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[1] Based on the ideal MHD model the stability of
ballooning modes is investigated by employing realistic 3D
magnetospheric equilibria for the substorm growth phase.
Our results show that without making compressibility
approximations the ballooning modes are unstable for the
entire plasma sheet where the equatorial beq � 1, and the
most unstable modes are located in the strong cross-tail
current sheet region in the near-Earth plasma sheet, which
maps to the initial brightening location of the breakup arc in
the ionosphere. However, the MHD beq threshold is too low
in comparison with observations by AMPTE/CCE, which
show that prior to substorm onset a low frequency
instability is excited only when beq > 50. The difficulty
can be mitigated by including kinetic effects, which greatly
increase the stabilizing effects of field line tension and can
enhance the beq threshold to limit the unstable region to the
cross-tail current sheet region. INDEX TERMS: 2740

Magnetospheric Physics: Magnetospheric configuration and

dynamics; 2752 Magnetospheric Physics: MHD waves and

instabilities; 2753 Magnetospheric Physics: Numerical modeling;

2764 Magnetospheric Physics: Plasma sheet; 2788 Magnetospheric

Physics: Storms and substorms. Citation: Cheng, C. Z., and

S. Zaharia (2004), MHD ballooning instability in the plasma

sheet, Geophys. Res. Lett., 31, L06809, doi:10.1029/

2003GL018823.

1. Introduction

[2] Observations by AMPTE/CCE satellite have demon-
strated that toward the end of late growth phase the plasma
pressure in the near-Earth plasma sheet region becomes
isotropic and the equatorial beq = 2P/Beq

2 increases to
�50 and a low frequency instability with a wave period of
�50–75 seconds (in the Pi 2 frequency range) is excited and
grows exponentially to a large amplitude and causes the
onset of current disruption [Cheng and Lui, 1998]. It is
emphasized that the initial excitation of the low frequency
instability occurs in a localized equatorial area of less than
1 RE in width in the near-Earth plasma sheet region. The low
frequency modes have also been observed by satellites near
the initiation region during the substorm expansion phase
[e.g., Roux et al., 1991; Erickson et al., 2000].
[3] To explain the observed low frequency instability,

theoretical investigations of the ballooning instability based
on the ideal MHD model have been made [e.g., Lee and
Wolf, 1992; Hurricane, 1997; Bhattacharjee et al., 1998;
Lee, 1998; Horton et al., 1999; Lee, 1999]. All these

previous MHD calculations employed simplified equilibria
in 2D geometries and made simplified assumptions on
the plasma compressibility. Numerical calculations to ex-
amine the compressibility effect with different simplifying
assumptions of the plasma compressibility have been per-
formed [Lee, 1999] for a 2D equilibrium developed by Voigt
[1986]. By assuming the parallel plasma displacement to be
a constant along the field line [Lee and Wolf, 1992], the
stability calculations predicted a low b (± 1) threshold for
instability. Horton et al. [1999] considered a different
approximation for the plasma compressibility with the
fast-MHD model which assumes that the wave propagates
very fast along the ambient magnetic field such that there is
not sufficient time for parallel plasma motion and the
plasma displacement along B vanishes, and they concluded
that the ballooning instability occurs for b < 1. However, the
numerical stability calculations of the fast-MHD model
performed by Lee [1999] show that the ballooning mode
is stable in the Voigt’s equilibrium, which is in contradiction
to the analytical conclusion of Horton et al. [1999]. Calcu-
lations with these simplifying compressibility models, but
with a more stretched 2D equilibrium field model by Kan
[1973] gave totally different results from the Voigt’s equi-
librium. These results clearly illustrate that to obtain the
correct stability result even within the ideal MHD model it
is essential to model the plasma compressibility correctly as
well as the equilibrium fields realistically. Another draw-
back of these previous ballooning stability calculations is
that there is no information on where in the equatorial plane
the ballooning instability would be unstable because of the
use of 2D equilibria.
[4] In this paper we will investigate the ballooning

instability based on the ideal MHD model without making
assumptions on plasma compressibility. Moreover, we will
employ realistic 3D growth phase magnetospheric equilibria
that satisfy the force balance, which should provide the
valuable information of where in the plasma sheet the free
energy and the most unstable ballooning instability are
located. Our results show that the ballooning stability
calculations making use of approximations on the plasma
compressibility can give rise to erroneous conclusions.
Moreover, our results show that the ballooning instability
is most unstable in the strong cross-tail current sheet region
in the near-Earth plasma sheet, which maps to the initial
brightening location of the breakup arc in the ionosphere.

2. MHD Ballooning Mode Theory

[5] We first derive the ideal MHD eigenmode equations
(in rationalized EMU system of units) without making
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assumption on the plasma compressibility. We consider
quasi-static isotropic pressure equilibria with the equilibri-
um relation j � B = rrrrP, where j, B, P are the equilibrium
current density, magnetic field, and plasma pressure, re-
spectively. With the time dependence of perturbed quantities
as e�iwt, we obtain simplified eigenmode equations for
perturbations with k? � kk where k? and kk are the wave
numbers perpendicular and parallel to B, respectively. We
introduce the electrostatic potential f and the vector poten-
tial A such that the perturbed electric field is expressed as
dE = � rrrrf + iwA, and the perturbed magnetic field as dB =
rrrr � A. Because dE 	 B = 0 in the ideal MHD model, Ak =
A 	 B/B = �B 	 rF/B, where F = if/w. By assuming that Ak
and A? are of the same order, dE? ’� rrrr?f, where the A?
term is ignored because it is smaller by kk/k?. Then, X� B’
rrrr? F, where X is the plasma fluid displacement vector.
Following the procedures described in the papers by Cheng
[1991] and Cheng and Johnson [1999] and considering the
wave frequency to be much smaller than the compressional
wave frequency, we obtain two coupled equations that
describe the coupling between the shear Alfvén type modes
and the slow magnetosonic type modes: the vorticity
equation for the shear Alfvén wave branch:

B 	 rrrr r2
?ðB 	 rrrrFÞ

B2

� �
þ rw2

B2
r2

?F� 2K� B

B2
	 rrrr B�rrrrP 	 rrrrF

B2

� �

¼ 2K� B

B2
rrrr 	 GsPrrrrXð Þ; ð1Þ

and the compressibility equation for the slow magnetosonic
mode branch:

B 	 rrrr GsP

rw2B2
B 	 rrrrðrrrr 	 XÞ

� �
þ GsP þ B2

B2
rrrr 	 X ¼ 2K� B

B2
rrrrF: ð2Þ

where r is the mass density, and the coupling is mainly via
the magnetic field curvature K = (B/B) 	 r(B/B) and the
plasma pressure.

2.1. MHD Ballooning Mode Equations

[6] Equations (1) and (2) describe low frequency modes
in the three-dimensional space and are usually difficult to
solve if not impossible. Thus, further approximations must
be made to simplify these two equations. Fortunately a
WKB-ballooning formalism has been developed to simplify
these equations by taking advantage of the nature of
solutions that k? � kk [Dewar and Glasser, 1983; Nevins
and Pearlstein, 1988]. Adopting the WKB-ballooning for-
malism, we consider the eikonal representation of the
perturbed quantities, F = i eiSF̂, where S � 1 is the
WKB eikonal and B 	 rrrrS = 0. Note that rrrrS is essentially
the wave vector perpendicular to B. Thus, the fast variation
of F in the direction perpendicular to B is contained in eiS

and F̂ describes the slow variation along as well as
perpendicular to B. Then, to the lowest order in 1/S � 1,
the MHD vorticity equation, Equation (1), reduces to

B 	 rrrr jrrrrSj2B 	 rrrrF̂
B2

 !
þ rw2

B2
jrrrrSj2F̂þ kcPsF̂þ kc GsP�ð Þ ¼ 0;

ð3Þ

where kc = 2K � B 	 rrrrS/B2, Ps =rrrrP � B 	 rrrrS/B2, andrrrr 	
X = eiS�. Similarly, Equation (2) reduces to

B 	 r GsP

rw2B2
B 	 r�

� �
þ GsP þ B2

B2
�þ kcF̂ ¼ 0: ð4Þ

equations (3) and (4) are 1D equations along B, and the
eigenvalues depend on the angle between rrrrS andrrrrP. With
the Euler potential representation of the ambient magnetic
field B =rrrry �rrrra,rrrrS can be expressed asrrrrS = Syrrrry +
Sarrrra, where Sy = @S/@y, and Sa = @S/@a. Then, kc = 2Sa
[ks (rrrry 	 rrrra/jrrrryj2 + �/y) � ky], and Ps = Sa [(�/y)@P/
@a � @P/@y], where ky = K 	 rrrry/jrrrryj2, ks = K 	 B � rrrry/
B2, and � = y Sy/Sa is a dimensionless free parameter. Note
that Sa can be combined with F̂, and equations (3) and (4)
depend on �. Thus, the eigenvalue, w2, is a function of �
for each field line labeled by y and a. In the following we
present numerical solutions of equations (3) and (4) by
choosing � = 0, which corresponds to the most unstable
solutions.
[7] To solve equations (3) and (4), we construct a

variational principle, and the Lagrangian functional dL is
given by

dL ¼
Z s2

s1

ds

B
rw2 jrrrrSj2

B2
jF̂j2 þ B2jZj2

 !
þ kcPsjF̂j2

(

� jrrrrSj2

B2
jB 	 rrrrF̂j2 þ GsPB

2

GsP þ B2
jkcF̂þ B 	 rrrrZj2

" #)
¼ 0 ð5Þ

where s denotes the distance along the field line, s1 and s2
are the two end points of the field line anchored in the
ionosphere, Z = GsP (B 	 rrrr�)/rw2B2. The boundary
conditions at the field line end points are assumed to be
F̂*B 	 rrrrF̂ = 0 and �Z* = 0. It is noted from Equation (5)
that there is a possibility of w2 < 0 if kcPs > 0, and if w2 < 0
the plasma is unstable at these field lines. From the
definition of kc and Ps (given after Equation (3)) we see that
if the pressure gradient is in the same direction as the
magnetic field curvature, then kcPs > 0 and the ballooning
mode is possible to be unstable.

2.2. Numerical Solutions

[8] To obtain the mode frequency or growth rate in
physical unit we need to specify the mass density distribu-
tion. For simplicity the plasma density is chosen to be
constant along the field line, but is a function of radius in
the equatorial plane: r(R) = 10 (Rgeos/R)

3mp/cm
3, where

Rgeos = 6.6 RE and mp is the proton mass. When the actual
mass density distribution is known, the frequency or growth
rate can be recalculated from the results given in this paper.
[9] Employing the growth phase magnetospheric equilib-

rium published previously [Zaharia and Cheng, 2003] and
choosing � = 0, we compute numerically the eigenvalues
w2 and the eigenfunctions by solving the Lagrangian equa-
tion, Equation (5), for each field line with the boundary
conditions that both F̂ and � vanish at the end points of the
field line in the ionosphere. Figures 1 and 2 show the color
plots in the equatorial plane and the contours in the northern
polar ionosphere of the eigenvalue f 2 (in (mHz)2) for the
fundamental harmonic ballooning modes, respectively. Also
shown in Figure 1 are the contours of the azimuthal current
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density (in nA/m2) and in Figure 2 is the color plot of the
field-aligned current density. Note that all field lines beyond
x ’ �6 RE down the tail in the night side are unstable. The
region of the most unstable modes tracks well with
the strong cross-tail current sheet region, consistent with
the expectation from substorm onset observations. The peak
growth rate region is located in the tailward side of the
strong cross-tail current region. In the polar ionosphere the
field lines in the peak ballooning instability growth rate
region map to the transition region between the region-1 and
region-2 currents. Although the ideal MHD model over
estimates the instability growth rate due to the lack of
particle kinetic effects [Cheng and Lui, 1998], the results
show the field lines where the ballooning free energy is
largest and the most unstable ballooning mode is located.
Moreover, we expect that the global structure of the MHD
ballooning instability is localized around the maximum
growth rate location in the equatorial plane with an half-

width extending to the location with growth rate equal to
about one half of the maximum growth rate.
[10] Next, we compute the stability of the ballooning

modes for the same growth phase magnetospheric equilib-
rium with the Lee-Wolf model [Lee and Wolf, 1992] and the
fast-MHD model [Horton et al., 1999], which made approx-
imations on the plasma compressibility, and compare these
solutions with the solutions of the full MHD model. This
will resolve the controversy arising from these approxima-
tions [Lee, 1999]. In the Lee-Wolf model, the plasma
compressibility is assumed to be a non-vanishing constant
along the field line. With B 	 r� = 0, � can be obtained
from Equation (4) and is given by <(GsP + B2)/B2 > � +
<kcF̂ > = 0, where < X > =

R s2
s1
dsX/B. Then, from

Equation (3) we obtain the Lee-Wolf equation as shown
in equation (3) of [Lee, 1999]. The solution of the Lee-Wolf
model, shown in Figure 3, shows that ballooning modes are
unstable near the current sheet region between X = �8 and
�10 RE and weakly unstable farthest near the tail boundary,
but are stable in other regions. This result is different from
the full MHD solution shown in Figure 1. Thus, the Lee-
Wolf model produces too much stabilization due to the
approximation of constant plasma compressibility.
[11] In the fast-MHD model [Horton et al., 1999], the

parallel displacement is assumed to vanish, X 	 B = 0. From
the adiabatic pressure law and the parallel component of
the momentum equation, we obtain � + [kcB

2/(GsP + B2)]
F̂ = 0. Then, from Equation (3) we obtain the fast-MHD
equation shown in equation (8) of [Lee, 1999]. The solution
of the fast-MHD model, shown in Figure 4, clearly shows
that for most field lines (except farthest in the tail of the
equilibrium) the ballooning modes are stable. This result is
completely different from the results of the full MHD model
shown in Figures 1 and those of the Lee-Wolf model shown
in Figure 3. Thus, the fast-MHD model gives a much worse
approximation of the plasma compressibility.

3. Summary and Discussion

[12] In summary, based on the ideal MHD model the
ballooning modes are expected to be unstable for the
growth phase magnetospheric equilibrium in a large region
of the plasma sheet where beq � 1. The most unstable
region is located in the strong cross-tail current sheet

Figure 1. The square of ballooning mode frequency (in
(mHz)2) is shown in the equatorial plane with the full MHD
model. The azimuthal current density (in nA/m2) contours
are also plotted to show the location of the most unstable
region relative to the strong cross-tail current region.

Figure 2. The contours of the square of ballooning mode
frequency (in (mHz)2) are plotted over the northern polar
ionosphere for the full MHD model. The field-aligned
current density is plotted to show that the most unstable
ballooning instability region is located at the transition
region between the region-1 and region-2 currents.

Figure 3. The square of ballooning mode frequency (in
(mHz)2) is plotted in the equatorial plane for the Lee-Wolf
model.

L06809 CHENG AND ZAHARIA: BALLOONING INSTABILITY L06809

3 of 4



region, which maps into the ionosphere in the transition
area between the region-1 and region-2 currents. The
numerical results clearly illustrate that to obtain the correct
stability result even within the ideal MHD model it is
essential to model the plasma compressibility correctly as
well as the equilibrium fields realistically.
[13] The results of the ideal MHD ballooning mode

stability calculations are not consistent with the AMPTE/
CCE observations that during most of the growth phase
beq < 50 and the magnetic fields are quiet without noticeable
fluctuations [Lui et al., 1992], and the low frequency
instability was observed in the enhanced cross-tail current
sheet region only toward the end of the growth phase when
beq > 50 [Cheng and Lui, 1998]. Moreover, the ideal MHD
model would predict purely growing ballooning instabil-
ities, and thus cannot explain the observed frequency of the
instability. Another fundamental difficulty of the ideal
MHD model is that there is no parallel electric field, and
thus the unstable MHD ballooning mode does not accelerate
particles to produce the substorm onset auroral brightening
as observed in the ionosphere. However, even with these
inconsistencies with observations, the ideal MHD model
provides the valuable information that the most unstable
ballooning instability is located in the strong cross-tail
current sheet region.
[14] To mitigate these difficulties arising from the ideal

MHD model, we need to consider the particle kinetic
effects. As was shown previously [Cheng and Lui, 1998],
the kinetic effects of ion gyroradii and trapped electron

dynamics can greatly increase the stabilizing effects of field
line tension and thus enhance the critical b to excite the
ballooning instability. The consequence is to reduce
the equatorial region of the unstable ballooning modes to
the strong cross-tail current sheet region. Full kinetic
calculations need to be carried out to provide a quantitative
conclusion.
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Figure 4. The square of ballooning mode frequency (in
(mHz)2) is plotted in the equatorial plane for the fast-MHD
model.
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