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ABSTRACT
A model describing physical processes of solar Ñares and their homologous behavior is presented

based on resistive MHD simulations of magnetic arcade evolution subject to continuous shear-increasing
footpoint motions. It is proposed in our model that the individual Ñaring process encompasses magnetic
reconnection of arcade Ðeld lines, generation of magnetic islands in the magnetic arcade, and coalescence
of magnetic islands. When a magnetic arcade is sheared, a current sheet is formed and magnetic recon-
nection can take place to form a magnetic island. A continuing increase of magnetic shear can trigger a
new reconnection process and create another island in the underlying arcade below the original magnetic
island. The newborn island rises faster than the preceding island and merges with it to form one island.
Before completing the merging process, the newborn island exhibits two di†erent phases of rising
motion : the Ðrst phase with a slower rising speed and the second phase with a faster rising speed. This is
consistent with the Yohkoh observation by Ohyama & Shibata (1998) of X-ray plasma ejecta motion.
The Ðrst phase, in which reconnection of line-tied Ðeld in the underlying arcade is important, can be
regarded as being related with the preÑare phase. In the second phase, the island coalescence takes place,
which creates an elongated current sheet below and enhances the reconnection rate of the line-tied
arcade Ðeld. This phase is interpreted as the impulsive phase or the Ñash phase of Ñares. The obtained
reconnection electric Ðeld is large enough to accelerate electrons to an energy level higher than 10 keV,
which is necessary for observed X-ray emissions. After merging of the islands is completed, magnetic
reconnection continues in the current sheet under the integrated island for rather a long period, which
can be considered as the main phase of Ñares. The sequence of all these processes is repeated with some
time interval while a shear-increasing motion continues. We propose that a series of these Ñaring pro-
cesses constitutes a set of homologous Ñares. The time interval between successive Ñaring events depends
on the energy input rate into the system, which is governed by the nature of the footpoint motion and
the Ñux reconnecting rate. We also have investigated the destruction of a magnetic island in a system
undergoing a decrease of magnetic shear. The result suggests that there is a critical value of magnetic
shear for existence of a magnetic island in an arcade-like Ðeld conÐguration.
Subject headings : MHD È methods : numerical È Sun: Ñares È Sun: magnetic Ðelds

1. INTRODUCTION

Solar Ñares are intense, abrupt releases of energy usually
occurring in the vicinity of an active region where the mag-
netic Ðeld is stressed. A large Ñare can release over 1032 ergs
of energy in an hour or so, which is regarded as part of the
magnetic free energy. Based on the temporal evolution of
the Ñare emission, the progress of a Ñare can be divided into
several phases (e.g., Kane 1974 ; Priest 1982). In the preÑare
phase, which lasts about 10 minutes before the Ñare onset,
enhanced thermal emissions from the coronal plasma are
detected mostly in the soft X-ray (photon energy less than
10 keV or 0.1 nm\ j \ 2 nm). During the Ñash phase,
which typically lasts about Ðve minutes, the intensity and
area of the emission rapidly increase. Then, in the main
phase, the intensity slowly declines over about an hour or
sometimes as long as a day. Large Ñares also exhibit an
impulsive phase before the main phase, lasting 10È100 s,
during which hard X-ray (j \ 0.1 nm) and microwave
bursts are observed.

Flares can be morphologically classiÐed into ““ two-
ribbon Ñares ÏÏ and ““ simple-loop Ñares.ÏÏ All major Ñare
events are two-ribbon Ñares, which are on a much larger
spatial scale than simple-loop Ñares and are often related
with a prominence eruption and/or a coronal mass ejection
(CME). They are characterized by two bright ribbonsHamoving apart with hot X-ray plasma that is frequently seen
as if joining the ribbons. Most small-scale Ñares are simple-

loop Ñares, in which a single magnetic loop brightens in
X-rays and remains unchanged in shape and position
throughout the Ñaring event. It was generally believed that
di†erent mechanisms are involved in the two types of Ñares.
Two-ribbon Ñares were considered to occur by reconnec-
tion of open Ðeld lines above a magnetic arcade (Sturrock
1966) or by reconnection of stretched arcade Ðeld lines
(Carmichael 1964 ; Hirayama 1974 ; Kopp & Pneuman
1976). These reconnection models in a bipolar Ðeld conÐgu-
ration were collectively referred to as the ““ CSHKP ÏÏ
(Carmichael-Sturrock-Hirayama-Kopp-Pneuman) model
by Sturrock (1992). On the other hand, it was speculated
that simple-loop Ñares are generated by the merging of two
Ñux ropes (e.g., Gold & Hoyle 1960) or by various other
mechanisms working in a single loop (e.g., Spicer 1977 ; Van
Hoven 1981 ; Kan, Akasofu, & Lee 1983). However,
Masuda et al. (1994) found that the HXR (hard X-ray)
source, which is regarded to be directly related with recon-
nection, is located above the SXR (soft X-ray) loop even in
simple-loop Ñares as well as in large two-ribbon Ñares. This
means that the general conÐguration of the Ñaring magnetic
Ðeld is not di†erent from what was supposed in the CSHKP
model. Later, Shibata et al. (1995) found that most Ñares
observed by Yohkoh were associated with X-ray plasma
ejecta (or plasmoid), some of which were launched well
before the ÑareÏs impulsive phase, and they inferred that the
plasmoid ejection is not a consequence of the Ñare but a

449



450 CHOE & CHENG Vol. 541

cause of it. Based on these observations, Shibata (1998) pro-
posed a plasmoid-induced reconnection model in which a
fast reconnection responsible for a Ñare is triggered by the
plasmoid ejection. However, the formation and acceleration
mechanism of the plasmoid was left unaddressed in their
model.

In the Kopp-Pneuman model (Kopp & Pneuman 1976),
the plasmoid, a magnetic island with helical Ðeld lines in
two dimensions or a helical magnetic structure loosely con-
nected to the solar surface in three dimensions, is formed by
reconnection of line-tied Ðeld lines in a magnetic arcade.
This possibility has indeed been conÐrmed by several
numerical simulations Barnes, & Schnack 1988 ;(Mikic� ,
Inhester, Birn, & Hesse 1992 ; & Linker 1994 ; LinkerMikic�
& 1995 ; Choe & Lee 1996b ; Amari et al. 1996a). InMikic�
this picture, the rise of the plasmoid can be considered as a
process of approaching a new equilibrium after a change in
Ðeld topology. Thus, the plasmoid surrounded by closed
Ðeld lines must be eventually decelerated unless the recon-
nection of arcade Ðeld lines under the plasmoid is indeÐ-
nitely continued. However, recent observations of plasmoid
ejection do not support the idea that the plasmoid is
entirely driven by magnetic reconnection underneath.
Ohyama & Shibata (1997, 1998) found from Yohkoh obser-
vations that ejecta in X-ray Ñares undergo a sharp increase
in their rising speed before the main peak of the hard X-ray
emission and are further accelerated throughout the impul-
sive phase. The numerical study of magnetic reconnection
in a linear force-free Ðeld by Magara, Shibata, & Yokoyama
(1997) also showed an increase of the plasmoid speed before
the maximum reconnection electric Ðeld is achieved.
However, the plasmoid soon starts to be decelerated in their
simulation. A large increase of plasmoid speed and recon-
nection rate some time after the initiation of magnetic
reconnection and the eventual deceleration of the plasmoid
afterward are considered common features in arcade recon-
nection. This trend also was found in earlier simulation
studies (e.g., et al. 1988 ; Choe & Lee 1996b) althoughMikic�
not explicitly stated. Therefore, the two-step acceleration
process with a fast second phase without deceleration can
hardly be interpreted within the scope of the conventional
Kopp-Pneuman picture, although the Ñare morphology
based on observations supports the Kopp-PneumanÈlike
Ðeld conÐguration in the vicinity of and under the reconnec-
tion site. A possible way of resolving this seeming contradic-
tion is proposed in this paper.

This paper also provides an explanation on another
interesting feature of Ñare phenomena, namely, the recur-
rence of homologous Ñares. It is often observed that a series
of solar Ñares takes place repetitively in the same active
region with essentially the same position and with a
common pattern of development. Such Ñaring phenomena
are called homologous Ñares. The time interval between
successive Ñaring events varies from several hours to a few
days (Stix 1989). Woodgate (1982) suggested that a majority
of Ñares might be homologous in the sense that the foot-
points reappear very near the same place. In the SMM
Workshop (Kundu & Woodgate 1986), it was even argued
that Ñare homology must be included among the con-
straints on Ñare models (Hagyard et al. 1986). The homolo-
gous conditions common to several homologous Ñare sets
are summarized by Woodgate et al. (1984) as follows :

1. preÑare upÑows in small loops near Ñare footpoints ;

2. horizontal photospheric Ñows in the Ñare vicinity ;
3. high magnetic shear across polarity inversion lines

near the footpoints ;
4. magnetic disruption and mass outÑow during the

Ñare ; and
5. reformation of Ðlaments (prominences) and the corona

between Ñares.

Interestingly, these are also the conditions of most Ñares
whether they are homologous or not. Among these condi-
tions, the magnetic shear (the third condition) has been
considered as the most important condition for solar erup-
tive phenomena. The origin of magnetic shear, however, is
still being debated. It could be shear-increasing footpoint
motions or emergence of new Ñux of sheared magnetic Ðeld.
The shear-increasing footpoint motions do not imply only
motions parallel to the polarity inversion line but also
motions toward the polarity inversion line when a little
magnetic shear is already present. The role of a prominence
in Ñare occurrence (the Ðfth condition) still remains unclear.
From observations of erupting prominences (e.g., Zirin
1988), we at least know that prominences contain highly
wound helical Ðeld lines. Thus, it can be inferred that most
of the magnetic helicity in the Ñare-bearing active region is
concentrated in and around the prominence. The obser-
vation by Rust & Kumar (1996) suggests that an increase of
magnetic helicity of a prominence can lead to eruption of
the prominence. Thus, the prominence reformation between
Ñares (the Ðfth condition) is probably related with a change
in magnetic helicity. Increase of magnetic helicity of a
prominence can be achieved either by reconnection of
sheared arcade Ðeld lines surrounding the prominence or by
reconnection of prominence Ðeld lines with a Ñux rope of
the same helicity emerging from below. Therefore, any
shear-increasing process can also increase magnetic helicity
of a prominence if magnetic reconnection is possible.

This paper presents a numerical MHD model of the evo-
lution of a bipolar active region that undergoes Ñaring pro-
cesses, including homologous Ñares. We investigate the
evolution of magnetic arcades in a resistive plasma subject
to various shear-increasing footpoint motions. There have
been a number of studies dealing with shearing footpoint
motions in magnetic arcades et al. 1988 ; Biskamp &(Mikic�
Welter 1989 ; Inhester et al. 1992 ; & Linker 1994 ;Mikic�
Kusano, Suzuki, & Nishikawa 1995 ; Choe & Lee 1996b ;
Amari et al. 1996a). However, all these studies have concen-
trated on the possibility of arcade reconnection and mag-
netic island formation. Studying the subsequent evolution
of the arcade-island system is all the more important in
understanding the mechanism of homologous Ñares. The
subject of repetitive solar eruptions was Ðrst studied by
Linker & (1995) by using resistive MHD simulations.Mikic�
In their numerical simulation, a two-dimensional magnetic
arcade with an axisymmetric geometry is sheared with a
partially open initial Ðeld conÐguration embedded in a
steady outward plasma stream resembling the solar wind.
The simulation reveals formation of a magnetic island by
reconnection of arcade Ðeld lines, its expulsion into the
solar wind, and the reconnection of open Ðeld lines. This
series of events is found to repeat with a time interval of
about 400 hr, i.e., about 17 days. Kusano (1999) has also
investigated the evolution of a periodic arcade system under
continuous footpoint shearing and found a cycle of energy
storage and plasmoid expulsion as the evolutionary limit. In
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the above studies, however, no interaction between the
magnetic island and its surroundings was found. Thus,
these studies may explain a long-term evolution of an active
region involving grand-scale solar eruptions such as
coronal mass ejections (CMEs) but do not seem to pertain
to homologous Ñares occurring within a time span of
several days.

In our study, we assume a closed initial Ðeld conÐgu-
ration and focus on the evolution of the magnetic island not
totally expelled from the Sun. Because prominences are
believed to reside at the bottom of a magnetic island
(Kuperus & Raadu 1974 ; Anzer 1979), a newborn island
can be considered as a prominence newly appearing in the
solar atmosphere. When a magnetic island is formed by
reconnection of an arcade Ðeld, the toroidal Ñux originally
contained in line-tied Ñux tubes is redistributed into two
Ñux systems : the magnetic island and the underlying arcade
with the reconnected line-tied Ðeld. The magnetic shear is
thus reduced in the underlying arcade after island forma-
tion. A further shearing motion increases the magnetic
shear in the lower Ñux system; above a critical value of
shear, magnetic reconnection takes place to form a new
magnetic island. The newborn magnetic island then rises
and merges with the overlying magnetic island to form a
single integrated island. During this process, the newborn
magnetic island exhibits two phases of rising motion with
di†erent speeds (a slower initial rising phase followed by a
faster rising phase) corresponding to the observed two
phases of the plasmoid motion reported by Ohyama &
Shibata (1998). The reconnection electric Ðeld in the current
sheet under the magnetic island system increases with the
rising of the newborn island, reaches a maximum on the
completion of island merging, and gradually declines for a
rather long duration. Thus, the phase of the new island
creation and its slow rising is regarded as the preÑare phase,
the fast island rising phase involving the island coalescence
is interpreted as the impulsive (or Ñash) phase, and the
phase with a longer period of reconnection under the inte-
grated island is considered as the main phase of a Ñare.
The sequence of the above reconnection processes can be
repeated as long as the magnetic shear is replenished, and
we propose that a series of this reconnection sequence is a
set of homologous Ñares. Also, we investigate the cause-
e†ect relationship among those di†erent reconnection pro-
cesses to explain the mechanism of solar Ñares and their
homologous nature.

It is important to comment on why we model the gener-
ation of magnetic shear by footpoint motions in this paper.
This is not because we ignore the possibility of emergence of
sheared Ñux tubes, but because we want to investigate the
toroidal Ñux variation Ðrst. The complexity caused by the
change in poloidal Ñux resulting from Ñux emergence will be
addressed in a future study. It should be emphasized that as
long as the preÑare evolution is quasi-static and undergoes
little change of Ðeld topology until the Ñare onset, the
models based on one process of shear buildup are believed
to provide quite general information about the critical con-
dition for Ñare development, which may be applicable to
Ñares originating in other types of shear-increasing pro-
cesses.

A sheared magnetic state can be approached either by a
shearing motion parallel to the polarity inversion line or by
a converging motion exerting on a presheared Ðeld. Of
course, there is an indeÐnite number of possible paths

approaching a given sheared conÐguration. In the photo-
spheric observations during a preÑare stage or during
prominence formation, shearing mass motions are not
detected so evidently as the magnetic shear is (Livi et al.
1989 ; Martin 1990). Converging motions can show up more
explicitly than shearing motions because of Ñux cancel-
lation on magnetograms. This may lead one to consider
converging motions to be a more general way of increasing
magnetic shear. When a magnetic Ðeld evolves in response
to a footpoint motion in the ideal MHD regime starting
with a certain Ðeld conÐguration, the Ðnal Ðeld conÐgu-
ration does not depend on the path of moving footpoints as
long as the Ðnal footpoint positions are the same for all
cases with di†erent paths. This, however, is not true when
magnetic reconnection is allowed because Ðeld line connec-
tivity can be varied by the history of the footpoint motion.
We thus examine how Ñaring phenomena di†er for di†erent
footpoint paths.

Another interesting question is how a magnetic arcade
system containing a magnetic island will evolve when the
magnetic shear of the arcades surrounding (overlying and
underlying) the island is reduced. Of course, we do not
expect the process leading to the island formation to be
exactly reversed because magnetic reconnection is a dissi-
pative, irreversible process. In a philosophical view,
however, a change in the global Ðeld topology may have
analogy with a phase transition in a thermodynamic
system. A reversal of the global Ðeld topology may take
place if we extract magnetic energy out of the system. In this
paper, we thus investigate the evolution of a magnetic
arcade-island complex system under shear-reducing foot-
point motion. This study may be relevant to sudden disap-
pearance or ““ disparition brusque ÏÏ of a prominence not
associated with a solar eruptive event.

In short, this paper reports our investigation of the long-
term evolution of a bipolar active region subject to various
Ðeld line footpoint motions. The results are used to explain
the mechanism of homologous Ñares and physical processes
involved in general Ñaring phenomena. In ° 2, a mathemati-
cal description of sheared magnetic arcades is presented.
The modeling and numerical procedure are expounded in
° 3. In ° 4, the resistive evolution of a magnetic arcade under
a persisting shearing motion is investigated. Section 5 deals
with converging footpoint motions imposed to a sheared
arcade and also a combination of converging and shearing
motions simultaneously imposed. In ° 6, the evolution of a
sheared arcade-island system under a shear-reducing foot-
point motion is studied. A summary and discussion are
given in ° 7.

2. MATHEMATICAL DESCRIPTION OF SHEARED MAGNETIC

ARCADES

In this study, we investigate the evolution of D bipolar212magnetic arcades in a Cartesian coordinate system. The
magnetic arcade occupies the half-space My [ 0N and the
plasma and magnetic Ðeld quantities are assumed to be
invariant in z. The solar surface is modeled by the (x, z)-
plane (My \ 0N) ignoring the curvature, and the polarity
inversion line lies along the z-axis (Mx \ 0, y \ 0N) as
depicted in Figure 1. It is supposed that the magnetic Ðeld is
potential at t \ 0 and then evolves in response to the
plasma Ñows in the solar surface for t [ 0. For simplicity,
but without signiÐcant loss of generality, we assume that the
initial Ðeld is symmetric across the (y, z)-plane (Mx \ 0N) and
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FIG. 1.ÈSketch of a Ðeld line in our coordinate system. The solar
surface is modeled as the (y \ 0)-plane, in which the polarity inversion line
is along the z-axis. The Ðeld line of the initial potential Ðeld is represented
by a dashed line and the Ðeld line at a later time t [ 0 by a solid line. The
distance, over which a Ñuid element on the solar surface has moved in the
z-direction is denoted by f, which is equal to half the distance in the
z-direction between two conjugate footpoints as shown in the Ðgure under
the ideal MHD condition. The distance between a Ðeld line footpoint and
the polarity inversion line is denoted by m.

that the boundary Ñows on the plane My \ 0N are anti-
symmetric across the z-axis and invariant in z. Then, all the
physical variables appearing in magnetohydrodynamic
(MHD) description of plasma preserve a symmetry or an
antisymmetry across the (y, z)-plane as well as invariance in
the z-coordinate for all the time.

The invariance in z in the D system and the Gauss law,212$ Æ B \ 0, allow us to express the magnetic Ðeld with only
two scalar variables as

B \ zü ] $t] B
z

zü , (1)

where the poloidal Ñux function t is related to the z-
component of the vector potential by Becauset\ [A

z
.

B Æ $t\ 0, a magnetic Ðeld line lies in a constant t surface.
In equilibrium, one can show that whichB Æ $B

z
\ 0,

means that the toroidal Ðeld is constant along the ÐeldB
zline (see, e.g., Cheng & Choe 1998). This is a good approx-

imation in a quasi-static evolution.
In this study, we deal with a bipolar magnetic arcade

such that

B
y
(x, y \ 0)\ 4

5
6
0
0
º0 if x \ 0 ,
¹0 if x [ 0 ,

(2)

and the maximum of t is located at x \ 0, y \ 0. In such a
Ðeld, two values of x correspond to one value of t on the
My \ 0N-plane, i.e., t(x) is a single-valued function whereas
x(t) has two branches : x`(t)[ 0 and x~(t)\ 0. If a
symmetry is assumed across the Mx \ 0N-plane,
x~(t)\ [x`(t). Because of the invariance in z, a Ðeld
line of a potential magnetic Ðeld lies in a plane parallel to
the (x, y)-plane. We now impose on a potential Ðeld a

shearing boundary Ñow parallel toV
z
(x, t) \ v

z
(x, y \ 0, t)

the polarity inversion line. We deÐne f(x, t) as the displace-
ment in the z-direction of the Ñuid element at the boundary
location x generated by this Ñow (see Fig. 1), i.e.,

f(x, t) 4
P
0

t
V
z
(x, t@)dt@ , (3)

and denote by *f(t) the di†erence of f between two conju-
gate footpoints located at x`(t) and x~(t), i.e.,

*f(t) 4 f(x`) [ f(x~) . (4)

On the other hand, the distance in the z-direction between
the two conjugate footpoints of a Ðeld line labeled by t is
given by

*Z(t) 4 Z(x`) [ Z(x~) \
P
t

B
z

o$t o
ds

p
, (5)

where Z(x) is the z-coordinate of the footpoint at x of the
Ðeld line labeled by t. The above integration is performed
along the Ðeld line designated by t and is the arc lengths

pof the Ðeld line projected on the (x, y)-plane. If the plasma
occupying the whole space is a perfect conductor and if
there is no reconnection, the distance in the z-direction
between two conjugate Ðeld-line footpoints is the same as
the sum of the magnitudes of the plasma displacement at x`
and at x~, i.e.,

*Z(t) \ *f(t) . (6)

Assuming an antisymmetric shearing motion such that
and deÐning andV

z
([x, t) \[V

z
(x, t) Z(t) 4 (12)*Z(t)

f(t) 4 f[x`(t)], equation (6) can be rewritten as

Z(t) \ f(t) . (7)

The toroidal Ñux Ñux) through an area surrounded by(B
zthe Ñux surface labeled by t and the plane My \ 0N is

'
z
(t) \

P
t@/t

t@/toAP
t@

B
z

o$t@ o
ds

p

B
dt@ , (8)

where By di†erentiating this equa-t
o
\t(x \ 0, y \ 0).

tion, we obtain the toroidal Ñux Ñux) through the area(B
zmade by the unit poloidal Ñux around the Ðeld line labeled

by t. This quantity will be called the di†erential Ñux at tB
zand denoted by /

z
(t) ;

/
z
(t) \ [ d'

z
(t)

dt
\
P
t

B
z

o$t o
ds

p
. (9)

Comparing this with equation (5), we can see that

/
z
(t) \ *Z(t) . (10)

Thus, the distance in the z-direction between two conjugate
footpoints is nothing but the di†erential Ñux. When thereB

zexists di†usion of magnetic Ðelds, the di†erential Ñux isB
znot conserved even if the plasma at the boundary does not

move. This means a slippage of Ðeld lines with respect to the
plasma elements. Thus, equations (6) and (7) do not hold
under magnetic di†usion. The discrepancy between *Z(t)
and *f(t) is negligible in a system with a very small resis-
tivity, such as the solar atmosphere, unless there is magnetic
reconnection. However, a magnetic reconnection process
connects a Ðeld line segment with another line segment that
was originally not connected to the former, resulting in a
considerable discrepancy between *Z(t) and *f(t).
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When magnetic reconnection is allowed in a magnetic
arcade, a magnetic island can be created by reconnection
and there can be more than one Ñux surface labeled by t. In
this case, the total di†erential Ñux at t can be deÐned asB

zthe sum of the di†erential Ñuxes for every Ñux surfaceB
zlabeled by the same t, i.e.,

/
z
(t)\;

i
/

zi
(t)\;

i
*Z

i
(t)\;

i

P
t

B
z

o$t o
ds

pi
, (11)

where the index i designates the individual Ðeld line labeled
by the same t. In other words, the total di†erential ÑuxB

zat t is the sum of the footpoint distance in the z-direction
for the Ðeld line t connected to the boundary and the pitch
of the helical Ðeld line t in a magnetic island for one rota-
tion in the poloidal plane. Ideally, we may think of point-
wise magnetic reconnection with a di†usion region of a zero
volume. In this pointwise reconnection process, any quan-
tities contained in a Ñux tube are conserved. Only in this
ideal case, it holds that

*f(t)\ ;
i

*Z
i
(t)\ /

z
(t) (12)

and under the symmetry across the (y, z)-plane

f(t)\ ;
i

Z
i
(t)\ 12/

z
(t) . (13)

In reality, a reconnection region has a Ðnite volume,
however small it may be, and is not conserved/

z
(t)

through reconnection. It rather diverges at the separatrices
connected to the X-line because the di†erential Ñux volume
(area in two dimensions), deÐned as the Ñux tube volume
per unit poloidal Ñux such that

S(t)\
P
t

ds
p

o$t o
, (14)

generally diverges at the separatrices (cf. Vekstein & Priest
1992, for possible exceptions) while is not zero even onB

zthe X-line (Choe & Lee 1996b). Away from the separatrix,
however, equations (12) and (13) hold approximately in a
small resistivity system (Choe & Lee 1996b). This implies
that a reconnection process redistributes the di†erential B

zÑux, which was contained in an arcade Ñux tube, into two
di†erent Ñux volumes : one in a new arcade and the other in
a magnetic island.

In this study, we deal not only with boundary Ñows
parallel to the z-axis but also with boundary Ñows converg-
ing toward or diverging from the polarity inversion line
parallel to the x-axis. We thus deÐne the distance between
the Ðeld line footpoints in the x-direction as

*X(t)\ x`(t)[ x~(t) . (15)

Assuming, for simplicity, that the boundary Ñows to be
antisymmetric across the (y, z)-plane, i.e., v

x
(x, y \ 0)\

we have *X(t)\ 2 o xB(t) o . Thus, we[ v
x
([x, y \ 0),

deÐne the perpendicular distance of a footpoint of a Ðeld
line labeled by t from the polarity inversion line as (see
Fig. 1)

m(t)\ o xB(t) o . (16)

The Ðeld lines of a potential Ðeld, in which f\ 0, do not
have a z-component. A footpoint displacement in the z-
direction makes the Ðeld line tilt toward the z-direction. The
tilt of a Ðeld line toward the z-direction from the x-direction

is commonly called ““ magnetic shear,ÏÏ although there are
several quantitative ways of deÐning magnetic shear
(Hagyard et al. 1984 ; Wang 1992 ; Wang, & WangLu� ,
1993). The magnetic shear increases with oZ(t) o and
decreases with m(t). The quantity

Z(t) \ *Z(t)/*X(t) \ Z(t)/m(t) , (17)

which will be called the relative footpoint displacement, can
be a measure of magnetic shear. This quantity is most rele-
vant when comparing evolutions of magnetic arcades of
di†erent sizes or when dealing with the arcade evolution
with contraction or expansion of the boundary Ñux dis-
tribution. To illustrate this point, we consider a D force-212free Ðeld, which is a good approximation of a quasi-static
state in a low b plasma, described by

$2t] d
dt
AB

z
2

2
B

\ 0 . (18)

If a certain Ñux function t(x, y) and a toroidal Ðeld B
z
(t)

satisfy the above equation, one can show that

t8 (x, y) \ t(kx, ky) (19)

and

B3
z
(t8 ) \ kB

z
(t8 ) (20)

also satisfy equation (18). The transform given by equation
(19) means a self-similar contraction (if k [ 1) or expansion
(if k \ 1) of the poloidal Ðeld conÐguration by a constant
scale k. Under this contraction (or expansion), the di†eren-
tial Ñux volume S deÐned by equation (14) becomes 1/k2 of
the original volume. The equilibrium condition given by
equation (20) implies that the di†erential Ñux should beB

z1/k of the original value, i.e.,

/8
z
(t8 ) \ /

z
(t8 )/k , (21)

because One can also easily see that the total/
z
\ B

z
S.

magnetic energy in the half-space My [ 0N is invariant under
this transform. Consequently, as far as a D force-free212Ðeld without an island is concerned, a self-similar contrac-
tion (or expansion) with invariant *Z(t)/*X(t) does not
change the equilibrium conÐguration. If the boundary Ñux
distribution contracts (expands) without varying the z-
coordinate of the footpoint, it is equivalent to increasing
(decreasing) the footpoint displacement in the z-direction
without changing the boundary Ñux distribution. In our
simulation, we impose velocity vectors at the boundary as
boundary conditions and have control of f(t) rather than
Z(t), which comes out from the solution. Thus, we deÐne a
controllable quantity asf(t)

f(t) \ f(t)/m(t) , (22)

which we will call the relative plasma displacement.
It is useful to comment that the D Cartesian geometry212has a few known disadvantages for realistic modeling of the

solar atmosphere. First, Ðeld line opening is energetically
impossible and the expulsion of a magnetic island to a long
distance is also more difficult than in a spherical geometry

& Linker 1994 ; Choe & Lee 1996b). Second, a much(Mikic�
larger footpoint displacement is required than in three-
dimensional models to create the same amount of shear
angle, which is deÐned as the angle between the transverse
component vector of the sheared Ðeld and that of the poten-
tial Ðeld. The three-dimensional model of a sheared Ðeld by
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Antiochos, Dahlburg, & Klimchuk (1994) even shows a
shear angle larger than 90¡. With all these shortcomings, a
model in a D Cartesian geometry can still be justiÐed,212not merely by the ease in its development and interpretation
but by its restraining character ; in other words, any violent
behavior showing up in this model will take place in models
with a more realistic geometry.

3. DESCRIPTION OF MODELING

3.1. Equations Governing Resistive Magnetohydrodynamics
The equations governing the evolution of our model

corona are a full set of D MHD equations including212gravity and resistivity as follows.

Lo
Lt

] $ Æ (o¿)\ 0 , (23)

o
AL¿
Lt

] ¿ Æ $¿
B

\ J Â B [ $p ] og ] $ Æ k$¿ , (24)

Lt
Lt

] ¿ Æ $t\ g$2t , (25)

LB
z

Lt
\ L

Lx
(v

z
B

x
[ v

x
B

z
)] L

Ly
(v

z
B

y
[ v

y
B

z
)

] $ Æ (g$B
z
) , (26)

d
dt
A p
oc
B

\ 0 , (27)

p \ oRT , (28)

B
x

\ [Lt
Ly

, (29)

B
y

\ Lt
Lx

, (30)

J \ $] B , (31)

where all the quantities are expressed in a non-
dimensionalized form by a proper normalization. The mag-
netic Ðeld B is normalized by the maximum magnitudeB0of the boundary normal Ðeld, the mass density o by the
initial density at the bottom boundary, the velocity byo0 ¿

the time t by and the resis-v0\B0/(4no0)1@2, t0\ L 0/v0,tivity g by in which is the length unit. The normal-L 0 v0, L 0

ization units are listed in Table 1. To treat the energetics of
the solar corona properly, we need to consider the coronal
heating, radiative cooling and anisotropic heat conduction
(e.g., Choe & Lee 1992). However, without a well-
established knowledge in the coronal heating mechanism,
we adopt a polytropic relation (eq. [27]) instead of a full
energy equation. Even with this simpliÐcation, it is not easy
to determine the polytropic index c. Considering the high
thermal conductivity in the corona, we just set c\ 1
assuming an isothermal atmosphere with temperature of
2 ] 106 K. The gravity is a function of y given byg \ [gyü

g(y) \ 4nGM
_

(R
_

] y)2\ g0
R

_
2

(R
_

] y)2 , (32)

where G is the gravitational constant, the solar mass,M
_the solar radius, and cm s~2 is theR

_
g0\ 2.74 ] 104

surface gravity. In the coronal dynamics without a promi-
nence, the gravitational force is not so important compared
to Lorentz forces, but it is included in our formulation
because without the gravity the plasma b would become
unrealistically large in the upper part of the computational
domain. In our simulation, a constant kinematic viscosity
l\ k/o \ 10~3 is used for the purpose of numerical
smoothing.

3.2. Initial and Boundary Conditions
In this study, we assume that the magnetic Ðeld is initially

potential and the atmosphere is initially in a hydrostatic
equilibrium. The boundary Ñux proÐle for a bipolar arcade
we impose at y \ 0 is chosen as

t(x, y \ 0, t \ 0)\ 8
(x/a)2] 3

, (33)

which can be generated by a dipole located at x \ 0, y \
The corresponding normal magnetic Ðeld proÐle at[ J3a.

the bottom boundary is given by

B
y
(x, y \ 0, t \ 0)\ [ 1

a
16(x/a)

[(x/a)2] 3]2 . (34)

Note that for x ¹ 0, \ 0 for x [ 0 andB
y
(x, y \ 0)º 0

that the maximum is located at x \ ^a with a valueoB
y
o

of 1/a. Figure 2a shows the t and proÐles for a \ 1. ByB
ysolving a Laplace equation $2t\ 0 with the boundary

TABLE 1

NORMALIZATION UNITS

Quantity Symbol Normalization Unit Value

Length . . . . . . . . . . . . . . . . . . . . . . . . . . x L 0 3.0 ] 104 km
Magnetic Ðeld . . . . . . . . . . . . . . . . . . B B0 50 G
Electron number density . . . . . . n n0 1.0 ] 109 cm~3
Mass density . . . . . . . . . . . . . . . . . . . o o0 1.9 ] 10~15 g cm~3
Pressure . . . . . . . . . . . . . . . . . . . . . . . . p p0\ B02/4n 2.0 ] 102 dyne cm~2
Temperature . . . . . . . . . . . . . . . . . . . T T0 2.0 ] 106 K
Velocity . . . . . . . . . . . . . . . . . . . . . . . . . ¿ v0\ B0/(4no0)1@2 3.2 ] 103 km s~1
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . t t0 \ L 0/v0 9.3 s
Current density . . . . . . . . . . . . . . . . J J0 \ (c/4n)(B0 /L 0) 1.3 ] 10~4 A m~2
Electric Ðeld . . . . . . . . . . . . . . . . . . . . E E0 \ (v0/c)B0 1.6 ] 104 V m~1
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . W W0\ (B02/4n)L03 5.4 ] 1030 ergs
Poynting vector . . . . . . . . . . . . . . . . S S0\ (B02/4n)v0 6.4 ] 1010 ergs cm~2 s~1
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FIG. 2.ÈProÐles of (a) boundary normal magnetic Ðeld (solid line) and
Ñux through the bottom boundary (dashed line) ; (b) shearing velocity in the
z-direction ; and (c) converging (or diverging) velocity in the x-direction.
The normalization of all the quantities is given in Table 1.

conditions of equation (33) and t\ 0 at inÐnity, we have

t(x, y, t \ 0)\
A 8

J3

B (y/a)] J3

(x/a)2] (y/a ] J3)2
. (35)

The tangential magnetic Ðeld proÐle at the bottom bound-
ary at t \ 0 is given by

B
x
(x, y \ 0, t \ 0)\ [ 8

J3a

(x/a)2[ 3
[(x/a)2] 3]2 . (36)

It is to be noted that the maximum is located at x \ 0oB
x
o

and that changes sign atB
x

x \^J3a.
The photosphere modeled by the bottom boundary is

considered as a perfect conductor such that the magnetic
Ðeld is frozen into the plasma and no magnetic Ðelds above
the model photosphere can di†use into it. Assuming no
Ñows across the bottom boundary, the Ñux of the boundary
normal magnetic Ðeld is conserved. This also implies the
conservation of the poloidal Ñux in the simulation domain
because the t maximum, is located at the origin wheret0,the Ñow velocity is zero. We impose the tangential velocity
Ðelds at the bottom boundary as described in ° 3.3, and the
evolution of Ñux function t(x, y \ 0, t) is governed by the
perfect conductor condition

Lt
Lt

\ [v
x

Lt
Lx

. (37)

The toroidal magnetic Ðeld at the bottom boundary isB
zdetermined by implementing equation (26) in a half-size cell

contiguous to the boundary. The density o at the bottom

boundary is set to be constant in time and equal to the
initial value. Since this setting is an overspeciÐcation of the
boundary condition, an unresolvable boundary layer
appears at the bottom boundary. However, the e†ect of this
boundary layer in the global dynamics is minimal because
the plasma b, the ratio of plasma pressure to magnetic pres-
sure, is very low in the neighborhood of the bottom bound-
ary (b D 2.5] 10~3 at the origin). This boundary condition
rather helps keep the time step size from getting too small
because of the rarefaction of plasma. A further discussion
can be found in Choe & Lee (1996a).

The boundary conditions at x \ 0 are determined by the
symmetry property. The other lateral boundary and the
upper boundary are assumed to be open and this condition
is approximately implemented with the zeroth order
extrapolation except for t, i.e.,

LF
i

Ln
\ 0 , (38)

in which the derivative is taken in the direction normal to
the boundary and respectively, stands for andF

i
, ¿, B

z
,

on`1[ on, where the superscripts denote the time step.
Since the Ñux function t labels each Ðeld line moving frozen
in the plasma element in ideal MHD, we impose the follow-
ing boundary condition at those two open boundaries :

Lt
Lt

\ [(¿
n
* ] ¿

t
) Æ $t , (39)

where n and t, respectively, denote the boundary normal
and tangential components and

¿
n
* \ 4

5
6
0
0

¿
n

if ¿ Æ nü [ 0,
0 if ¿ Æ nü ¹ 0,

where is the outward normal unit vector.nü

3.3. Tangential Velocity ProÐles at the Bottom Boundary
At the bottom boundary, the shearing velocity is givenv

zas a function of the x-coordinate and time when there is no
diverging or converging motion (Case 1 where a \ 1), i.e.,

v
z
(x, y \ 0, t) \ f

z
(t)V

z
(x) , (40)

where

V
z
(x) \ V

z0x exp
A1 [ x2

2
B

, (41)

the proÐle of which is shown in Figure 2b. The time-
dependent part determines the duration of the shearingf

z
(t)

motion and its acceleration and deceleration periods, i.e.,

f
z
(t) \

4

5

6

0
0

(t [ q0)/(q1[ q0) if q0¹ t \ q1 ,
1 if q1¹ t \ q2 ,
(t [ q2)/(qf[ q2) if q2¹ t \ q

f
,

0 otherwise .

(42)

In the cases where footpoints also move in the x-direction,
the shearing velocity is not given as a function of x but asV

za function of t by converting the independent variable in
equation (41) into t with the use of equation (33). That is,

V
z
(t) \ ^

C
e
A8
t

[ 3
BD1@2

V
z0 exp

C
[1

2
A8
t

[ 3
BD

,

(43)



456 CHOE & CHENG Vol. 541

where the sign is the same as that of x. The prescription of
the shearing velocity as a function of each Ðeld line is
adopted to facilitate the computation of f(t) and andf(t)
compare on good grounds the Ðeld evolutions having
undergone di†erent footpoint paths. As can be seen in equa-
tion (41), the boundary normal Ðeld maxima are subject to
the highest shearing velocity. The Ñuid elements at those
locations thus travel in the z-direction the greatest distance
from the initial locations and this distance, denoted by f

m
(t),

is

f
m
(t)\ V

z0
P
0

t
f
z
(t@)dt@ . (44)

To consider a converging or diverging velocity Ðeld that
does not indeÐnitely accumulate Ðeld lines or mass any-
where within a Ðnite time, we choose

v
x
(x, y \ 0, t)\ f

x
(t)V

x
(x) , (45)

where is linear in x to a certain distance from theV
x
(x) x

Lpolarity inversion line and then gradually decreases with
o x o , i.e.,

V
x
(x)\

4

5

6

0
0
^V

x0
x
x
L

if o x o¹ x
L

,

^V
x0

x
x
L

exp
C
[

(x [ x
L
)2

x
L
2

D
if o x o[ x

L
,

(46)

in which the positive sign refers to a diverging Ñow and the
negative sign to a converging Ñow. A converging velocity
proÐle given by equation (46) for is shown inx

L
\ 6a \ 18

Figure 2c. The time-dependent function is prescribedf
x
(t)

similarly to The solution of equation (37) forf
z
(t). o x o¹x

Lis given by

t(x, t)\ t
A x
Ë(t)

, 0
B

, (47)

where

Ë(t)\ exp
C
^V

x0
x
L

P
0

t
f
x
(t)dt
D

. (48)

For converging Ñows, a negative sign gives 1º Ë(t) [ 0,
and for diverging Ñows, a positive sign gives 1 ¹ Ë(t) \ O.
Equation (47) implies a self-similar contraction or expan-

sion of the boundary normal Ñux proÐle, and the footpoint
positions xB(t) vary in the same ratio for all the Ðeld lines
in i.e.,o x o\x

L
,

x(t, t) \ Ë(t)x(t, 0) . (49)

Now, the distance of a boundary normal Ðeld maximum
from the polarity inversion line at time t is denoted by m

m
(t).

Since from equation (34) and we havem
m
(t \ 0)\ a a \ x

L
,

m
m
(t) \ Ë(t)m

m
(t \ 0)\ aË(t) . (50)

The relative plasma displacement (eq. [22]) at the boundary
normal Ðeld maxima, which will be denoted by is thusf

m
(t),

f
m
(t) \ f

m
(t)

m
m
(t)

. (51)

3.4. Numerical Procedures
Our computational domain consists of a rectangular area

[(x, y) o 0 ¹ x ¹ 100, 0¹ y ¹ 150] and is covered by a non-
uniform grid with 127 ] 181 mesh points, in which the ratio
of the smallest grid size to the largest in each direction is 1
to 40. The governing equations are Ðnite-di†erenced and
integrated in time employing a semi-implicit scheme (e.g.,
Harned & Schnack 1986), which allows 4È10 times as large
a time step size as constrained by the CFL (Courant-
Friedrichs-Lewy) condition. For a detailed account of the
numerical algorithm, readers are referred to Choe & Lee
(1992).

We have run many simulation cases with di†erent foot-
point motion patterns and di†erent values of resistivity and
here report results of nine selected cases as listed in Table 2.
Cases 1A, 1B, 1C, and 1D involve only shearing footpoint
motions parallel to the polarity inversion line. In Cases 2A,
2B, and 2C, a converging footpoint motion is imposed after
a shearing footpoint motion is Ðrst imposed and then
stopped. Both shearing and converging motions are simul-
taneously given in Case 3. A diverging footpoint motion is
applied to a presheared arcade in Case 4.

For the case either considering only a shearing motion
(Case 1, in which at y \ 0) or involving av

z
D 0, v

x
\ 0

diverging motion [Case 4, in which v
x
(x [ 0, y \ 0) [ 0],

we set a \ 1 so that the maximum is initially locatedoB
y
o

TABLE 2

SIMULATION CASES

Case Motiona a \ m
m
(t \ 0)b gc V

z0d V
x0e x

L
e q0 for v

x
f

1A . . . . . . S 1 10~5 10~3 N/A N/A N/A
1B . . . . . . S 1 5 ] 10~5 10~3 N/A N/A N/A
1C . . . . . . S 1 10~5 5 ] 10~3 N/A N/A N/A
1D . . . . . . S 1 0 10~3 N/A N/A N/A
2A . . . . . . C after S 3 10~5 10~3 10~3 18 28000
2B . . . . . . C after S 3 5 ] 10~5 10~3 10~3 18 28000
2C . . . . . . C after S 3 0 10~3 10~3 18 28000
3 . . . . . . . . C and S 3 10~5 10~3 5 ] 10~4 18 0
4 . . . . . . . . D after S 1 10~5 10~3 10~3 18 28000

a S denotes a shearing motion, C denotes a converging motion, and D denotes a diverging motion.
b Initial (at t \ 0) maximum of the boundary normal Ðeld given by eq. (34).
c Resistivity or the inverse of the Lundquist number.
d Shearing speed at the boundary normal Ðeld maxima. See eq. (43).

As seen in eq. (46), the footpoint moving speed in the x-direction is proportional toe V
x0 \ v

x
(x \ x

L
, y \ 0).

x for o x o¹ x
L
.

f Commencing time for at the bottom boundary.v
x
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at x \ ^1 with a value of unity. For Case 4, we also set
for the diverging motion proÐle (see eq. [46]). Thex

L
\ 18

cases involving converging motions, Cases 2 and 3, are set
up with a more dispersed initial boundary normal Ñux
proÐle, i.e., in equations (33) and (34), ina \ m

m
(t \ 0)\ 3

order to maintain a proper spatial resolution near the origin
even after Ðeld line densities are much increased there. The
converging motion proÐle is chosen with so thatx

L
\ 18

footpoints in at least 92% of the total magnetic Ñux may be
under self-similar evolutionary motion.

Subcases in each of these four cases are di†erentiated by
the value of resistivity. Since our simulation code has an
intrinsic numerical di†usion corresponding to g D 10~6,
resistive e†ects for g \ 5 ] 10~6 cannot be properly resol-
ved. Thus, to obtain information about the case with
g \ 2 ] 10~6, we run a case (Case 1C) with g \ 10~5 and
with a shearing velocity Ðve times as large as that in other
subcases in Case 1. This substitution can be justiÐed by the
fact that the shearing speed is much smaller than the Alfve� n
speed in the system.

4. REPETITIVE FLARING IN CONTINUOUSLY SHEARED

MAGNETIC ARCADES : CASE 1

In this section, we consider only shearing footpoint
motions parallel to the polarity inversion line. As shown in
Table 2, four simulation runs are performed with di†erent
values of resistivity and shearing velocity. All the simulation
runs show similar evolutionary features except for the case
with zero resistivity (Case 1D). A typical evolutionary trend
is well demonstrated in Figure 3, which shows Ðeld lines at
di†erent times in Case 1A (g \ 10~5 and AsV

z0 \ 10~3 v0).the magnetic shear is increased by the shearing footpoint
motion, the current layer in the center of the magnetic
arcade becomes thinner in the x-direction and longer in the
y-direction so that magnetic reconnection takes place and a
magnetic island is created. This result was reported by pre-
vious numerical simulation studies & Linker 1994 ;(Mikic�
Choe & Lee 1996b ; Amari et al. 1996a). The magnetic
reconnection is found to be triggered around t B 11,000 t0,which corresponds to The existence of a magneticf

m
B 11.

FIG. 3.ÈRepeated formation of magnetic islands and their merging under continuous footpoint shearing for Case 1A. Field lines projected on the (x, y)-
plane are shown for di†erent times. Note that the Ðgure scale increases row by row. The plasma displacement in the z-direction at the boundary normal Ðeld
maxima (x \ ^1) is denoted by f

m
.
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island in a low b plasma is conditioned by the presence of
the toroidal magnetic Ðeld in our notation) in it. The(B

zmagnetic reconnection divides and redistributes the toroi-
dal Ñux previously contained in line-tied Ñux tubes into two
new Ñux systems : one with the magnetic island and the
other with the line-tied reconnected Ðeld. The di†erential
toroidal Ñux in a reconnected Ðeld line is thus less than the
value before the reconnection. In other words, the magnetic
shear in the arcade under the magnetic island is reduced
because the reconnected Ðeld lines in the underlying arcade
have a smaller conjugate footpoint distance in the z-
direction than the old Ðeld lines before magnetic reconnec-
tion occurs. Although the conjugate footpoint distance may
not be deÐned and diverge in the separatrix connected to
the X-line (Choe & Lee 1996b), the toroidal Ñux in a Ðnite
Ñux volume does not diverge in any case and the magnetic
shear in the underlying arcade is always decreased after
reconnection. By a continuing shearing motion, the mag-
netic shear in the underlying arcade is again increased and a
new reconnection is initiated at t B 19,000 Thet0 (f

m
B 19).

new magnetic island so created rises and pushes up the
line-tied Ðeld lines surrounding it so that these line-tied Ðeld
lines start to reconnect with the Ðeld lines in the upper
island through the upper X-line. After all the line-tied Ðeld
lines in the underlying arcade surrounding the newborn
island have reconnected with the upper island Ðeld lines, the
two magnetic islands quickly coalesce to form one island.
This merged island keeps on rising as Ðeld lines surround-
ing it continue to reconnect in the vertical current sheet
below and it gains Ñux. The magnetic reconnection to gen-
erate a new island, the newborn islandÏs merging with an
upper island and the reconnection under the integrated
island are considered as constituting a Ñaring event. Figure
3 shows that the generation of a new island and the sub-
sequent merging of islands are repeated with some time
interval while the shearing footpoint motion continues. This
repetitive occurrence of a sequence of reconnection pro-
cesses is interpreted as a set of homologous Ñares. For Case
1A, new magnetic islands are created at t B 11,000 t0 (f

m
B

11), 19,000 29,000 and 40,000t0 (f
m

B 19), t0 (f
m

B 29) t0respectively. The island merging occurs in a rela-(f
m

B 40),
tively short time after a new island is born. The time interval
between successive creation of new islands is thus around
10,000 and with s (Table 1) it is about a day,t0, t0\ 9.3
although it has a mild tendency of increase with progress in
island generation.

To investigate kinematics of island systems, the height of
O-lines in the islands versus time is shown in Figure 4.
Compared with the Ðrst island and other integrated islands,
newborn islands rise far faster. For example, the rising
speed of the integrated island formed at t B 20,000 ist0about 1.3] 10~3 (with km s~1, this speedv0 v0\ 3.2] 103
is about 4 km s~1). On the other hand, the new island born
at t B 29,000 rises in the beginning at a speed oft0
D 3 ] 10~3 (about 10 km s~1) and in the merging stagev0at a speed of D2 ] 10~2 (about 65 km s~1). With thev0shift in island generation, the integrated island as well as the
newborn island gets faster. From other simulation runs with
di†erent resistivity, we have found that the rising speed of
islands also depends on the reconnection rate. With resis-
tivity of 5 ] 10~5, the rising speeds of newborn islands are
more than twice of those in Case 1A (g \ 10~5) and with
g \ 10~3 they are almost 10 times those in Case 1A. The
rising speed of a newborn island in a merging process is

FIG. 4.ÈHeight of O-lines of the magnetic islands in Case 1A as a
function of time. The slope of the curves represents the rising speed of the
magnetic islands.

roughly proportional to g1@2. However, it should be kept in
mind that this result is obtained with a spatially uniform
resistivity. As shown in previous MHD simulations (Choe
& Lee 1996b), the reconnection rate can vary depending on
the size of the di†usion region and the spatial proÐle of
resistivity. Therefore, one should not give too much
meaning to the above numbers but should pay attention to
the relative magnitudes.

The merging of two islands is a natural consequence
because the toroidal currents of both islands are in the(J

z
)

same direction and thus attract each other. In Figure 4, we
should note that the motion of newborn islands comprises
two phases ; the island rises rather slowly, although faster
than the preexisting one, in the Ðrst phase and then much
faster in the second phase. This behavior is similar to the
simulation results on the coalescence instability by Biskamp
& Welter (1980), in which they also identiÐed two phases
during the island coalescence. The Ðrst phase involves
mainly an ideal MHD process leading to Ðeld compression
and current sheet thinning. Dynamics in the second phase is
mostly governed by magnetic reconnection between the
upper island and the underlying Ñux system containing a
newborn island. The rising speed of the newborn island thus
depends on the reconnection rate. As can be noticed in the
motion of the Ðrst island created at t B 11,000 t0 (f

m
B 11),

a single island does not have the second phase with a faster
motion. Although the altitude of the integrated island
becomes higher and higher with time, it has moved only a
few solar radii in a few days in our simulation. This is
because the two-dimensional Cartesian geometry adopted
in our simulation energetically inhibits the island system
from escaping totally from the Sun. In a more realistic
three-dimensional geometry, however, we expect the island
to be accelerated more easily and be expelled farther away
from the solar surface.

To investigate our simulation results in the aspects of the
energy generation and dissipation, we show in Figure 5 the
evolution of (1) the ratio of the total magnetic energy to the
potential Ðeld energy, (2) the energy input throughW

B
/Wpot ;the bottom boundary per unit plasma displacement at

x \ ^1, which is equivalent to the upward Poynting Ñux
through the bottom boundary normalized with the
maximum shearing speed and (3) the maximum magni-V

z0 ;
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FIG. 5.ÈEvolution of (a) magnetic energy in units of the potential Ðeld
energy ; (b) Poynting Ñux through the bottom boundary divided by V

z0 ;
and (c) maximum magnitude of the current density in the current sheet
under the magnetic island for all subcases of Case 1. All the quantities are
plotted as a function of which is the plasma displacement at x \ ^1. Inf

m
,

all three Ðgures, the solid lines represent Case 1A, in which V
z0\ 10~3 v0and g \ 10~5 ; the chain-dotted lines represent Case 1B, in which V

z0\
and g \ 5 ] 10~5 ; and the dashed lines represent Case 1C, in10~3 v0which and g \ 10~5. The dotted lines are for the idealV

z0 \ 5 ] 10~3 v0MHD case (Case 1D), in which and g \ 0. Filled circlesV
z0 \ 10~3 v0denote the initiation of a new reconnection event in the underlying arcade

and the open circles indicate the completion of the island merging.

tude of the z-component of current density, in theo J
z
omax,vertically elongated current layer. The total magnetic

energy is given by

W
B
\
P
V

B2
2

dV . (52)

The upward Poynting Ñux through the bottom boundary is
nothing but the energy input rate into the system by the

boundary Ñows and is calculated by

P
~=

=
S
y
(x, y \ 0)dx \ [

P
~=

=
(¿ Â B) Â B Æ yü dx

\ [
P
~=

=
B
y
B
z
v
z
dx . (53)

Because we have cases with di†erent shearing speeds, the
above quantities are plotted versus the plasma displace-f

m
,

ment in the z-direction at the boundary normal Ðeld
maxima, rather than versus time. It is for the same reason
that we employ as the ordinate of Figure 5b the Poynting
Ñux divided by In Figure 5, results from four simulationV

z0.runs (Cases 1A, 1B, 1C, and 1D in Table 2) with di†erent
values of resistivity and shearing speed are displayed. The
results for Case 1A with g \ 10~5 are shown by solid lines,
those for Case 1B with g \ 5 ] 10~5 are shown by chain-
dotted lines, and those for the ideal MHD case (Case 1D)
are shown by dotted lines.

As shown in Figure 5a, the energy release by reconnec-
tion processes is an increasing function of resistivity. The
time interval between the initiation of a new reconnection,
marked with a Ðlled circle in the Ðgure, and the completion
of island merging, marked with a open circle, is a decreasing
function of resistivity. These facts just imply that the recon-
nection rate in our simulation system is an increasing func-
tion of resistivity. However, the functional dependence of
reconnection rate on resistivity can vary depending on the
spatial proÐle of resistivity as mentioned earlier. In Case 1C
(dashed line), which is nearly equivalent to a case with
g \ 2 ] 10~6, the energy released by magnetic reconnec-
tion is so small that the total magnetic energy is still increas-
ing during Ñaring events. This means that the energy input
by the footpoint motion exceeds the energy dissipation by
reconnection in this particular case. Such a case seems
improbable in the Sun, where the Ñare energy release rate is
much greater than the energy input rate that can be esti-
mated from photospheric observations.

In our simulations, two di†erent types of reconnection
processes are involved. The reconnection of line-tied arcade
Ðeld lines takes place in a vertically elongated current sheet,
creating a magnetic island and transferring magnetic Ñuxes
to the island. The reconnection between the upper magnetic
island and the underlying Ñux system containing a newborn
island takes place in a horizontally elongated current sheet.
This process comprises the reconnection of the upper island
with the line-tied Ðeld and the reconnection between two
islands. The sequence of these reconnection processes is
regarded as constituting an individual Ñaring event. Now
we investigate the relationship between these reconnection
processes and their corresponding meaning in solar Ñares.
The evolution of magnetic energy for Case 1B (chain-dotted
line) in Figure 5a most evidently shows that the magnetic
energy released by the merging of two islands is smaller
than the energy released by the subsequent reconnection of
line-tied Ðeld under the integrated island, although the
former process proceeds much faster than the latter. Thus,
the main phase of a Ñare can be attributed to the reconnec-
tion in a vertically elongated current sheet under the inte-
grated island as in conventional pictures of solar Ñares (e.g.,
Sturrock 1968 ; Kopp & Pneuman 1976 ; Tsuneta 1996).
Figure 5c shows the maximum current density in the verti-
cally elongated current sheet, Because the recon-o J

z
omax.nection electric Ðeld, given by in the currentE

z,Rec \ gJ
z
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sheet, is equal to the poloidal Ñux reconnected per unit time,
the curve indicates how much Ñux is being recon-o J

z
omaxnected in the X-line, which is located near the current

density maximum. As shown in Figure 5c, the maximum
current density increases before the initiation of reconnec-
tion in the underlying arcade caused by the current sheet
thinning, continues to increase during the reconnection pro-
cesses, peaks at the time of island merging completion, and
then slowly decays until a new current sheet is formed in the
underlying arcade. The time interval from the reconnection
trigger in the underlying arcade and to the end of the slow
island rising phase can be interpreted as the preÑare phase.
The Ñux reconnecting rate further increases in the fast
island rising phase and reaches a maximum when merging
of the two islands is completed. This rather short time inter-
val is identiÐed with the impulsive (or Ñash) phase. The
highest Ñux reconnecting rate in this phase is attributed to
the shooting up of the lower island that elongates the line-
tied Ðeld wrapping around both islands to form a very thin
current sheet. After the merging of two islands, reconnec-
tion of line-tied Ðeld continues but slows down with
decreasing This phase is longer than the former twoo J

z
omax.phases and is considered as the main phase of a Ñare. From

Figure 5c, we can obtain the reconnection electric Ðeld
In Case 1A (g \ 10~5), Vm~1 at theE

z,Rec. E
z,Rec B 0.64

time of the second island formation (t B 1.9] 104 whent0)
and Vm~1 at the completiono J

z
omaxB 4.0 J0 E

z,RecB 1.1
of island merging when With this electrico J

z
omaxB 6.7 J0.Ðeld, electrons can be accelerated to an energy of 10 keV in

10 km. Because the classic resistivity in the actual solar
corona is much lower (g D 10~12) than the resistivity values
used in our simulation, one may expect the actual electric
Ðeld to be much smaller in the solar corona although the
resistivity scaling of the electric Ðeld is still being debated
among reconnection theories (e.g., Petschek 1964 ; Priest &
Forbes 1992). However, laboratory experiments of magnetic
reconnection have shown that the measured resistivity
value is always greater than the classic value and this
enhanced resistivity rapidly grows with reduction of col-
lisionality (Ji et al. 1998). The coronal plasma is highly colli-
sionless and we can expect such an anomalous resistivity to
develop in coronal reconnection processes. Therefore, the
generation of hard X-ray producing electrons is possible in
a reconnection model of Ñares such as ours. However, the
supply of a sufficient number of electrons to the acceleration
region remains to be investigated (see e.g., Sturrock 1992)
and is beyond the scope of the present paper.

In Figure 5, it is noticeable that the time interval between
successive Ñaring events is a decreasing function of resis-
tivity or, in other words, of reconnection rate. In Figure 5b,
we can also notice another interesting feature in that the
energy input rate has an exact anticorrelation with the mag-
netic energy. The energy input starts to increase when the
magnetic energy starts to decrease by a new reconnection
event and its maxima coincide with the magnetic energy
minima. Also, the overall energy input rate is higher in cases
with higher resistivity where magnetic reconnection is more
active. Now we address the question of how a magnetic
reconnection process in the corona is related to the energy
input through the solar surface. The upward Poynting
vector is expressed as (eq. [53]) when only aS

y
\ [B

z
v
z
B

yshearing motion is imposed. Since is constantB
y
(x, y \ 0)

in time and so is except for the short initialv
z
(x, y \ 0)/V

z0ramp period, is proportional to the toroidal magneticS
y
/V

z0

Ðeld most of the time. Thus, we have to examine theB
zevolution of to understand the evolution of the PoyntingB

zÑux. When arcade Ðeld lines are reconnected, thus forming
a magnetic island, the toroidal Ñux that was held in the
line-tied arcade before the reconnection is redistributed into
the magnetic island and the reconnected underlying arcade.
The magnetic shear (more exactly the di†erential toroidal
Ñux) is thus reduced in the reconnected line-tied Ðeld. Geo-
metrically, the distance between two conjugate footpoints of
the reconnected line-lied Ðeld line, *Z(t), is reduced com-
pared with the footpoint distance of the Ðeld line before
reconnection because the reconnection process cuts and
joins two Ðeld line segments from di†erent Ðeld lines in the
same Ñux surface. A reduction of the di†erential toroidal
Ñux *Z, however, does not lead to a reduction of the toroi-
dal Ðeld because the Ñux volume is also divided by theB

zreconnection process (see eqs. [5] and [14]) and the Ñux
volume of the reconnected line-tied Ðeld is smaller than
before the reconnection. Therefore, we still do not have
enough information to determine whether the toroidal Ðeld
is increased or decreased by reconnection. In Figure 5b, one
can see that in the ideal MHD case without reconnection,
Case 1D, the energy input rate increases up to Z

m
\ f

m
B 2

and then decreases. Thus, the toroidal magnetic Ðeld alsoB
zÐrst increases with the footpoint displacement up to a

certain maximum and then asymptotically decreases in an
ideal MHD system. The decrease of with increasingB

zshear, which may sound strange, is a natural consequence of
the fact that the total toroidal magnetic energy has an upper
bound (see Aly 1984, 1990 ; Choe & Lee 1996a, for detailed
expositions). The evolution of an arcade under a magnetic
island is, of course, di†erent from that of an arcade without
an island, but we can reasonably assume that the di†eren-
tial Ñux volume of an arcade Ðeld line would be larger in the
ideal MHD case than that of a Ðeld line with the same
footpoint distance *Z lying under a magnetic island
because an arcade is freer to expand without any island
above it. Therefore, we can conclude that a reduction of *Z
leads to an increase of as long as *Z is larger than 4 inB

zour model arcade. Moreover, the arcade under a new mag-
netic island is dynamically pressed by the reconnection out-
Ñows while reconnection is active. Therefore, the toroidal
Ðeld is increased in the reconnected line-tied Ðeld ; conse-
quently, the Poynting Ñux into the system is enhanced. This
feature is also demonstrated in Figure 6, in which the toroi-
dal magnetic Ðelds and the upward components of the(B

z
)

Poynting vector for Case 1A are plotted along a(S
y
)

segment of the bottom boundary (0 ¹ x ¹ 2, y \ 0) for dif-
ferent plasma displacements which increases almost(f

m
),

proportionally to time. Thick lines are drawn for the time
just after the initiation of a new reconnection in the under-
lying arcade. In the plot, it is obvious that the curvesB

z
B
zcomprise a high plateau-like part and the descending tail.

The plateau-like part encompasses the footpoints of the
newly reconnected line-tied Ðeld. The break point between
the two parts of the curve corresponds to the footpoint of
the separatrix that is connected to the new X-line and also
envelops the newborn island. With more and more Ñux
reconnected, the footpoint of the separatrix propagates
outward. As the reconnection rate decreases, the plateau
becomes less prominent. It is also noticed that the tail of the

curves are again divided into two parts when there existB
ztwo magnetic islands. The maximum is located near theS

yfootpoint of the separatrix because the maximum of our V
z
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FIG. 6.ÈToroidal magnetic Ðeld and the upward component of the Poynting vector in Case 1A plotted along the bottom boundary (0¹ x ¹ 2,(B
z
) (S

y
)

y \ 0) for di†erent plasma displacements which is almost proportional to time. Thick lines indicate the initiation of a new reconnection in the(f
m
),

underlying arcade.

proÐle is located at x \ 1 and the footpoints of new
separatrices lie within o x o\ 1. It is also noticed that the
value of the Poynting vector increases and decreases in
accordance with the activity level of the reconnection
process. In conclusion, the more active the magnetic recon-
nection is, the more energy is generated by a shearing
motion and the shorter time is required for accumulation of
enough magnetic energy to induce a new magnetic recon-
nection.

5. ARCADE EVOLUTION UNDER FOOTPOINT

CONVERGENCE : CASES 2 AND 3

5.1. Converging Footpoint Motion Imposed on a Presheared
Arcade : Case 2

Now we deal with another type of shear-increasing foot-
point motion, i.e., a converging footpoint motion. To
increase magnetic shear by a converging motion, we ini-
tially need a Ðnite amount of shear, however small it may
be. In our simulations, a sheared state is Ðrst generated by a
pure shearing motion and then a converging motion is
imposed. In this case, Case 2, we employ a di†erent initial
Ñux distribution at the bottom boundary from that in Case
1 so that the boundary normal Ðeld proÐle is 3 times as
di†use a boundary normal Ðeld proÐle as that in Case 1, i.e.,

in equations (33) and (34). With thisa \ m
m
(t \ 0)\ 3

choice, a proper numerical resolution can be maintained
after footpoint converging. The shearing velocity proÐle is
also correspondingly di†used as given by equation (43). The
maximum shearing speed is set as and isV

z0 \ 10~3 v0located at the boundary normal Ðeld maxima. Including
short ramp periods of initial increase and Ðnal decrease, the
shearing motion persists up to t \ 28,000 at which timet0,and This time is chosen so that nof
m

B 27 f
m

\ f
m
/m

m
B 9.

magnetic reconnection may take place while the shearing
motion is exerted. The converging velocity proÐle is given
by equation (46) with the maximum converging speed

located at With thisV
x0\ 10~3 v0 x \ ^x

L
\ ^18.

boundary velocity proÐle, the boundary Ñux proÐle con-
tracts toward the origin, almost keeping its functional form
unchanged. The boundary normal Ðeld maxima reach

o x o\ 1 at t B 48,800 The three cases reported in thist0.section are di†erentiated by the resistivity value ; g \ 10~5
in Case 2A, g \ 5 ] 10~5 in Case 2B, and g \ 0 in Case 2C
(an ideal MHD case).

In Figure 7, a typical arcade evolution under footpoint
convergence is shown for Case 2A. As already known in
Inhester et al. (1992) and Lee, Choe, & Akasofu (1995),
magnetic reconnection takes place in the footpoint-
converging arcade and a magnetic island is created in our
simulation too. The reconnection is triggered at t B 33,600

with This number is similar to that in Case 1A.t0 f
m

B 12.
Unlike Case 1, however, no second island is formed in the
underlying arcade in Case 2A until our simulation run ends
with the island exit from the computational domain. The
same result is also found in cases with di†erent nonzero
resistivity values. Now we address the question of what
makes such a di†erence between the two types of shear-
increasing motion.

In a quasi-static evolution of magnetic Ðeld, magnetic
reconnection is possible only if the system can evolve into a
lower energy state. In other words, the magnetic energy
must be increased over a certain threshold in order to

FIG. 7.ÈResistive evolution of a magnetic arcade under a converging
footpoint motion for g \ 10~5 (Case 2A). In this case, a shearing footpoint
motion parallel to the polarity inversion line with is ÐrstV

z0\ 10~3 v0imposed for Then, a purely converging footpoint motionf
m

\ f
m
/m

m
\ 9.

given by eq. (46) is applied to the arcade to further increase the relative
plasma displacement.
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trigger magnetic reconnection. We thus look into the ener-
getic evolution of our magnetic arcade to explore the island
formation process. Figure 8 shows (1) the magnetic energy
and (2) the upward Poynting Ñux through the bottom
boundary versus the relative plasma displacement at the
boundary normal Ðeld maxima, Here is proportionalf

m
. f

mto time while a shearing motion is imposed and increases
exponentially with time while a converging motion is going
on (see eqs. [48] and [51]) except in short ramp periods. A
vertical line is drawn in the plot to indicate the time at
which the shearing motion ceases and the converging
motion commences. Three di†erent cases are represented by
di†erent line drawings : Case 2A with g \ 10~5 by solid
lines, Case 2B with g \ 5 ] 10~5 by chain-dotted lines, and
Case 2C with g \ 0 by dotted lines. The magnetic energy
evolution for the ideal MHD case (Case 2C displayed in
dotted lines) is almost identical with that in Case 1D, the
ideal MHD case with a pure shearing motion. This is not
surprising because in quasi-static evolutions without topo-
logical change in the low b limit, the magnetic state at a
certain time is entirely determined by specifying the Ðeld
line footpoint locations. The Poynting Ñux plot for Case 2C
(dotted line in Fig. 8b) looks quite di†erent from that for
Case 1D (dotted line in Fig. 5b), but it is caused by the
di†erent functional dependence upon time of the abscissa in

FIG. 8.È(a) Magnetic energy in units of the potential Ðeld energy and
(b) the Poynting Ñux through the bottom boundary as a function of forf

msubcases of Case 2. In both Ðgures, solid lines represent Case 2A, in which
g \ 10~5, and chain-dotted lines represent Case 2B, in which
g \ 5 ] 10~5. Dotted lines represent the ideal MHD case (Case 2C). In all
three cases, the same boundary velocity proÐle is imposed. The vertical line
indicates the time at which the shearing motion ceases and the converging
motion commences. The initiation of magnetic reconnection is marked
with a Ðlled circle.

each Ðgure. As in Case 1 (pure shearing-motion cases shown
in Fig. 5a), more magnetic energy is released with higher
resistivity. The sudden decrease of magnetic energy after

in Case 2B with g \ 5 ] 10~5 (chain-dotted line)f
m

D 32
results from the exit of the magnetic island out of the com-
putational domain. In Case 1 (pure shearing-motion cases),
the rise and fall of magnetic energy is repeated with repeti-
tion of Ñaring events, whereas in Case 2 (converging-motion
cases), the magnetic energy continues to decrease after the
initiation of magnetic reconnection. This means that the
converging motion does not supply enough energy to com-
pensate the energy dissipated by reconnection. Figure 8b
supports this argument. Contrary to Case 1 (see Fig. 5b), in
which the Poynting Ñux into the system is larger with
higher reconnection rate, the Poynting Ñux in Case 2 is
smaller with higher reconnection rate. Thus, among the
variations in Case 2, the ideal MHD case (Case 2C) pro-
duces the largest energy input rate. It is to be noted that the
exit of the magnetic island makes the Poynting Ñux in Case
2B (g \ 5 ] 10~5) larger than that in Case 2A (g \ 10~5)
after f

m
D 32.

The di†erence in energy input for cases with a shearing
motion and cases with a converging motion can be under-
stood by examining the factors constituting the Poynting
vector. The y-component of the Poynting vector at the
bottom boundary subject to a converging motion is given
by

S
y
(x, y \ 0)\ [B

y
(B Æ ¿) \ [B

y
B
x
v
x

. (54)

From this, we see that only in the boundary partsS
y
[ 0

where Ðeld lines are inclined in such a way that we recede
from the Mx \ 0N-plane when we move along a Ðeld line
from a footpoint upward. If the total poloidal Ñux is Ðnite,
the inner Ðeld lines in the neighborhood of the origin are
inclined inward and the outer Ðeld lines are inclined
outward. Thus, the Poynting vector is downward in the
inner part of the bottom boundary and it is upward in the
outer part. If a shear-increasing footpoint motion, whether
a shearing motion or a converging motion, acts on a mag-
netic arcade without any magnetic island, more and more
Ðeld lines are inclined outward as the relative footpoint
displacement is increased (Choe & Lee 1996b). When mag-
netic reconnection takes place in the arcade to form a mag-
netic island, the footpoint displacement is decreased in the
arcade under the island as discussed in ° 4. Thus, more Ðeld
lines are inclined inward at the bottom boundary in a
system with an island than in the system without an island
that has experienced the same boundary motion. This
implies that the upward Poynting Ñux produced by a con-
verging motion is less in the presence of an island than in
the ideal MHD case without an island. Also, the less
upward Poynting Ñux is generated by a converging motion
as the more magnetic Ñux is given to the magnetic island by
magnetic reconnection, as can be seen in Figure 8b. In Case
2, therefore, the arcade under the island is not supplied with
enough energy to induce another reconnection.

5.2. Shearing and Converging Motions Acting
Simultaneously : Case 3

As seen in the above, shearing motions and converging
motions generate di†erent energy input rates in resistive
evolutions involving magnetic islands. Now we investigate
the evolution of a magnetic arcade subject to shearing and
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converging motions acting simultaneously. In Case 3, we
begin with an initial boundary normal Ðeld proÐle with

in equations (33) and (34) as in Case 2.a \ m
m
(t \ 0)\ 3

The shearing velocity proÐle is given as a function of Ñux
function t by equation (43) and the maximum shearing
speed is chosen to be 10~3 at the boundary normalV

z0 v0Ðeld maxima. The converging velocity proÐle is given by
equation (46) with the maximum converging speed V

x0 \
5 ] 10~4 located at The resistivity isv0 x \ ^x

L
\ ^18.

taken to be g \ 10~5. Both the shearing and converging
footpoint motions are applied from the very beginning of
the simulation.

As shown in Figure 9, creation and merging of magnetic
islands are repeated in this case as in Case 1. The Ðrst
reconnection is triggered at t B 38,700 and a new recon-t0nection event in the arcade under the island takes place
after a time interval of D16,000 One may wonder whyt0.the Ðrst reconnection is initiated at which is muchf

m
B 37,

larger than for reconnection trigger in other cases. Thisf
mcan be understood by referring to the mechanism of recon-

nection trigger in an arcade-like line-tied Ðeld discussed in
Choe & Lee (1996b). In a sheared magnetic arcade, the
toroidal Ðeld is generally strongest near the polarityB

zinversion line and decreases away from it. If resistivity is
present, magnetic di†usion transports the toroidal Ñux
outward and the poloidal Ðeld inward. The speeds of these
transports depend on the spatial gradient of the toroidal
Ðeld and the gradient of the Ñux function, i.e., the poloidal
Ðeld strength. If the distance between adjacent Ðeld lines is
large enough, as in an elongated current layer, the transport

of the toroidal Ñux is inefficient in the Ñux function (t) space
so that toroidal Ñux can be accumulated in a certain region
in the t space. This causes a further elongation of the
current layer by dynamic evolution, which Ðnally leads to
initiation of magnetic reconnection. A footpoint con-
vergence generally shrinks the whole system toward the
origin and facilitates the transport of toroidal Ñux across
Ðeld lines, which is unfavorable to reconnection trigger.
Although both Case 2 and Case 3 involve converging
motions, arcades in Case 2 already have a current layer
before the initiation of the converging motion, but in Case
3, formation of a current layer is hindered by the footpoint
convergence in the early stage of the evolution.

As the footpoints get closer to the origin, the converging
speed is reduced and the shear growth is accelerated. Thus,
less time is required for the trigger of the second arcade
reconnection than the time required for the Ðrst reconnec-
tion trigger. However, the interval in units of betweenf

msuccessive Ñaring events becomes larger with shift of recon-
nection events as shown in Figure 10, in which the height of
O-lines is plotted versus the relative plasma displace-f

m
,

ment at the boundary normal Ðeld maxima. This is because
the energy input by the converging motion is less e†ective in
the presence of a magnetic island as discussed in ° 5.1. In
Figure 10, the slopes of the curves both for integrated
islands and for newborn islands tend to decrease with sub-
sequent island generation, but one should not interpret this
as decrease of the island rising speed. Since the relative
plasma displacement is exponentially increasing with time
because of the converging motion, the rising speed of the

FIG. 9.ÈRepetitive formation and merging of magnetic islands in a magnetic arcade subject to simultaneous shearing and converging footpoint motions
with resistivity g \ 10~5 (Case 3). In this case, the shearing velocity of each Ðeld line footpoint is maintained as given by eq. (43) while the footpoint undergoes
a converging motion. Maximum shearing speed is at the maxima and the converging speed increases linearly with o x o up toV

z0 \ 10~3 v0 B
y

V
x0 \

5 ] 10~4 at x \ ^18. Field lines are drawn with a constant increment in poloidal Ñux value, but, when necessary, extra Ðeld lines are drawn in dashedv0lines in order to show a more detailed Ðeld geometry.
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FIG. 10.ÈHeight of O-lines in the magnetic islands in Case 3 as a
function of the relative plasma displacement at the boundary normalf

m
,

Ðeld maxima. Since increases almost exponentially with time in thisf
mcase, the rising speed of the magnetic islands increases more with shift in

their generation than in Case 1.

subsequently generated islands also increases. The rising
speed of the newborn island in the fast rising phase is about
0.02 in the Ðrst merging event and about 0.05 in thev0 v0second merging event. Readers are again reminded that the
values of the speed can vary depending on the reconnection
rate and the increasing trend is of most signiÐcance.

A direct comparison between results of di†erent cases
cannot be made simply because the arcade system size
varies case by case and also with time. From our Ðndings,
however, we can conclude that in the presence of a converg-
ing motion the individual Ñaring event tends to last longer
and the energy release per event tends to be larger than in
cases in which the magnetic shear is increased solely by a
shearing motion.

6. DISAPPEARANCE OF MAGNETIC ISLANDS BY DECREASE

OF MAGNETIC SHEAR : CASE 4

It is also important to explore the evolution of an arcade
system containing a magnetic island subject to a shear-
decreasing footpoint motion. In this investigation, we Ðrst
impose a shearing motion to a magnetic arcade with the
same setting as employed in Case 1A in order to induce
magnetic reconnection and create a magnetic island. The
shearing motion is brought to an end at t \ 28,000 t0,which is a little while before the initiation of the second
reconnection process in Case 1A. Then, a diverging foot-
point motion is launched, which is given by equation (46)
with and As shown in Figure 11,V

x0\ 10~3 v0 x
L
\ 18.

reconnection of line-tied Ðeld lines wrapping around the
island continues and adds both poloidal and toroidal mag-
netic Ñuxes to the island system for a while after the com-
mencement of the diverging motion although the magnetic
shearÈmore exactly, the toroidal ÑuxÈof the whole system
is decreasing. This reconnection process originates from the
overall expansion of the magnetic Ðeld. As shown in Low
(1981) and Wu et al. (1986), the overall Ðeld conÐguration
tends to scale up when the boundary Ñux distribution is
extended. On the other hand, the Ðeld conÐguration tends
to shrink down with reduction of the relative footpoint dis-

FIG. 11.ÈDestruction of the magnetic island in a magnetic arcade
undergoing a shear-reducing, diverging footpoint motion (Case 4). In this
case, we Ðrst impose a shearing footpoint motion for g \ 10~5 to create a
magnetic island. Then, we turn o† the shearing motion and impose a
diverging footpoint motion with at x \ ^18 to reduce theV

x0 \ 10~3 v0relative plasma displacement. The magnetic island disappears at f
m

D 6.

placement. This tendency is strongest in the inner Ðeld lines
that were vertically extended by magnetic shear. Just after
the launch of the diverging motion, the expansion of the
outer Ðeld lines causes the magnetic island to rise, which
promotes the magnetic reconnection under the island.
However, with a further reduction of the magnetic shear,
the Ðeld lines under and near the magnetic island slowly fall
down and a horizontally extended current layer develops
between the magnetic island and the underlying arcade.
Magnetic reconnection occurring in the current layer grad-
ually dismantles the magnetic island. Finally, the magnetic
island completely disappears, as is shown in Figure 11. The
relative plasma displacement at the time of island disap-
pearance is in the shown case.f

m
D 6

This result reminds us of an assertion by Aly (1990) that
there exists more than one force-free Ðeld conÐguration
with di†erent Ðeld topologies if the footpoint shear of a
magnetic arcade exceeds a certain critical value. These
states are ideal MHD stable and a transition to another
state is made by a Ñux-conserving magnetic reconnection.
Although a proof to this assertion has not yet been given, a
series of numerical experiments by Choe & Lee (1996b)
have provided a supporting evidence for it. This numerical
study has found that whether magnetic reconnection can
occur in an arcade to create a magnetic island does not
depend on the resistivity value as long as it is nonzero but
on the amount of magnetic shear . A critical value of shear is
also identiÐed, below which magnetic reconnection is
impossible regardless of the resistivity value. Of course, the
critical value of shear must depend on the boundary Ñux
distribution and the shear proÐle. Our numerical simula-
tion adopts the same boundary Ñux distribution and shear-



No. 1, 2000 HOMOLOGOUS SOLAR FLARES 465

ing velocity proÐle as were employed by Choe & Lee
(1996b). The value for island disappearance in our studyf

mis slightly less than the critical value(f
m

D 6) (f
m

D 6.5)
found by Choe & Lee (1996b). However, this discrepancy is
very natural because in our experiment, the magnetic shear
in the magnetic island cannot be reduced by footpoint
motions but only through magnetic reconnection with line-
tied Ðelds. Thus, the value of relative plasma displacement
for island dismantlement must be less than the value for the
opposite process of island formation. Our simulation, as
well as the numerical experiment by Choe & Lee (1996b), is
not a perfect proof for AlyÏs assertion because a Ñux-
conserving pointwise reconnection cannot be achieved in
numerical simulations. However, since our numerical
experiment is performed under a more relaxed condition
than is assumed by Aly, our result gives a strong support for
AlyÏs assertion.

7. SUMMARY AND DISCUSSION

This paper has investigated the evolution of magnetic
arcades under various shear-increasing and shear-reducing
footpoint motions, focusing on dynamical interaction
between magnetic islands and between a magnetic island
and an ambient arcade. This study is particularly concerned
with repeated Ñaring events in solar active regions, i.e.,
homologous Ñares. However, many physical processes
revealed in our study are believed to be involved in general
solar Ñares. Principal Ðndings in our study are summarized
as follows.

1. When a magnetic arcade is subject to a continuing
shear-increasing footpoint motion, generation of magnetic
islands via magnetic reconnection and their coalescence can
repeatedly take place with some time interval. The series of
these reconnection processes is regarded to constitute a
sequence of homologous Ñares.

2. The rising of a newborn island comprises a slower Ðrst
phase and a faster second phase. The Ðrst phase involves
arcade Ðeld reconnection creating and adding Ñux to the
new island and is identiÐed with the preÑare phase.
Coalescence of two magnetic islands takes place within a
short time span in the second phase, which is identiÐed with
the impulsive (or Ñash) phase of a Ñare. The island merging
process creates a long and thin current sheet below and
facilitates reconnection of the line-tied Ðeld. The obtained
reconnection electric Ðeld is large enough to accelerate elec-
trons to an energy level higher than 10 keV required for
observed X-ray emissions. The arcade Ðeld reconnection
under the integrated island persists for quite a long time
after the island merging, although the reconnection electric
Ðeld gradually decays. This phase, in which more energy is
released in total than in the earlier two phases, is identiÐed
with the main phase of a Ñare.

3. The time interval between successive Ñaring events is
shorter when the energy input rate into the system is higher.
In the case that a pure shearing motion is imposed, more
Poynting Ñux into the system is generated when reconnec-
tion of line-tied Ðeld is more active. Thus, the time interval
between Ñaring events is in negative correlation with the
magnetic reconnection rate.

4. The energy input rate into the system depends on the
type and pattern of the footpoint motion. Generally, a
shearing motion produces more Poynting Ñux into the
system than a converging motion when magnetic reconnec-

tion takes place in the presence of a magnetic island. Thus,
individual Ñaring events have a longer duration and poss-
ibly release more energy when a converging motion contrib-
utes more to the shear-increasing process.

5. When magnetic shear is decreased in a magnetic
arcade containing a magnetic island, reconnection of the
island Ðeld and the underlying line-tied Ðeld dismantles the
magnetic island. This supports the idea that there is a criti-
cal amount of shear for existence of a magnetic island in an
arcade-like Ðeld geometry.

It should be mentioned that the role of the upper mag-
netic island in our Ñare model can be performed by any
magnetic Ñux system lying above the underlying arcade.
The upper Ñux system may be connected to the interplan-
etary magnetic Ðeld or to distant magnetic poles on the
solar surface. Thus, our Ñare model can explain the Yohkoh
observation by Ohyama & Shibata (1998) that the plasmoid
motion comprises a slower Ðrst phase (D250 km s~1) and a
faster second phase (D500 km s~1). Such a distinct two-step
acceleration could hardly be interpreted tailored to the con-
ventional picture of plasmoid formation, such as that of

& Linker (1994), Choe & Lee (1996b), and Amari etMikic�
al. (1996a), although these studies also involve an increase of
plasmoid speed to a certain extent (cf. Magara, Shibata, &
Yokoyama 1997). Our numerical result indicates that the
faster, second acceleration phase can be achieved naturally
if the closed Ðeld lines above the plasmoid are reconnected
with the further overlying Ñux. As discussed in ° 4, most
Ñare energy in our simulation is released by the reconnec-
tion of line-tied Ðeld in a vertically elongated current sheet,
although the island coalescence is a more rapid process.
Thus, our simulation results do not support the Ñux tube
merging model of Ñares by Gold & Hoyle (1960). However,
the rapid rising of the magnetic island in a merging process
plays a signiÐcant role in the fast reconnection in the impul-
sive (or Ñash) phase by stretching the arcade Ðeld lines so
much as to form a thin and long current sheet. This is
consistent with the plasmoid-induced reconnection model
of solar Ñares proposed by Shibata (1998). Our model,
however, provides a plasmoid acceleration mechanism that
was not given in ShibataÏs model.

In this paper, we have considered only situations in which
magnetic energy is supplied into the coronal magnetic Ðeld
between the Ñaring events to recover the free energy re-
leased by the preceding Ñaring event. However, Moon et al.
(2000) recently reported an observation that no indication
of energy input, whether Ñux emergence or increase of mag-
netic shear, was detected throughout a series of Ñares. This
may be attributed to the complex Ðeld geometry of the
observed active region. In a complex active region contain-
ing more than a pair of magnetic poles, the transition to the
lowest energy state may comprise several steps of macro-
scopic change in Ðeld topology. Thus, more observational
studies are required to answer the question of whether
homologous Ñares are a repetitive process of energy input
and release or a sequence of transitions toward the lowest
energy state via several metastable states.

The rising of a magnetic island is a consequence of mag-
netic reconnection. However, one should not confuse the
rising speed of the island with the reconnection outÑow
speed, which is the speed upstream of the currentAlfve� n
sheet. Generally, the island moves much slower than the
reconnection outÑow. This is because the line-tied arcade



466 CHOE & CHENG Vol. 541

Ðeld surrounding the island hinders the island from moving
freely. The force causing the magnetic island movement is
determined by the magnetic Ðeld enveloping the island
(Choe & Lee 1996b) and the island motion is a part of the
global process approaching a new equilibrium. The
dynamics of magnetic islands can be qualitatively under-
stood by considering the currents in the system. The attrac-
tion of two islands before and during coalescence is quite
natural because they have axial electric currents of the same
direction. The rising of a single island, whether a newborn
or an integrated one, can be understood with the concept of
an imaginary current lying below the solar surface (Van
Tend & Kuperus 1978). The magnetic Ðeld generated by
coronal currents cannot permeate the photosphere because
of the high conductivity and large inertia in the solar inte-
rior. The Ðxed Ñux boundary condition in our simulation is
actually the implementation of this high inductance condi-
tion in the photosphere. In this situation, the Lorentz force
acting on a current carrying plasma can also be described as
the force exerting on the coronal current by the image
current of the opposite direction and the source current of
the same direction generating the ambient potential Ðeld,
both of which are located below the solar surface (Van Tend
& Kuperus 1978 ; Priest & Forbes 1990 ; Forbes 1990). For
the island rising motion to persist, the axial current Ñowing
through the magnetic island must be increased. The
increase of the axial current in the island can be ascribed to
the increase of the magnetic helicity of the island. In our
numerical study, helicity is assumed to be generated by
footpoint motions. However, helicity can be injected
directly into the corona by emergence of a presheared Ðeld.
Another possibility is that thin Ñux tubes emerge untwisted
and not parallel to each other, i.e., having mutual helicities,
and reconnect with each other to form a Ñux rope that has a
sizable self-helicity (Song & Lysak 1989 ; Chae 1999). These
possibilities should be considered in future studies. With
our results, however, we can at least assert that if homolo-
gous Ñares take place with a time interval far shorter than a
day and no measurable shearing motion is observed in the
photosphere, we have to consider helicity injection by
emerging Ñux or self-helicity generation by reconnection of
small-scale Ñux tubes.

Although the magnetic island can move away from the
Sun as its current increases, it cannot go indeÐnitely far
away unless the overlying arcade Ðeld lines open up. This is
an important problem in relation to CMEs. Opening of the
entire magnetic Ðeld is proved to be impossible (Aly 1991 ;
Sturrock 1991), but the possibility of partial opening of the
magnetic Ðeld has long been speculated (Low 1986 ;
Wolfson & Low 1992) and some numerical studies have
produced supportive results in zero b plasmas &(Mikic�
Linker 1994 ; Roumeliotis, Sturrock, & Antiochos 1994 ;
Amari et al. 1996b). However, numerical computations in a
Ðnite domain, however large it may be, cannot tell whether
the Ðeld opening is really a discontinuous process, i.e., a
global singular nonequilibrium, or an asymptotic process.
Aly (1995) discussed this problem thoroughly but did not

give a deÐnite answer. Furthermore, no numerical studies
have shown any tendency of Ðeld opening in a Ðnite b
plasma (e.g., & Linker 1994). How, then, can a plas-Mikic�
moid Ðnd its way out of the SunÏs magnetic barrier? In our
simulation, we remark that the line-tied Ðeld surrounding
the newborn island Ðrst reconnects with the Ðeld in the
upper island before the merging of these two islands. Gener-
ally, coronal arcades are wrapped by open Ðeld lines which
are believed to form a helmet streamer current sheet above
the closed Ðeld structures. If this current sheet is an
extended X-line and thus some wedgelike magnetic Ðelds
exist above this X-line, we can expect a rapid reconnection
of the line-tied Ðeld below the X-line with the Ðeld above the
X-line when a highly twisted helical magnetic structure is
formed below. By this reconnection process, the Ðeld lines
previously tied to the solar surface become open Ðeld lines.
Then, the helical structure can freely move up either to
reconnect with the remaining Ñux, if any, above the X-line
or to navigate through the current sheet between the open
Ðeld lines if no Ñux remains above the X-line. This scenario
will be investigated in future studies. For the present, we
expect that the result will be similar to what was found in
the study on formation and acceleration of plasmoids in the
earthÏs magnetotail by Otto, Schindler, & Birn (1990). In
their study, a plasmoid formed within an arcade-like tail
escapes the siege of surrounding Ðeld lines owing to recon-
nection of these Ðeld lines with the Ðeld lines in the farther
tail beyond the X-line. However, it needs to be conÐrmed by
observation whether or not the helmet streamer current
sheet really has an X-lineÈlike structure and whether or not
there exists magnetic Ñux above it.

This scenario also can be applied to a more probable case
in which Ðeld lines surrounding the arcade are not open but
connected to magnetic poles located further outside. In this
case, an X-line exists above the arcade and an overlying
arcade are present beyond the X-line. This type of Ðeld
geometry was proposed in the solar eruption model of Anti-
ochos, Devore, & Klimchuk (1999), but they considered
only the magnetic shear of closed Ðelds in the underlying
arcade. If a magnetic island (or a helical Ðeld loosely tied to
the surface in three dimensions) is created in the underlying
arcade, the rising of the island can induce reconnection of
the underlying arcade Ðeld and the overlying arcade Ðeld.
Then the Ðeld lines surrounding the magnetic island will be
connected to magnetic poles far outside. To the magnetic
island, this reconnection provides the same e†ect as Ðeld
line opening in the sense that the closed magnetic barrier is
removed. This possibility will also be investigated in future
studies.
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