio tokamak, we

shall present numerical solutions of equations (36)-(38) for numerical NSTX equilibria.
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III. ANALYTICAL THEORY OF KINETIC BALLOONING INSTABILITY

To obtain an analytical understanding of the combined effects of trapped electron dy-
namics and finite ion Larmor radii, we consider the limits: w ~ w, > wy for both elec-
trons and ions, small ion Larmor radii k,p; < 1, low plasma beta §;,5. < 1. Then,
1 —Ty =~ b, and G ~ O(b?) and the integrals, Ey, By, I, I, and I3, can be reduced to
the leading order as By = (3(0ge)/2w)(1 = Wape/w), Fa = (15(0ae) /4w)[1 — (1 + 20 )wie/w],
I = (1 — wapi/w)(WBi + Wki) /2w, o = 1 — wypi/w, and I3 = 2[1 — (1 + 21, )w,,; /w].

First, we consider the large aspect ratio limit, i.e., e = a/Ry << 1, then to the leading
order Ry = Ry = R3 ~ O(y/e) which represents the trapped electron density fraction.
Equation (36), which determines the parallel electric field potential, is then simplified to the

lowest order to

Wie g1 ( w*pi) WRi + Wi T;
1— U~ (1 1 - — - | D — B
( > G+ R l(b ) 5"

w w 2w i
3R1 Wipe <djde> Te

R > o 5B ). 39

+ 2 ( w ( w * q.B I (39)

Note that the right-hand side is due to the perturbed ion density resulting from effects of
finite ion Larmor radii and magnetic drifts. The contribution to the parallel electric field
term on the left-hand-side is mainly due to the perturbed untrapped electron density. This
is because the trapped electron density is not changed by the parallel electric field due to
their fast bounce motion relative to the parallel wave motion. In comparison with the limit
without trapped electron effects, the parallel electric field is enhanced by n./ne,. Similarly,
Eq. (37), which determines the parallel perturbed magnetic field, is simplified to the lowest

order to

Te e *pe — Wxpi *pe
5BH25_{<M>®+<1_W_F>\1;

9.5 2 w w
B[ )

Note that this relation is equivalent to the perturbed total pressure balance relation, B -

0B + 0P, ~ 0, which is derived from MHD equations for low frequency instabilities with
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w < ki V4 [19,21,22]. The vorticity equation, Eq. (38), is simplified to

B v(kiB V(P - xp)) [ (W — Wapi) bi + (Wipi — Wipe) (%)]@

VAT,

m; wm

WRi + Wi T;
— (W= wape) (T) W40 (Wi — i) q—B5Bn

15 <djd6> (1 + 2776)w*e Wi Whe 3 ~
R’ | = 1— P 5B — Wipe) WBi¥| ~ 0. (41
+hw lg w ( w w +<C‘Ajde>% I 4(w wp)wB ( )

Next, we eliminate § B from the above three equations and to the leading order in O(R;)

Eq. (39) reduces to

*e iTe *Di Ai
(1—“ >xpg(1+R1)q (1—w—p><bi—w’“>q>
w qeT; w w

12 (1 - w—p> [M 4 e lnpe = op) w*pi>] P, (42)

2 w w 2 w
where we have made use of the equilibrium relation, 5;(w.pi — Wipe) + Wi = Wgi, which is
equivalent to the equilibrium relation V (P + B?/2) = kB?. Similarly, Eq. (41) reduces to

V2T,
miw?

ci

k3
-B. v( =B -V (¢- xp)) + W (W = Waps) Bi® + (Wapi — Wape) Opi P

15R; | . . 1 4 2n¢ )wie
+ ! [wki<wde> + %wBi (w*pe - w*pz)] (1 - %) o
3R
(1 - Tl> (@ — wipe) D = 0, (43)

where we have made use of the relations: —(w —wipi)(@pi +Wki) + (e T3/ @i Te) (W — Wipe ) (ke +
Whe) = (qeT3/ @i Te) (Wipi — Wape)*Pe = 2(Wapi — Wipe )Wki a0 Wpe — Be(Wipi — Wipe) = We- Egs.
(42) and (43) describe kinetic ballooning mode and retain the leading order effects of trapped
electron density fraction, finite ion Larmor radii (b; = k2 T;/m,w? < 1), small magnetic drift
frequency (wq/w < 1) and small plasma (3 (5 < 1). Making use of Eq. (42), Eq. (43) can be

re-written as

. V(k B.V(6 )>+B<B><Vlnp~k> (Bm.k>(®_qj)+ﬁw(w_wm)®

B B 1%
w2 (w - w*pe) ~ (w - w*pi) wki
+R1 TVA { [(w*pi - w*p@) I wkem b; — o
3 Wipi (w — W e) ~ ~ BQ ~
5 (1) S [ow ) + Gt )
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15 14+ 21, )wie
+_<1_M
8 w

) [@ki<@de> + %@Bi (w*pe - w*pz)] } b ~ 07 (44)

where we have made use of (Wi — Wape) Wk = (VIT;/miw?)B(B x VInP -k)(B x k - k)/B?.
Equation (44) provides the analytical understanding of the KBM stability property. It
is clear that the first two terms of Eq. (44) are essentially the ideal MHD contribution
with the first term representing the stabilizing field line bending term and the second term
representing the instability drive if the pressure gradient is in the same direction as the field
line curvature. The third term represents the ion inertia effect modified by the finite ion
Larmor radius effect in the ion diamagnetic drift frequency. The fourth term is proportional
to the trapped electron density fraction and represents the kinetic contributions from the
trapped electron density fraction as well as effects due to ion Larmor radii, particle gradient
B and curvature drifts as well as density and temperature gradient drifts.

From our previous works [9,10] and the numerical solutions presented below we realize
that at marginal stability the frequency of the kinetic ballooning mode (KBM) is given by
w = wy for n; =0 and w > wyy = (1 + m;)ws, for n; # 0. For n; = 0, at marginal stability
W = Wsi, the third term and the first and second terms in the curly bracket of the fourth
term vanish. Thus, without the trapped electron density fraction, Eq. (44) is essentially the
ideal MHD equation and the critical # of KBMs is identical to the ideal MHD critical 3
even though the other kinetic effects reduce the growth rate from the ideal MHD case [9,10].
With a finite trapped electron density fraction, the coefficient of the fourth term in Eq. (44)
is negative and thus the trapped electron effect gives a stabilizing effect with the critical 3
increased (decreased) by a factor proportional to O(y/¢) for the first (second) stability as
the numerical results show in Fig. 1.

For n; # 0, we realize from the numerical solutions that at the marginal stability w > w,p;.
Then, the coefficient of third term in Eq. (44) is positive. Thus, in the absence of trapped
electrons, the kinetic effect due to the third term is destabilizing and the critical § for the
first stability is reduced from the ideal MHD critical 3, which is verified by the numerical

solutions presented in Figure 6 of Ref. [9]. The coefficient of the fourth term in Eq. (44)
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consists of three terms; the first and third terms are negative, but the second term is positive.
However, the second term is smaller than the third term and the coefficient of the fourth
term in Eq. (44) is negative, and thus, the trapped electron effect is stabilizing.

Next, we consider the small aspect ratio limit, ne,/ne = 1 — Ry ~ O(B/2Ba.) << 1,

then Ry ~ 2/3 + O(B/2Byaz)?, and Rz ~ 8/15 + O(B/2B 4. )?. Then, Eqn. (37) becomes

T, Be [ Wipe — Wapi
e SBi = Me ( *pe *pz> 45
P ke A (45)

and substituting this expression into Eqn. (36) and Eqn. (38) we obtain

Neu (1 B w*e) U — gl (1 B @) b — WRi + Wi
Ne w QeT% w 2w

~ L 2
43 (1_“*p6><“de>_@<7w*m C”W)]cb, (46)
2 w w 2 w
and
K2 k1
B-V §B~V(<I>—\If) +w(w—w*pi)v—j<1>
BxVinP-k\ (Bxk-k
d = 0. 4
(P (e @

Note that Eq. (47) differs from the ideal MHD ballooning mode equation by the parallel
electric field potential ¥ term in the field line bending term. Because the coefficient of
the ® term in Eq. (46) is negative, thus the U term in Eq. (47) enhances the stabilizing
field line bending effect. From Eq. (46) the parallel electric field arises from the difference
between ions and trapped electron in their perpendicular motion (finite ion Larmor radius
effect, ion magnetic drift, trapped electron perpendicular drift, and the response due to
compressional magnetic field perturbation. Moreover, the parallel electric field is enhanced
by ne/New >> 1.

Equations (46) and (47) can be combined to give

k2 w(w—w ) Bxﬂ‘kl B x Vpkl
B-V(|(iB.VS.® VT TPV 2 g ~
<B2 SC ) V24 kl B( B BP @ 0’ (48)

where
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Ney, w QeT% W — Wike
3 W — Wxpe C‘Aje — Wxpi . e Ae
L = = BT
2 \ W — Wye w W — We 2w

Note that the coefficient of n./n., in the above expression is positive and thus S. > 1.
For ne/ne, >> 1 and b; ~ O(1) or § ~ O(1), the n./ne, term is much larger than unity,
and S, >> 1. Physically, S. is related to the perturbed parallel current, given by 0.J) ~
iV3iV (S:®) /w, which gives rise to an enhanced stabilizing field line tension due to an
enhanced parallel electric field (—V V) resulting from the combined kinetic effects of trapped
electron dynamics and ion FLR and magnetic drift motion. The local dispersion relation is

given by

wW(Ww — Wipi) Bxk -k, \ /BxVinP k| )
~ S ki 50
yr TP ( kB kB [ (50)

At marginal stability the critical g for the KBM is given by

W(W — Wapi ) Re L
8, =~ s vf) 2, (51)

where GM7P = kfR.L, is the ballooning instability threshold based on the ideal MHD
theory, R. is the radius of the magnetic field curvature and L, is the pressure gradient scale
length. For n; = 0, w = w,; at the marginal stability. Then, the second term on the right
hand side of Eq. (51) vanishes and 3. = S.3M#P is enhanced over the ideal MHD threshold
by S.. For n; # 0, w > w,y; at the marginal stability, thus w(w — wyy) > 0 and the second
term on the right hand side of Eq. (51) reduces the .. However, S, is also modified by the

w value at the marginal stability.

IV. STABILITY ANALYSIS OF KINETIC BALLOONING MODES FOR

ANALYTICAL (5 — ap) EQUILIBRIUM

More accurate solutions of KBMs must be carried out by performing numerical solutions

of the eigenmode equations, Eqgs. (36)-(38), which are a second order ordinary differential

18



equation along the field line. Numerical studies of high-n (n is the toroidal mode number)
KBMs based on Eqs. (36)-(38) have been performed for circular cross section tokamaks
previously [9,10] by employing the (§ — o) analytical model equilibrium where § = r¢’/q is
the magnetic shear, o, = —2P'Ryq?/ B2, q is the safety factor, r is the minor radius, Ry is the
major radius, P is the plasma pressure, Bj is the averaged magnetic field intensity over a flux
surface. We adopt the high-n WKB-ballooning formalism, and to the lowest order in (1/n)
the radially local high-n eigenmode equation is obtained by choosing S = n(qf — { — [ 0xdq),
where 0y, is to be determined from a higher order radially non-local analysis [2,3]. Based on
the (8§ — ) equilibrium model for circular cross section tokamaks, we have k2 = kZ[1+ h6?],
ko = nqg/r, h(0) = 50 — ;) — apsinf, B x k- VS = —(Bky/Ro)[cosd + h(0)sinb]. In
general we need to solve the radially local eigenmode equation for all 85 in order to perform
a two-dimensional eigenmode analysis. However, we shall choose 6, = 0 because the most
unstable modes are usually related to 6, = 0.

We define the parameters L, = (dlnn;/dr)™, e, = L,/Ro, n. = dinT./dInn., n; =
dinT;/dinn;, o, = (¢*/€n)[Be(1 + ne) + Bi(1 + n)], Be = 2n.T./B?, B; = 2n,T;/B?, 3 =
Be + Bi, bg = kip?/2, € = r/Ry is the inverse aspect ratio. Then, w,, = (1 + 7;)ws, and
Wape = (1 4 N )wse.

Figure 1 shows critical 3. values of the first and second stability boundaries for KBMs
versus the inverse aspect ratio €, which demonstrates the stabilizing effect of trapped elec-
trons on .. The fixed parameters are by = ¢, = 0.1, s = 0.5, ¢ = T./T; = 1, n. = n; = 0.
It is clear that for small ¢ the increase in (3. from the ¢ = 0 case for the first stability
boundary and the reduction in 3. from the £ = 0 case for the second stability boundary are
proportional to /e, which represents the trapped electron fraction.

The numerical results of the high-n eigenmode equations clearly confirm the qualitative
results of the local solutions. A more complete eigenmode calculation including extensive
kinetic effects based on numerical equilibria has also indicated that the kinetic ballooning
mode will be stabilized in the small aspect ratio tokamaks [12]. However, the physical mech-

anism of the KBM stabilization was not specifically identified in these studies. Therefore, it
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would be worthwhile to carry out a more extensive calculation to address the kinetic effects
of trapped electrons and finite ion Larmor radii in realistic NSTX equilibria or other low

aspect ratio toroidal devices.

V. STABILITY ANALYSIS OF KINETIC BALLOONING MODES FOR NSTX

EQUILIBRIUM

To study the stability of KBMs in NSTX numerical equilibria, we choose the baseline
NSTX equilibrium parameters: major radius at the geometrical center is Ry = 0.86m,
minor radius of last magnetic surface is a = 0.68m, and the aspect ratio is Ry/a = 1.27,
the last surface ellipticity is k = 1.63 and triangularity is 6 = 0.417, the vacuum magnetic
field at the geometrical axes R = Ry is By = 0.37". To simplify the interpretation of the
numerical solutions we chose constant temperature with 7, = T; = 1keV so that n; = n. = 0,
which eliminates the temperature gradient driven modes. The central electron density is
Neo = 2.9 x 10em ™3, and the density profile is identical to the plasma beta profile. The
beta at the magnetic axis is By = 2P(0)/B2 = 38%, and the volume-averaged beta is
2(P)/B2 = 9.075%. The g-profile is non-monotonic and has a region of negative shear
inside of gmin = q(r/a = 0.3) = 0.93, where r?/a* = U,,,, and Uy, is the toroidal magnetic
flux normalized to zero at the magnetic axis and unity at the plasma edge. The left figure
in Figure 2 shows the radial profiles of plasma (§ and ¢, and the right figure in Figure 2
shows the nested magnetic flux surfaces of the NSTX equilibrium. The numerical NSTX
equilibrium is computed using the computationally efficient ESC code [23].

The high-n WKB-Ballooning kinetic equations, Eqs. (36)-(38), are solved by employing
the HINST code [24] with 6, = 0. Figure 3 shows the dependence of the KBM growth
rate and real frequency (normalized by wag = Va(0)/q(0)Ry) on the minor radius r/a for
the baseline NSTX equilibrium for n = 12. The KBM is unstable in the range of 0.4 >
r/a > 0.28, which is much smaller than the unstable region (r/a < 0.45) of the ideal MHD

ballooning mode, whose growth rates are also shown in Figure 3. Note that at the marginal
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stability of the KBM, its real frequency equals the local ion diamagnetic drift frequency
wai, which is consistent with our previous studies [9,10], and the KBM growth rate is much
smaller than the ideal MHD growth rate. Also, when the KBM is unstable, its real frequency
is smaller than the local w,;, and the most unstable KBM occurs near r/a = 0.33.

Figure 4 shows the dependence of the KBM growth rate and frequency (normalized by
wap) on the plasma beta at r/a = 0.35 for n = 12. For each (§ value we compute a new
equilibrium by varying the temperature, while keeping the other plasma profiles fixed. For
unstable KBMs the real frequency is close to but below the local background ion diamagnetic
drift frequency, w,;. The instability is stabilized by increasing beta. The KBM is stable for
B > 0.25, which corresponds to equilibria with a central beta value of 5(0) = 0.5. Note
that at this critical point the mode frequency matches approximately the ion diamagnetic
frequency, which is in agreement with our previous studies [9,10]. For 5 < 0.05 the magnetic
shear is weak and the eigenmode solutions extend to a very large 6 distance. It is thus difficult
to identify the first stability boundary numerically.

Figure 5 shows the dependence of the complex KBM eigenfrequency (normalized by wp)
on the toroidal mode number n at r/a = 0.35 with a local § ~ 0.17 for the baseline NSTX
equilibrium. Note that the unstable n-spectrum is broad and the growth rate is reduced for
higher n’s due to FLR effects.

Figure 6 shows the marginal stability boundary for the KBMs and the ideal MHD bal-
looning modes in the local 5 and r/a plane for n = 12. To compute the critical § values for
each flux surface, we construct new equilibria by varying the central density value n.(0) (or
B3(0) while keeping other equilibrium quantities fixed. For the baseline NSTX equilibrium
the plasma beta is larger than the critical beta for unstable ideal MHD ballooning modes in
a very broad region for r/a < 0.46 as shown in Fig. 6. However, the stability boundary for
KBMs forms a closed curve and KBMs are stable in the region outside this closed curve. For
the NSTX equilibrium KBMs are unstable from r/a = 0.28 to r/a = 0.37. Note that our
HINST calculations do not find unstable KBMs up to 3(0) = 1. Because the average beta

for the NSTX equilibrium is () = 9.1% and the experimentally achieved values are about
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a factor of three larger, we expect full stabilization of KBMs in high 4 NSTX discharges.

To study the aspect ratio effect, we perform stability calculations for an equilibrium
with a slightly larger aspect ratio (Ro/a = 1.67) than that in the baseline NSTX case
(Ro/a = 1.27). Other parameters are the same as in the baseline NSTX equilibrium. Figure 7
shows the marginal stability boundary for the ideal MHD ballooning modes and KBMs in
the § and r/a plane for n = 12. For this equilibrium the ideal MHD ballooning modes
are unstable for r/a < 0.5 and there is no second stability boundary in this case, However,
for KBMs there is a second stability boundary for 0.28 > r/a > 0.18. Note that for this
equilibrium KBMs are unstable in a larger radial domain (0.28 < r/a < 0.44) mainly
because it requires larger minor radii for the stabilizing trapped electron effect to become
effective in a larger aspect ratio device. For KBMs the stabilizing effect comes from the
larger number of trapped electrons above r/a = 0.4. For r/a < 0.3 the KBMs are stabilized
due to weakly negative shear and and stronger FLR stabilization, where k; ~ 1/r is large
near the magnetic axis. It is important to note again that the most unstable region is near
the zero shear surface at r/a ~ 0.3.

To study more realistic plasma profiles, we introduce the plasma temperature gradient
effect for the baseline NSTX equilibrium presented in Fig. 2 by choosing both the electron
and ion temperature profiles to be the same as the density profile so that . = n; = 1 for all
minor radii. Note that the density profile is proportional to the square root of the pressure
profile and is different from that in the constant temperature case presented in Figures 3-6.
Figure 8 shows the KBM frequency and growth rate, and ion diamagnetic drift frequency
(normalized by wag) versus r/a for n = 12. Note that the real frequency of the KBM is
larger than (1 + 7;)w.;. Figure 9 shows the critical betas for the KBM and the ideal MHD
ballooning mode. For the chosen temperature gradient values KBMs are unstable in the
domain bounded by the (.. kg curve. Near the g, location (r/a ~ 0.3) the first stability
critical beta is larger than the zero temperature gradient case presented in Fig 6. It is clear
that the temperature gradients make KBMs more unstable and the second stability critical

beta is much larger than the zero temperature gradient case. For the specific NSTX pressure
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profile KBMs are unstable in the radial range 0.35 > r/a > 0.27 and there seems to be no
second stability.

Finally, we note that the numerical solutions of kinetic ballooning modes are obtained
from the simplified eigenmode equations, Eqs. (36)-(38) for numerical NSTX equilibria.
These simplified eigenmode equations are obtained by making simplifying assumptions on
the full integro-differential eigenmode equations, Eqs. (8), (20) and (30). To make sure
that these simplifying assumptions are self-consistent, we have checked the errors of these
simplifying assumptions by comparing the approximated terms with their original forms by
using the numerical wave solutions of the simplified eigenmode equations. In general, the
difference is less than 5 % and thus the stability property of the kinetic ballooning mode

obtained from the simplified eigenmode equations should be quite accurate.

VI. SUMMARY

In this paper we have identified a physical process of stabilizing the ballooning instability
in collisionless tokamak plasmas by the combined kinetic effects of trapped electron dynam-
ics and the difference in the motion perpendicular to the ambient magnetic field between
electrons and ions due to finite ion Larmor radii and magnetic drift. For large aspect ratio
r/Ry << 1, the first stability 3 threshold for exciting KBMs is increased and the second
stability ( threshold is reduced in comparison with the ideal MHD ballooning mode (. by
a factor proportional to m . The unstable  region is much reduced because the kinetic
effects give rise to a large parallel electric field and hence a parallel current that enhances
the stabilizing effect of field line tension. For small aspect ratio /Ry ~ 1, the KBM £, is
enhanced over the ideal MHD threshold by a factor proportional to n./ne,. For Ry/r = 1.5,
Ne/New =~ 10 and we expect the KBM to be stable except in the very weak shear region.
Numerical solutions for the low aspect ratio, baseline NSTX equilibrium with a weak reverse
shear support this stabilizing kinetic effects for the KBM. For the baseline NSTX equilibrium

the KBM is expected to be stable in most the radial region except in the weak magnetic
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shear region near ¢,,;,. However, in the unstable region the KBM growth rate is very weak
and is much smaller than the ideal MHD ballooning mode growth rate by more than a factor

of 10.
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FIG. 1. Critical betas of the first and second stability of the kinetic ballooning mode
versus the inverse aspect ratio ¢ = /Ry for a large aspect ratio (§ — ) equilibrium. The
fixed parameters are by = 0.1, ¢, =0.1, §=05,9g=1,n.=n=0,T./T; = 1.

FIG. 2. (a) § and q profiles as functions of /a, which is the square root of the normalized
toroidal flux of the baseline NSTX equilibrium, and (b) the nested magnetic surfaces.

FIG. 3. The kinetic ballooning mode frequency and growth rate (normalized by wag =
V4(0)/q(0)Ry) versus the minor radius for n = 12 for the baseline NSTX equilibrium. Also
shown are the MHD ballooning mode growth rate and ion diamagnetic drift frequency.

FIG. 4. The kinetic ballooning mode frequency and growth rate (normalized by wao =
V4(0)/q(0)Ry) versus the plasma (3 value at r/a = 0.35 for the n = 12 modes. w,; is also
shown.

FIG. 5. The kinetic ballooning mode frequency and growth rate, and ion diamagnetic
drift frequency (normalized by wag = Va(0)/q(0)Ry) versus the toroidal mode number at
r/a = 0.35 and with local 5 ~ 0.17 for the baseline NSTX equilibrium.

FIG. 6. The critical beta for the n = 12 kinetic ballooning mode and the ideal MHD
ballooning mode for the baseline NSTX equilibria with aspect ratio Ry/a = 1.27. Also
shown are the NSTX [ and q profiles.

FIG. 7. The critical beta for the n = 12 kinetic ballooning mode and the ideal MHD
ballooning mode for an NSTX equilibrium with a larger aspect ratio Ry/a = 1.67 than the
baseline NSTX equilibrium. Also shown are the NSTX [ and q profiles.

FIG. 8. The kinetic ballooning mode frequency and growth rate, and ion diamagnetic
drift frequency (normalized by wao = Va(0)/q(0)Ry) versus r/a for n = 12 and . = n; = 1
for the baseline NSTX equilibrium.

FIG. 9. The critical beta for the kinetic ballooning mode and the ideal MHD ballooning
mode for the baseline NSTX equilibria with R/a = 1.27 and 7. = n; = 1 for the n = 12
mode. Also shown are the NSTX (5 and q profiles.

27



0.2

0.15¢

0.1f

0.05

100 100

FIG. 1.

28

10



29



-0.1r — 10y/w, ,, KBM, n=12
—— y/coAO, MHD
-0.21 .n GO0
Lo 0o,
015 02 025 03 035 04 045
rla
FIG. 3.

30




0.25

0.2f

0.15¢

0.1-

0.05f -

-0.05¢

0.05

0.1 0.15 0.2 0.25

B(r/a=0.35)
FIG. 4.

31



FIG. 5.

32



0.3

0.25

0.2
0.15
0.1

0.05

8

FIG. 6.

33



0.3

0.25

0.2

0.15

0.1

0.05

FIG. 7.

34



-0.1r — 10y/@, ,, KBM, n=IZ|)
-0.2r —e— Y/ MHD
-0.3f ne O i

: . “’*i/“’Ao
-0.4 : : : ‘ ‘ ‘

0.15 02 025 03 035 04 045

rla
FIG. 8.

35



0.3

0.25

0.2

0.15

0.1

0.05

8

FIG. 9.

36



