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ABSTRACT
If magnetic Ðeld lines in opposite directions expand toward each other to squeeze out the Ðeld

between them, they come into contact to form an abrupt Ðeld reversal (tangential discontinuity) which
supports a current sheet. Field line expansion can be caused by the combined pressure gradient and
gravity force, the magnetic Ðeld pressure gradient force, magnetic Ðelds merging toward each other, or a
combination of these e†ects. In this paper we show that in a quadrupolar magnetic Ðeld geometry mag-
netohydrostatic (MHS) equilibria without null point can be deformed into equilibrium Ðeld conÐgu-
rations containing current sheets by changes in forces associated with thermodynamic properties or Ðeld
line footpoint displacement. The shape of current sheets depends on the pressure distributions and foot-
point displacement proÐles. These MHS equilibria containing current sheets can evolve into di†erent
prominence magnetic Ðeld conÐgurations via resistive magnetic reconnection processes to support a
higher plasma density at the reconnection site than its surrounding. Examples are given to demonstrate
these physical processes. If the plasma pressure (or density) on the photospheric boundary is higher in
the lower Ñux tubes than in the higher tubes in each bipolar arcade, the combined pressure gradient and
gravity force pushes magnetic Ðeld lines outward from the center of each bipolar arcade. When the
plasma temperature increases above a critical value, the enhanced expansion of these arcade Ðelds results
in the formation of a current sheet between these two arcades along a separatrix line. Similarly, if the
Ðeld line footpoints undergo a spatially continuous shearing motion so that the outward gradient force
of the sheared magnetic Ðeld pressure pushes the Ðeld lines of each bipolar arcade into contact, a current
sheet of the same shape is formed when the amount of shear is above a critical value. This Ðeld conÐgu-
ration can be deformed into a conÐguration with an X-point through resistive magnetic reconnection. It
is expected that an inverse polarity prominence can stably reside above the X-point. If the plasma pres-
sure (or density) on the photospheric boundary is lower in the lower Ñux tubes than in the higher tubes
in each bipolar arcade, the combined pressure gradient and gravity force which pushes down magnetic
Ðeld lines is reduced when the atmosphere is cooled. When the temperature is decreased below a critical
value, the subsequent expansion of Ðeld lines due to the magnetic tension force creates a new current
sheet conÐguration with a sharp downward-pointing tip hanging at a distance above the bottom bound-
ary. Resistive magnetic reconnection in this type of current sheet results in a Malville-type Ðeld conÐgu-
ration with a magnetic island wrapped in dipped Ðeld lines. It is expected that an inverse polarity
prominence can stably reside within the magnetic island. Our results suggest that the formation of MHS
equilibria containing current sheets and their evolution into prominence magnetic Ðeld conÐgurations
must be a general process in the solar atmosphere.
Subject headings : numerical È MHD È Sun: prominences È Sun: magnetic Ðelds

1. INTRODUCTION

It is widely believed that solar eruptive phenomena and
coronal heating involve fast magnetic reconnection pro-
cesses which convert coronal magnetic energy into kinetic
and thermal energies. It is also often speculated that the
magnetic Ðeld around a solar prominence has a helical
structure, which results from reconnection of sheared mag-
netic Ðeld in a current sheet (e.g., & RaaduKuperus 1974).
Because the plasma is rather collisionless in the solar
corona with the magnetic Reynolds number on the order of
1012È1014, resistive magnetic reconnection is expected to
occur only if a very thin current sheet exists with width on
the order of an ion gyroradius (D10 m in typical corona). It
is thus important to understand how such a thin current
sheet is formed.

Current sheets can be related to solar prominence in two
aspects. First, the slablike appearance and the high mass

1 Presently at Tongmyong University of Information Technology,
Pusan 608-080, Korea.

density of prominence require highly bent Ðeld lines in the
prominence vicinity. This is a morphological aspect. There
have been a series of studies along this line, in which magne-
tohydrostatic (MHS) equilibrium solutions with a massive
current sheet are sought as an approximation of
prominence-embedding magnetic Ðelds (e.g., & AmariAly

& Aly In these studies, however, the1989 ; Lepeltier 1996).
presence of current sheets is assumed a priori and their
origin has not been addressed. The second aspect regards
the formation of solar prominence. Solar prominences are
often observed between the opposing Ðelds of two active
regions and the cancellation of(Martin 1973 ; Tang 1987),
magnetic patches of opposite polarities is regarded as one of
the observational conditions in prominence-forming
regions This suggests that solar prominences(Martin 1990).
are often formed in a current sheet and the evolution of
current sheet due to magnetic reconnection can lead to the
prominence formation.

Except during a dynamical phase related to some insta-
bilities or magnetic reconnection processes, the solar
plasma is in a quasi-equilibrium state because the wave
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transit time along magnetic Ðeld lines is generally much
shorter than the timescale of boundary motions or global
change of thermodynamic properties. During this quasi-
static evolution, the ideal MHD condition is valid due to
the large magnetic Reynolds number of the system. The
quasi-static evolution of solar plasma can be approximated
by a sequence of equilibria determined by continuously
changing physical parameters. When the physical param-
eters change continuously in space and in time, the
sequence of corresponding equilibrium states may be
expected to have continuity.

Ðrst proposed that inÐnitely thin currentParker (1972)
sheets tend to be formed in a perfectly conducting magneto-
plasma when the endpoints of Ðeld lines are arbitrarily
moved. Across the current sheet the magnetic Ðeld is
allowed to be discontinuous, but the total pressure (sum of
magnetic and plasma pressures) must be continuous. The
MHS equilibrium containing a current sheet is usually
called a weak equilibrium. In a series of studies (Parker 1994,
and references therein), Parker showed that the formation
of current sheets are unavoidable in MHS equilibria under
the constraint of a Ðxed Ðeld topology, and he called this
property ““ the fundamental theorem of magnetohydro-
statics.ÏÏ Although this argument at times led to contro-
versies (e.g., Ballegooijen some studiesvan 1985, 1988),
indicated that spontaneous formation of current sheets is
inevitable & Wolfson While most(Low 1987 ; Low 1988).
studies along this line are concerned with Ðeld line foot-
point motions, demonstrated an example ofLow (1992)
current sheet formation by pressure proÐle variation.

In this study, we are particularly interested in the contin-
uity of magnetic Ðeld line connectivity or Ðeld topology.
However, it is often the case that the topological continuity
of the equilibrium sequence breaks down, and this happens
if, beyond a critical value of a system parameter, no equi-
librium can be found in the initial Ðeld topology, but an
equilibrium exists in a di†erent Ðeld topology. This non-
existence of solutions in a certain topology is called global
singular nonequilibrium (GSNE) However, the(Aly 1994).
transition to a di†erent topology can be caused only by
magnetic reconnection, which is not allowed as long as the
ideal MHD condition is valid. Thus, instead of a topologi-
cal transition, some oppositely directed Ðeld lines collapse
to form a current sheet, i.e., a tangential discontinuity. Of
course, the weak equilibrium state can be converted to a
smooth equilibrium in a di†erent topology by the magnetic
reconnection process. In this aspect, a weak equilibrium
state may be considered as a metastable state. In a system
with a very large magnetic Reynolds number, such a meta-
stable state would necessarily appear before the magnetic
reconnection process via some resistive instabilities is initi-
ated.

The current sheet in a weak equilibrium is di†erent from
an asymptotically thinning current layer in a sequence of
smooth equilibria, such as the current layer developed in a
sheared bipolar arcade (e.g., & Linker &Mikic� 1994 ; Choe
Lee This current layer becomes inÐnitely thin1996a).
asymptotically as the footpoint displacement increases
indeÐnitely. Thus, a smooth equilibrium containing such a
current layer can exist for any Ðnite amount of footpoint
displacement. The simulation studies by & LinkerMikic�

and & Lee show the possibility of mag-(1994) Choe (1996b)
netic reconnection in such current layers with a small mag-
netic Reynolds number on the order of 105. However, with a

more realistic magnetic Reynolds number of 1012 the mag-
netic reconnection may be too slow to be of relevance
because there may be no resistive instability and magnetic
Ðeld reconnection can occur only via a very slow resistive
di†usion process.

In this paper we present the formation of two-
dimensional MHS equilibria with thin current sheets

& Choe in a quadrupolar magnetic Ðeld(Cheng 1997)
geometry. We also demonstrate numerically the evolution
of these two-dimensional thin current sheet equilibria into
prominence-like structures via resistive magnetic reconnec-
tion. Our study is focused on tangential discontinuities gen-
erated by GSNE. Because GSNE does not seem to occur in
a single bipolar arcade, we consider quadrupolar Ðelds gen-
erated by two positive and two negative poles. Such a com-
bination of polarities is thought to be quite ubiquitous in
the solar surface, especially in Ñaring regions and
prominence-forming regions. Recent observation by the soft
X-ray telescope (SXT) aboard Yohkoh satellite revealed the
quadrupolar Ðeld geometry of the coronal structure sur-
rounding high latitude dark Ðlaments et al.(Uchida 1997a).
We expect that any possible mechanism of current sheet
formation in the quadrupolar Ðeld geometry would work in
the real solar magnetic Ðelds, which usually exhibit more
complex geometries.

It is well known that a Ðeld conÐguration with a null-
point or null-line tends to be deformed into a current sheet
conÐguration by a small disturbance (Syrovatskii 1981 ;

et al. so we will not consider such cases, butUchida 1997b),
rather consider Ðeld conÐgurations without any null-point.
To obtain weak equilibrium solutions with thin current
sheets, we consider two di†erent types of change in the solar
environment : change of the thermodynamic properties,
such as temperature or entropy, of the whole atmosphere
and continuous motion of Ðeld line footpoints at the bound-
ary. We found that critical values of control parameters
exist for which the equilibrium magnetic Ðeld changes from
a smooth function of space to one with a tangential discon-
tinuity. In such thin current sheet conÐgurations, magnetic
reconnection can be triggered by plasma collisional or
anomalous resistivity.

The current sheet formation by e†ects of plasma pressure
gradient force and Ðeld line footpoint displacement that we
are going to demonstrate in this paper can be understood in
the following intuitive terms. In a two-dimensional isother-
mal plasma under a uniform gravity pointing downward in
the z-direction, the plasma pressure and mass density can be
written as [P(A, z), o(A, oü (A)]e~z@H, where A isz)]\ [pü (A),
the magnetic Ñux function and H is the scale height related
to the plasma temperature and gravitational constant. The
combined pressure gradient and gravitational force is in the

direction. Depending on the distribution of[$pü (A) pü (A),
di†erent current sheet conÐgurations can result from
changes in the plasma temperature. If is higher in thepü (A)
inner Ñux tubes than in the outer tubes, the combined pres-
sure and gravity force pushes plasma and magnetic Ðeld
outward to balance the magnetic Ðeld line tension force.
When the plasma temperature increases above a critical
value, the enhanced pressure gradient force pushes out the
Ðeld lines in each bipolar region so that a thin current sheet
of a Ðnite length forms at the region where the Ðeld lines
from each bipolar region come into contact. The current
sheet in this case grows in height from the bottom bound-
ary. If resistivity is applied to this current sheet conÐgu-
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ration magnetic reconnection changes the Ðeld topology
into one with an X-point. Such a transition may be involved
in certain types of solar Ñares.

If is higher in the outer magnetic Ñux tubes than inpü (A)
the inner tubes, temperature reduction in the atmosphere
can lead to the formation of a di†erent current sheet topol-
ogy. As the combined pressure gradient and gravitational
force, which pushes Ðeld lines downward, is reduced by the
cooling of the atmosphere, the magnetic Ðeld tension force
expands outward in the upper part of the Ñux tubes. The
subsequent expansion of Ðeld lines creates a tangential dis-
continuity as the plasma temperature is below a critical
value. A new current sheet conÐguration is formed with a
sharp-pointed end of the current sheet hanging at a distance
above the bottom boundary. If the plasma resistivity is con-
sidered in this weak equilibrium state, magnetic reconnec-
tion results in a Malville type Ðeld conÐguration with a
magnetic island hanging in the solar atmosphere. It is
expected that a prominence can stably reside within the
magnetic island.

When the Ðeld line footpoints undergo a shearing motion
with a continuous shearing proÐle, a current sheet can be
formed beyond a critical amount of shear. This is an
example of current sheet formation by general footpoint
displacement by This mechanism of currentParker (1972).
sheet formation is similar to the case with change in the
plasma heat content because a Ðeld line footpoint shear is to
produce a magnetic Ðeld in the footpoint shearing direction,
and the resultant shear magnetic Ðeld pressure is equivalent
to an increase in the plasma heat content. Depending on the
shear magnetic Ðeld pressure as a function of the magnetic
Ñux the shear magnetic Ðeld pressure gradient force can
either expand or depress the Ðeld lines just like the com-
bined pressure gradient and gravitational force. We have
demonstrated that the footpoint shearing motion can
produce the current sheet conÐgurations as in the cases of
temperature changes.

Our study clearly demonstrates that diverse mechanisms
can lead to weak equilibria and suggests the the current
sheet formation is a rather universal phenomenon in the
solar atmosphere. In a general account is given for the° 2,
two-dimensional MHS equilibrium problem, LowÏs analyti-
cal solutions are brieÑy reviewed, and our(Low 1992)
problem setting is presented. In the current sheet forma-° 3,
tion by thermodynamic change (atmospheric heating and
cooling) is presented. In we discuss the current sheet° 4,
formation by Ðeld line footpoint shearing. In the° 5,
relationship between current sheets and prominence forma-
tion is given. Finally, a brief summary and discussion is
given in ° 6.

2. TWO-DIMENSIONAL MHS EQUILIBRIUM PROBLEMS

Our studies of the equilibrium thin current sheet forma-
tion are based on an MHD model for isotropic pressure
plasma under a gravitational force. The momentum equa-
tion in the rationalized EMU unit is given by

o
d¿
dt

\ J Â B [ $P] og ] $ Æ k$¿[ jo¿ , (1)

where is the total time derivative, is(d/dt)\ (L/Lt)] ¿ Æ $ ¿
the Ñuid velocity, B is the magnetic Ðeld, P is the plasma
pressure, o is the total plasma mass density, og is the gravi-
tational force, k is the plasma viscosity, and j is the

frictional force coefficient. The mass density continuity
equation is given by

d
dt

o ] o$ Æ ¿\ 0 . (2)

MaxwellÏs equations with the magnetostatic approximation
hold : FaradayÏs law,

LB
Lt

\ [$ Â E , (3)

where E is the electric Ðeld ; AmpereÏs law,

J \ $ Â B ; (4)

and Gauss law,

$ Æ B \ 0 . (5)

To close the above equations, equations we need to(1)È(5),
prescribe a relation between the electric Ðeld and the Ñuid
velocity as well as the dynamics of plasma pressure. If
plasma kinetic e†ects can be ignored, OhmÏs law,

E ] ¿ Â B \ gJ , (6)

where g is the plasma resistivity, is usually employed so that
the perpendicular Ñuid motion is mainly determined by the
E Â B motion. We assume, for simplicity, an ideal gas law
so that the plasma pressure is related to the mass density by

P\ R0 oT , (7)

where is the gas constant and T is the plasma tem-R0perature which is usually not a constant in space. This ideal
gas law is justiÐed by a high thermal conductivity in the
corona and is regarded to Ðt better in modeling the slow
evolution of the corona than the common assumption of
adiabaticity with the ratio of speciÐc heat to be 5/3. These
MHD equations will be solved to obtain equilibrium solu-
tions by demanding that the Ñuid velocity be asymptotically
small.

2.1. T wo-dimensional MHS Equilibrium Equations
The quasi-static solar equilibrium with isotropic pressure

under a uniform gravitational force satisÐes

J Â B \ $P] og$z , (8)

where g is the gravitational constant and the gravitational
force is pointing downwards in the z direction. If there is no
Ðeld line reconnection, a magnetic Ðeld that is a function of
x and z can be expressed by

B \ B
p
] B

y
$y , (9)

where z) Â $y is the poloidal magnetic Ðeld,B
p
\ $A(x, B

yis the toroidal magnetic Ðeld, the equilibrium quantities are
independent of y, and the magnetic Ðeld lines lie in constant
poloidal magnetic Ñux function A(x, z) surfaces because
B Æ $A(x, z) \ 0. Then, because J Â B Æ $y \ [J Æ $A\ 0,
we have From B Æ $A\ 0, must be a func-B Æ $B

y
\ 0. B

ytion of A only.
If we write the pressure in the form P(x, z)z) \ pü (A) f (x,

and make use of the ideal gas law, then f (x, z) is uniquely
determined from B Æ ($P[ og) \ 0 and is given by
f (x, z) \ e~z@H(A), where can be inter-H(A)\ R0 T (A)/g
preted as a scale height. Then, the equilibrium plasma pres-
sure and mass density have the formal solutions (Dungey
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1953) :

P(z, A) \ pü (A)e~z@H , (10)

and

o(z, A) \ oü (A)e~z@H , (11)

where If H is a constant, oü (A) has theoü (A) \ pü (A)/gH(A).
same spatial variation as Note that the plasma pres-pü (A).
sure and mass density are not constant along the Ðeld line.
The pressure gradient and gravitational forces can be com-
bined to be

[($P] og$z)\ [
C
$pü (A) ] pü z

H2 $H(A)
D
e~z@H . (12)

Note that the downward gravitational force is cancelled by
a part of the pressure gradient force, and the combined force
is in the ^$A direction through and $H(A) terms. If$pü (A)
H (or temperature) is a constant, then the combined force is
in the direction. Because the plasma is frozen in the[$pü (A)
Ðeld lines, the combined force is to expand the magnetic
Ðeld lines outward toward the larger A region if (dpü /dA)\
0, and vice versa.

The J Â B force can be decomposed into two com-
ponents,

J Â B \ ($ Â B
p
) Â B

p
[ $

AB
y
2

2
B

. (13)

The Ðrst term represents the J Â B force due to andB
pcontains the magnetic Ñux function A(x, z) only, and the

second term is the toroidal magnetic Ðeld pressure gradient
force. Therefore, the toroidal magnetic Ðeld pressure gra-
dient force has a similar e†ect as the combined pressure
gradient and gravitational force in determining the mag-
netic Ñux function A(x, z).

The toroidal current (in the y-direction) is given by

J
y
(z, A)\ d

dA
AB

y
2

2
B

]
Adpü
dA

] pü z
H2

dH
dA
B
e~z@H , (14)

and the poloidal current (in the $A Â $y direction) is given
by

J
p
(A)\ J Æ $A Â $y

o$A o
\ $B

y
Æ $A
o$A o

. (15)

The magnetic Ñux function A(x, z) satisÐes the Grad-
Shafranov equation,

+2A(x, z) \ [J
y
(z, A) . (16)

To solve the Grad-Shafranov equation we need to specify
the functions H(A), and in addition to thepü (A), B

y
(A)

boundary condition.

2.2. Analytical Quadrupolar Field Solutions
Analytical two-dimensional MHS solutions &(Zweibel

Hundhausen have been obtained from the1982 ; Low 1992)
Grad-Shafranov equation, by consideringequation (16),

and a uniform temperature (H is a constant), and aB
y
\ 0

that is quadratic in A and is given bypü (A) pü (A) \ aA2] pü 0,where a is related to the pressure gradient scale. For a [ 0,
the general solution can be expressed as a linear super-
position of the inÐnite set of separable solutions of the form

& Hundhausen(Zweibel 1982),

A
k
\ J

s
(qe~z@2H)eikx , (17)

where k is the Fourier wave number associated with x and
is a Bessel function of order s \ ^2kH with q2\ 8aH2.J

sFor a \ 0, is replaced by the modiÐed Bessel functionJ
s

I
s
.

Because it is quite common in solar active regions to have
four sun spots with di†erent polarities one after another, we
will consider quadrupolar Ðeld geometries that mimic such
a combination of Ðeld polarities. The e†ect of plasma pres-
sure on the formation of thin current sheet has been studied

by employing the quadratic proÐle of and(Low 1992) pü (A)
by considering the following boundary conditions : A\ 0 at
x \ ^n/2k ; A] 0, as z] O ; and cosA\B0(cos kx[ a33kx)/k at z\ 0, where From1 [ a3[ 0. equation (14) J

y
\

0 for a \ 0, and a simple potential Ðeld solution is given by

A0(x, z) \ B0
k

[e~kz cos (kx) [ a3 e~3kz cos (3kx)] , (18)

where is a normalized constant magnetic Ðeld intensityB0and is a constant. It should be noted that the Ðeld in thea3half-plane z[ 0 can have an X-type neutral point depend-
ing on the parameter which represents the relativea3,strength of the third harmonic to the Ðrst harmonic Ðeld.
The Ðeld is bipolar for quadrupolar without neutrala3¹ 19,points for and quadrupolar with an X-type19 \ a3¹ 13,
neutral point for The value of above which ana3[ 13. a3,X-point appears in the equilibrium Ðeld for a given a, will be
denoted by For a \ 0,a3X. a3X\ 13.

For a \ 0, the pressure is depressed in the lower arcades
with the pressure becoming lower toward the center of the
lower bipolar arcades, where A is maximum. The equi-
librium solution is given by

A~(x, z) \B0
k
CI

s
(o q o e~z@2H)

I
s
(o q o)

cos (kx)

[ a3
I3s(o q o e~z@2H)

I3s(o q o)
cos (3kx)

D
. (19)

In comparison with the potential Ðeld solutions (a \ 0), the
magnetic Ðeld is everywhere compressed downward toward
the z\ 0 boundary by the negative pressure gradient and
the gravity. Consequently, there can be no X-point in the
equilibrium Ðeld conÐguration even for a3[ 13.For a [ 0, the pressure is increasing toward the center of
the two lower bipolar arcades, and the equilibrium solution
with a periodic quadrupolar Ðeld geometry is given by

A
`
(x, z)\B0

k
CJ

s
(qe~z@2H)
J
s
(q)

cos (kx)

[ a3
J3s(qe~z@2H)

J3s(q)
cos (3kx)

D
. (20)

Because of the positive plasma pressure gradient (a [ 0), the
magnetic Ðeld line will expand outward toward lower Ñux
region in order to conÐne the plasma. As the pressure gra-
dient (or a) increases, the magnetic Ðeld lines keep expand-
ing outward toward each other to compress the magnetic
Ñux external to them. Thus, the equilibrium Ðeld conÐgu-
ration can have an X-point even for i.e.,a3 \ 13, a3Xbecomes smaller as a become larger. deducedLow (1992)
that as a increases over a critical value, say theacrit,oppositely expanding magnetic Ðeld lines will come into
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contact by expelling all the external Ñux. If there is no topo-
logical constraint, for a given the Ðeld will change from aa3conÐguration without X-point for a to one with an\acritX-point for However, if the ideal MHD constrainta [ acrit.is valid, the topological transition is inhibited. Thus, from
this property he reasoned that if a is slowly increased from
below with a Ðeld topology without X-points to overacritthe magnetic Ðeld will end up in a weak equilibriumacrit,state embedding a current sheet. Across the current sheet
the magnetic pressure is continuous, but the tangential
magnetic Ðeld reverses abruptly.

There are a few characteristic features of LowÏs current
sheet, which were not discussed in his paper As(Low 1992).
shown in the sketch in LowÏs current sheet isFigure 1,
extended from the origin (O) to a point Q lying on the z-axis
and along OQ, The Ðeld line segment PQ lies inJ

y
\ [O.

the same Ðeld line as the current sheet QO, but it does not
form a current sheet because is Ðnite there. In MHSdpü /dA
equilibria, the sum of plasma pressure must be continuous
across any Ðeld line including a current sheet, i.e.,

C
p ] B2

2
D

\ 0 , (21)

where the bracket denotes the di†erence of the value of the
function in the bracket on each side of a surface containing
the Ðeld line. Because LowÏs current sheet is obtained by
imposing a continuous proÐle, the magnetic Ðeld mustpü (A)
be continuous everywhere including across PQ and QO. If
the Ðeld conÐguration in the neigborhood of Q is like a
cusp, the Ðeld strength vanishes as Q is approached from
above in domain However, if Q is approached in)3.domain or the Ðeld strength does not vanish. Then,)1 )2,

cannot be satisÐed. The only way to resolveequation (21)
this problem is for the Ðeld line segments PQ, QR, and QO
to meet at Q with nonzero angles so that the Ðeld strength
may become zero as Q is approached from all directions.
Thus, LowÏs Ðeld conÐguration in the neighborhood of Q
must be a Y-shape & Wolfson The volume per(Low 1988).
unit Ñux, which will be called the di†erential Ñux volume, is
given by

V (A) \
P
A

dl
B

, (22)

where the integration is performed along the Ðeld line
labeled by the Ñux function A. The di†erential Ñux volume
generally becomes inÐnity for Ðeld lines connected to an
X- or Y-point with only one known exception of a smooth
Ðeld conÐguration containing an X-pont & Finn(Lau

The entropy content per Ñux tube can be measured1990).

FIG. 1.ÈSketch of the magnetic Ðeld line structure of a current sheet

by the function S(A), which we call the di†erential entropy
content, deÐned by

S(A)\
P
A

p1@c
B

dl , (23)

where c is the ratio of speciÐc heats. In LowÏs current sheet,
the pressure is nonzero and continuous everywhere and
thus the di†erential entropy content is inÐnite. This,
however, does not mean that an inÐnite amount of entropy
is needed for the system, because the entropy content in a
Ðnite Ñux can be Ðnite, i.e.,

P
Ac~*A

Ac`*A
S(A)dA\ O , (24)

where is the Ñux function of the current sheet andA
c*A[ 0. In lowÏs model, the control parameter is the pres-

sure gradient. To maintain a certain pressure proÐle, certain
processes must selectively supply more entropy to those Ñux
tubes where the current sheets form. However, the location
of the current sheet is not known before the system settles
down to an equilibrium. To overcome these difficulties, we
will formulate the current sheet problem di†erently as
described in the following.

2.3. Problem Setting
Instead of solving the Grad-Shafranov equation for

A(x, z) by prescribing the functions and directly,pü (A) B
y
(A)

we shall obtain and by employing additionalpü (A) B
y
(A)

physical constraints. Physically, we can think of two ways
of changing the plasma pressure in each Ñux tube. One is to
supply (drain) mass to (from) the Ñux tube by photospheric
evaporation or siphon processes, and the other is to heat or
cool the plasma in the Ñux tube. Of course, a combination
of both mechanisms is possible. In this paper we will con-
sider the pressure change by a temperature change and the
photosphere is considered to be quite rigid. If there is no
magnetic reconnection and if the plasma cross Ðeld di†u-
sion time is long in comparison with the typical timescale of
thermal dynamical change and/or footpoint motion, the
total mass per unit Ñux tube must be conserved in the
domain above a rigid surface. Therefore, in addition to the
topological constraint, we will impose the invariance of the
mass per unit Ñux,

M(A) \
P
A

o
B

dl , (25)

as another constraint and choose the temperature as the
control parameter. With this setup, we actually impose the
entropy content per Ñux tube not directly in the form of

but in a similar form given byequation (23),

S3 (A) \
P
A

P
B

dl \ R0 T (A)M(A) , (26)

which is equivalent to when c\ 1. To simplifyequation (23)
the problem, we further assume that the temperature is con-
stant everywhere. Thus, the functional form of is set byS3 (A)
M(A), its magnitude is determined additionally by T , and
the entropy content per unit Ñux tube never diverges. By
choosing a M(A) proÐle, is uniquely determined ifpü (A)
other thermodynamic properties are Ðxed. However, as
thermodynamic properties such as the plasma temperature
are varied, the equilibrium magnetic Ðeld will change and,
therefore, a new will be obtained. This procedure ispü (A)
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rather nonlinear and can be achieved only through numeri-
cal calculations.

The can be obtained by introducing either the ÐeldB
y
(A)

line footpoint shearing motion in the y-direction or the
Ðeld-aligned current. If the Ðeld line footpoints of a mag-
netic Ðeld conÐguration without the toroidal magnetic Ðeld
are displaced in the y direction, a magnetic Ðeld in the
y-direction will be produced. The distance in the y-direction
between two footpoints of a Ðeld line is given by

f(A) \
P
A

B
y

B
dl \ B

y
(A)V (A) , (27)

which is the Ñux per tube. From equations andB
y

(14) (16)
we see that the gradient of plays a similar role as theB

y
2

gradient of in determining the equilibrium conÐguration.pü
Comparison between this equation and showsequation (23)
that f(A) is equivalent to S(A) when c\ 2. This is quite
natural because the magnetic pressure gradient force is in
the direction perpendicular to the magnetic Ðeld direction.
As in the case of imposing a continuous proÐle of apü (A),
continuous proÐle may be able to create a currentB

y
(A)

sheet in the equilibrium solution. Then, the footpoint dis-
tance f(A) diverges at the separatrix just as S(A) diverges in
the other case. An inÐnite amount of footpoint distance
cannot be realized. Thus, we will deal with the problem in
which the footpoint displacement is given as the control
parameter. We now deÐne the total footpoint displacement
for Ñux function A as

f(A) \ ;
i

P
Ai/A

B
yi

B
i

dl \ ;
i

B
yi
(A)V

i
(A) , (28)

where the subscript i denotes the di†erent Ðeld lines for
the same A. As mentioned earlier, the continuity of the
y-coordinate of footpoints does not guarantee the contin-
uity of the total footpoint displacement & Wolfson(Low

In this study, we employ a continuous shear proÐle1988).
antisymmetric with respect to the x \ 0 axis and avoid a
discontinuity of the total footpoint displacement.

Our numerical equilibrium solutions are performed in a
two-dimensional (x, z) computational domain in terms of a
rectangular (x, y, z) coordinate system. A rigid boundary is
assumed on the z\ 0 plane where no Ñow is allowed to
move across, which is reasonable considering that the
density in the photosphere is far higher than in the corona.
Due to this setup, the total mass per Ñux tube, M(A), in the
domain above the rigid boundary is conserved. In construc-
ting equilibria solutions, the invariance of the Ðeld line
topology is also imposed as a constraint.

3. CURRENT SHEET FORMATION BY THERMODYNAMIC

CHANGE

To study the e†ect of thermodynamic property change on
current sheet formation, we will ignore the e†ect of the
toroidal magnetic Ðeld and consider a uniform temperature.
The above analytical two-dimensional MHS equilibrium
solutions without null-points in the magnetic Ðeld conÐgu-
rations equations are adopted as(Low 1992), (18)È(20),
initial conÐgurations to calculate the total mass density per
unit Ñux tube for our numerical study. As a boundary con-
dition in the z\ 0 plane, the magnetic Ñux value, A(x,
z\ 0), is Ðxed as the plasma temperature is changed so that
the magnetic Ðeld footpoints are rooted rigidly at the z\ 0
boundary. To obtain equilibrium solutions, instead of

FIG. 2.ÈPotential Ðeld conÐguration for determining the mass per Ñux
M(A), with T \ 1.0T0.

solving the Grad-Shafranov equation directly, we shall
employ a magneto-frictional method & Schlu� ter(Chodura

to integrate the MHD equations, equations1981) (1)È(7).
FaradayÏs law and OhmÏs law without plasma resistivity
can be combined in the two-dimensional limit to give

LA
Lt

\ [¿ Æ $A . (29)

When the numerical solutions reach a steady state with
terms containing the Ñuid velocity being asymptotically
small in comparison with other terms, they essentially
satisfy the Grad-Shafranov equation. For di†erent values of
plasma temperature, the new plasma equilibrium pressure
distribution will be very di†erent from the simple quadratic
form used to obtain M(A). Note that the new equilibrium
conÐguration must have the same magnetic Ðeld topology
as the analytical solutions because of the plasma frozen-in
condition.

3.1. Atmospheric Heating
In the increasing temperature case, we obtain mass per

Ñux tube, M(A), from a simple quadrupolar potential Ðeld
solution [a \ 0 so that with k \pü (A) \ pü 0] a3\ 0.31,

The potential Ðeld conÐguration is shown inn/2L
x
, L

x
\ 2.
For this case M(A) is larger in the inner Ñux tubeFigure 2.

than the outer ones as shown in The scale height isFigure 3.
chosen to be a constant and is normalized to H \ 1. The
corresponding mass density is a function of height alone
and the mass per Ñux is maximum at the center of the
low-lying bipolar arcades. Note that A2 is maximum at the
center of the low-lying arcades.

FIG. 3.ÈMass per Ñux M(A) as a function of A for the heating case
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As the plasma temperature is uniformly increased, a
pressure gradient is developed so that the combined pres-
sure gradient and gravitational force is in the direction
pointing away from the center of each arcade and the mag-

netic Ðeld lines expand outward to conÐne the plasma.
shows a sequence of the magnetic Ðeld line struc-Figure 4

ture, z) and o(x, z) as the plasma temperature isJ
y
(x,

increased from the initial temperature to Because ofT0 5T0.

FIG. 4.ÈCurrent sheet formation by atmospheric heating. Magnetic Ðeld line structure and current density z) are shown for di†erent plasmaJ
y
(x,

temperatures.
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FIG. 5.ÈMaximum current density z) vs. temperature for theJ
y
(x,

heating case. There is a transition in temperature dependence near T \
above which the maximum current density increases faster with2T0,increasing T .

the conservation of mass per Ñux tube [M(A)] the resulting
increases more in the inner Ñux tubes than in the outerpü (A)

ones as the temperature increases. Because the plasma
expansion is more e†ective in the outer Ñux tubes than in
the inner ones, the combined pressure gradient and gravita-
tional force pushes out the Ðeld lines in each bipolar region
so that a current sheet of a Ðnite length is formed where the
Ðeld lines from each bipolar region come into contact. As
the temperature increases above a critical value (for thisT

ccase a current sheet stars to form near the (x \ 0,T
c
^ 2T0),z\ 0) location. The current sheet in this case grows in

height from the bottom boundary and extends upward
along the whole separatrix and theJ

y
\ (dpü /dA)e~z@H

plasma density has the same spatial variation as the plasma
pressure, the thin current sheet should correspond to a
sharp local density gradient as shown in With theFigure 4.
ideal MHD constraint, the in the current sheet should beJ

yinÐnite. But, numerical calculation provides a Ðnite value
due to numerical di†usion. From the dependence of the
maximum current density versus the plasma temperature as
shown in there is a transition in temperatureFigure 5,
dependence near above which the maximumT \ 2T0,current density increases faster with increasing T . This tran-
sitional temperature is interpreted as the critical tem-
perature for the current sheet formation. Note that the
magnetic Ðeld lines at the current sheet forms a cusplike
shape.

FIG. 7.ÈMass per Ñux M(A) as a function of A for the cooling case

3.2. Atmospheric Cooling
In the case of decreasing temperature, to constrain the

mass per unit Ñux we choose a smooth equilibrium solution
with a \ [1.5/(2n)2\ 0,(Low 1992) a3\ 0.69, k \ n/2L

x
,

s \ 2kH \ 0.5, q2\ 8aH2. shows the mag-L
x
\ 2, Figure 6

netic Ðeld conÐguration and corresponding z) andJ
y
(x,

o(x, z). The scale height is chosen to be a constant and is
normalized to H \ 1. For this choice, is higher in thepü (A)
outer tubes than in the inner ones so that the combined
pressure gradient and gravitational force pushes down the
Ðeld lines toward the center of each bipolar region. For this
choice, M(A) increases with A for and thenA\ 0.55A'decreases with A for as shown in0.55\A\A' Figure 7.
While the potential Ðeld subject to the same boundary con-
dition has an X-point, this initial equilibrium Ðeld has none
because the combined pressure gradient and gravitational
forces depresses the Ðeld lines downward.

shows the equilibrium sequence of the magneticFigure 8
Ðeld line structure, z) and o(x, z) as the plasma tem-J

y
(x,

perature is decreased from the initial temperature toT0As the whole atmosphere is uniformly cooled down,0.1T0.the combined pressure gradient and gravitational force is
reduced. The magnetic tension force then expands the Ðeld
lines outward. As the temperature is decreased below a criti-
cal value, the subsequent expansion of Ðeld lines creates a
current sheet (tangential discontinuity). The critical tem-
perature is about The topology of the current sheet0.25T0.in this case is di†erent from that in the former heating case
in that a sharp-pointed end of the current sheet hangs a
distance above the bottom boundary. As will be shown in

FIG. 6.ÈMagnetic Ðeld conÐguration and corresponding z) and o(x, z) for determining the mass per Ñux M(A), withJ
y
(x, T \ 1.00T0
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FIG. 8.ÈCurrent sheet formation by atmospheric cooling. Magnetic Ðeld conÐguration and corresponding z) proÐles are shown for di†erentJ
y
(x,

temperatures.

when resistive reconnection processes is simulated, this° 5,
weak equilibrium state evolves into a Malville-type Ðeld
conÐguration embracing a magnetic island. It is expected
that a prominence can stably reside within the magnetic
island.

4. CURRENT SHEET FORMATION BY FIELD LINE

FOOTPOINT MOTION

Ðrst showed an explicit example of currentLow (1987)
sheet formation by continuous footpoint displacements. In
his example, a converging footpoint motion pushes the two
inner bipolar arcades in a quadrupolar Ðeld toward each
other so that a current sheet is formed between them. By the

same token, & Wolfson argued that a footpointLow (1988)
shearing motion can also expand each arcade to form a
current sheet between them. However, the argument in the
footpoint shearing case gave rise to controversies. In a
simulation study, Antiochus, & DeVoreKarpen, (1990)
allowed magnetic Ñux to move freely across the bottom
boundary and found that the Ðeld line, which originally
touched the origin, was levitated by the footpoint shearing
motion. They concluded that the current sheet formation
proposedby & Wolfson is unphysical because itLow (1988)
requires an inÐnite mass to pin down the Ðeld line at the
origin. Refuting this criticism, argued that it isLow (1991)
impossible for all the Ðeld lines to rise above the photo-
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FIG. 9.ÈFormation of a current sheet by footpoint displacement. A sequence of equilibrium magnetic Ðeld conÐgurations and corresponding z)J
y
(x,

distributions for three di†erent footpoint displacement values are shown. It is to be noted that the current sheet extends along the separatrix Ðeld lines.

sphere because of the high mass density in and below the
photosphere. He also suggested a possible current sheet
conÐguration with a lower tip curved around by dipped
Ðeld lines. Our Ðeld conÐguration shown in explic-Figure 8
itly demonstrates the existence of such a current sheet and
can bring an end to this debate.

In a complex Ðeld topology, the footpoint displacement
may not be continuous even though the shearing velocity
proÐle is continuous. An example of such a case can be
found in a quadrupolar Ðeld topology when a footpoint
shearing motion is applied to only one side of the lower and
upper Ñux systems & Wolfson The current(Low 1988).
sheet formation in this case is so obvious that it does not
need to be tested by numerical simulation. Instead, we will
consider cases with both the shearing velocity proÐle and
the resulting footpoint displacement being everywhere con-
tinuous. SpeciÐcally we shall impose a spatially continuous
footpoint shearing motion with the velocity proÐle

forV
y
(x, z\ 0)\V

y0 sin [n(x [ X0)/(1 [ X0)] 1 º x ºX0and z\ 0) for where is the position ofV
y
(x, X0[ x º 0, X0the low-lying arcade center. The shearing velocity proÐle is

antisymmetric with respect to x \ 0 to exclude pathologic

cases in which the toroidal Ðeld has a discontinuity for any
nonzero amount of shear. The maximum shearing velocity
is where is the Alfve� n speed at x \ 1,V

y0 \ 0.0025VA, VAz\ 0. A quadrupolar potential Ðeld in a low b (b \ 0.005 at
x \ 1, z\ 0) plasma is considered as the initial equilibrium
conÐguration. We shall also assume the constraint of the
conservation of total mass per Ñux tube. However, because
the plasma b is small, the mass conservation constraint and
the gravity have smaller e†ects on the equilibrium structure
than the Ðeld line footpoint motion for typical active time
parameters. To follow the quasi-static evolution of the mag-
netic Ðeld conÐguration, a time-dependent ideal MHD
simulation based on equations is performed. The(1)È(7)
maximum shearing velocity is chosen to be much smaller
than the Alve� n velocity so that the plasma will be in quasi-
static equilibrium states.

As the shear increases, the Ðeld line displacement (and
thus the toroidal magnetic Ðeld increases, and the gra-B

y
)

dient force of the toroidal magnetic Ðeld pressure pushes the
Ðeld lines of low-lying bipolar arcades outward and expels
the Ðeld lines belonging to the upper arcade from between
them. Above a critical amount of footpoint displacement,
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the Ðeld lines in the bipolar arcades come into contact to
form a tangential discontinuity (current sheet) between
those two arcades. shows a sequence of equi-Figure 9
librium magnetic Ðeld conÐgurations and corresponding

z) distributions for three di†erent footpoint displace-J
y
(x,

ment values. The critical maximum footpoint displacement
is just above f\ 0.4. The current sheet conÐguration is
same as that shown in for the temperature case.Figure 4
Our result may be an example of current sheet formation by
general footpoint displacements previously suggested by

If resistivity is applied to this current sheetParker (1972).
conÐguration, magnetic reconnection changes the Ðeld
topology into one with an X-point.

5. FORMATION OF SOLAR PROMINENCE

Solar prominences are remarkable structures of cool
(5000 to 8000 K) and dense (1011 cm~3) material, suspended
in the hot (106 K) and tenuous (108 to 109 cm~3) solar
corona. Prominences are mostly located above the mag-
netic neutral lines, and this suggests the support of promi-
nence material by magnetic Ðelds. The prototype static
models by & Schlu� ter and &Kippenhahn (1957) Kuperus
Raadu represent two di†erent Ðeld topologies or pol-(1974)
arities of prominences. In normal-polarity prominences rep-
resented by the Kippenhahn-Schlu� ter model, the direction
of the magnetic Ðeld normal to the prominence plane is
parallel to that of the plausible ambient Ðeld, while it is
reversed in inverse polarity prominences represented by the
Kuperus-Raadu model. According to coronagraph obser-
vations there are 3 times as many inverse(Leroy 1989),
polarity prominences as normal polarity prominences. A
statistical study by showed that more promi-Tang (1987)
nences are formed beween bipolar regions than inside a
bipolar region. This result is far from surprising because
current sheet formation seems quite common between two
bipolar regions as discussed in the previous sections. As a
result of magnetic reconnection processes the current sheets

can evolve into Ðeld conÐgurations favorable to supporting
prominence material.

We have investigated what e†ect resistivity can bring
about in a current sheet. Imposing resistivity to a current
sheet, we have found that the global Ðeld evolution during
the reconnection process depends on the size of the di†u-
sion region. A fast magnetic reconnection with a small
shock angle can be achieved only with a locally enhanced
resistivity pattern.

A self-contained model of a solar prominence between
two bipolar regions was given by If the bottomChoe (1995).
of the current sheet touches the photosphere as in the
heating and footpoint shearing cases, resistive reconnection
leads to a conÐguration with an X-point. The upward trans-
port of plasma from the X-point enhances the density in the
overlying arcade where a thermal instability sets in. The
successive condensation leads to the formation of an inverse
polarity prominence where the cold and dense plasma can
sit on the Ðeld lines above the X-point. In theFigure 10
upper Ðgures show the current sheet conÐguration and
current density z) for the footpoint shearing case withJ

y
(x,

f\ 2.0. The lower Ðgures show the resultant prominence
Ðeld conÐguration and current density z) for a mag-J

y
(x,

netic ReynoldÏs number of 104. In this case, an inverse
polarity prominence is expected above an X-point without a
magnetic island. This prominence Ðeld conÐguration is
quite di†erent from the conventional prominence Ðeld con-
Ðgurations in a bipolar Ðeld geometry : the Kippenhahn-
Schlu� ter type Ðeld conÐguration that is related to the
normal polarity condition and the Kuperus-Raadu type
Ðeld conÐguration that is related to the inverse polarity
condition.

In a discussion reported by Malville sug-Anzer (1979),
gested another Ðeld geometry such as that shown in Figure

as a plausible model of prominence magnetic Ðelds. In11
this model, a magnetic island is wrapped by Kippenhahn-
Schlu� ter type Ðeld lines. speculated that asHirayama (1985)

FIG. 10.ÈUpper Ðgures show the current sheet conÐguration and current density z) with a maximum shearing displacement f\ 2.0, and the lowerJ
y
(x,

Ðgures show the resultant prominence Ðeld conÐguration and current density z) for a magnetic ReynoldÏs number of 104.J
y
(x,



No. 1, 1998 SOLAR SHEETS AND PROMINENCE FORMATION 387

FIG. 11.ÈProminence Ðeld model suggested by Malville (Anzer 1979).
The shaded area indicates the location of the prominence material.

the prominence mass becomes larger, the Ðeld lines of a
Kippenhahn-Schlu� ter type prominence sag more and more,
and the top of the dipped Ðeld lines can Ðnally be reconnect-
ed to form a magnetic island. However, a simulation study

by & Lee showed that the dip does not becomeChoe (1992)
signiÐcantly deep even after the prominence mass becomes
very large. Furthermore, that mechanism is unlikely to
work in a very low b plasma.

We have investigated the formation of MalvilleÏs model
of prominence Ðeld conÐguration. Starting with the current
sheet equilibrium with as shown in weT \ 0.25T0 Figure 8,
performed a resistive MHD simulation with a uniform res-
istivity (magnetic ReynoldÏs number\ 104) by slowly
lowering the temperature. Magnetic reconnection takes
place in the current sheet and a vertically elongated mag-
netic island is formed in a thin current layer as shown in

which shows the Ðeld conÐguration and z)Figure 12 J
y
(x,

for two cases with and 0.13, respectively. TheT /T0 \ 0.16
density in the island is higher than that in the surrounding
region which is clearly seen in the enlarged pictures of Ðeld
conÐguration, z) and o(x, z) for as shown inJ

y
(x, T \ 0.13T0This prominence model of plasma and magneticFigure 13.

Ðeld conÐgurations is of an inverse polarity type. Although
the results were obtained using a two-dimensional isother-

FIG. 12.ÈField conÐguration of a vertically elongated magnetic island formed in a thin current layer and corresponding z) for two cases withJ
y
(x,

and 0.13, respectively.T /T0\ 0.16
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FIG. 13.ÈEnlarged pictures of Ðeld conÐguration, z) and o(x, z) forJ
y
(x, T \ 0.13T0

mal model, it shows for the Ðrst time how a magnetic island
can be formed between two bipolar regions.

6. SUMMARY AND DISCUSSION

In this paper we have obtained weak equilibria contain-
ing current sheets in a two-dimensional quadrupolar mag-
netic Ðeld geometry by pressure gradient force e†ects as well
as by the conventional Ðeld line footpoint displacement. We
have shown that a magnetohydrostatic equilibrium without
null points can be deformed into an equilibrium Ðeld con-
Ðguration containing current sheets (tangential discon-
tinuities) either by changes in thermodynamic properties or
by footpoint displacement or a combination of these e†ects.
From the results we suggest that the current sheet forma-
tion must be quite ubiquitous in the solar atmosphere. We
have also shown that via resistive magnetic reconnection
processes the current sheets can evolve into Ðeld conÐgu-
rations supporting inverse polarity type prominence
material.

The shape of current sheets depends on the pressure dis-
tribution in Ñux tubes and can be understood based on the
force balance consideration. Under a constant gravitational
force pointing downward in the negative z-direction, the
pressure can be written as where A is the mag-pü (A)e~z@H,
netic Ñux function and H is the pressure scale height. The
combined pressure gradient and gravity force is given by

If is higher in the lower Ñux tube than[$pü (A)e~z@H. pü (A)
the higher ones in each bipolar arcade, the combined pres-
sure gradient and gravitational force pushes magnetic Ðeld
lines outward from the center of each bipolar arcade. If the
plasma temperature is increased above a critical value, the
enhanced expansion of these Ðeld lines results in the forma-
tion of a current sheet between these two arcades along a
separatrix line. Similarly, when the Ðeld line footpoints
undergo a spatially continuous shearing motion, a sheared
magnetic Ðeld is generated. For a footpoint displacement
proÐle producing an outward gradient force of the sheared
magnetic Ðeld pressure which pushes the Ðeld lines of each
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bipolar arcade into contact, a current sheet of the same
shape can be found if the amount of shear is above a critical
value. This Ðeld conÐguration can be deformed into a con-
Ðguration with an X-point through resistive magnetic
reconnection. It is expected that an inverse polarity promi-
nence can stably reside above the X-point.

If is higher in the outer rather than inner tubes of thepü (A)
bipolar arcades, the combined pressure gradient and gravi-
tational force which pushes down magnetic Ðeld lines is
reduced when the atmosphere is cooled. When the tem-
perature is decreased below a critical value, the subsequent
expansion of Ðeld lines due to the magnetic tension force
creates a new current sheet conÐguration with a sharp
downward-pointed tip hanging at a distance above the
bottom boundary. Resistive magnetic reconnection in this
type of current sheet results in a Malville-type Ðeld conÐgu-
ration with a magnetic island wrapped in dipped Ðeld lines.
It is expected that an inverse polarity prominence can stably
reside within the magnetic island.

Although our model is based on a two-dimensional
geometry, we may Ðnd a realization in the real Sun by the
aid of observation. Heating and radiation cooling of corona
and Ðeld line footpoint motion are on-going processes in
the solar atmosphere. Thus, we have to look for a signature
of the subsequent magnetic reconnection between two

bipolar arcades. The prominence Ðeld conÐguration with a
magnetic island located in a Ðeld line dip has long been
speculated as a possible Ðeld geometry of normal polarity
prominences. The original Kippenhahn-Schlu� ter type Ðeld
conÐguration does not seem to hold the prominence
material stably against any lateral perturbations. The valid-
ity of our model can be determined from measurement of
magnetic Ðelds at the top and bottom of a prominence.

To more realistically study the prominence formation, we
need to construct three-dimensional current sheet equilibria
and consider a combination of all possible physical e†ects
of current sheet formation discussed in this paper. The equi-
librium code developed by can be extended forChen (1995)
the solar magnetic Ðeld geometry. The construction of a
three-dimensional prominence structure in bipolar and
quadrupolar geometries will be the next step. The stability
of such a structure needs to be studied in conjunction with
prominence eruption.
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