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ABSTRACT

In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed
configuration bulges out and eventually opens up. However, a spontaneous transition between these field con-
figurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock
theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal
field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state,
which may not be taken for granted. In this study, we have constructed force-free fields containing tangential
discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint
motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found
to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are
compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also
discussed.

Subject headings: magnetic fields — MHD — Sun: coronal mass ejections (CMES)

1. INTRODUCTION Even if B+ exists, there is a possibility th&B+] <E, (J. J.
Aly 2002, private communication). In other words, no admis-

, X . sible FFF configuration may exist for the energy supremum
of a cavity and the formation of a CME loop, and it proceeds E.. The argumentri § 4 of Sturrock {991) does not consider

to an opening up of field lines, which reconnect in a flare and g,y 5 possibility. In short, no rigorous proof for Aly’s con-
eventually recover closed configurations as before the eruption;o 1 ,,re has been presented yet.

(e.g., Hgndhausen 1988, 1999.; Gosling 1993a, 1993b). Thes Aly’s conjecture has been supported by quite a few numerical
sequential processes are considered to occurspontaneously b?Yang Sturrock. & Antiochos 1986: Miki& Linker 1994
cause the timescale of a CME (hours to a day) is much shorterg,meliotis, Sturrock, & Antiochos 1994: Amari et al. 1996)

than the timescale of energy buildup (days to a month). The g analytical (Lynden-Bell & Boily 1994; Aly 1994a; Wolfson

free energy driving a CME is believed to be stored in the pre- 1 9g5) siiidies of twisted or sheared magnetic fields. All these
eruption magnetic field, most of which has a closed configu- gy,gjes dealt with only those force-free states that are physically
ration. Here the term “closed” means that both ends of field 5:cessible under the ideal MHD conditions from potential fields

lines are connected to the solar surface. A spontaneous trangy tq4toint motions always conserving the boundary normal
sition from a closed magnetic configuration to an open-field fig|q gistribution. In this Letter, we investigate FFFs numeri-

config_uratipn requires that more magne“‘? energy ShOUI_d becally constructed in multiple flux systems. The FFFs in our

contained in the closed magnetic field than in the open field. g4y giffer from the FFFs in the previous studies in that our
The investigation of this energy hypothesis dates back to the pppg contain singular current sheets (tangential discontinuities)

early days of flare research (Barnes & Sturrock 1972). Due 10 44 i that our FFFs cannot be generated from a potential field

the dominance of magnetic field pressure over plasma pressurg g _conserving footpoint motions. We find that some of our

in the corona, the research has been_mostly concgntra.ted OFFs have more energy than the corresponding open fields. In
force-free fields (FFFs). Ground-breaking progress in th'$ e g 2, we describe our FFF model and the numerical procedure.
search was made by Aly (1984), who showed that there is ang,r computational results for field configurations and magnetic
upper bqund of magnetic energy of FFFs in an |n.f|n|Fe h.alf- energy are presented in § 3. In § 4, a comparison is made
space with the same boundary normal fie] ( ) distribution. hepveen our results and observational features of eruptive ac-

Aly (1984) further conjectured that the maximum energy of e regions. A summarv and discussions reaarding possible
the closed FFFs should be the corresponding open-field energyrlr:/echailisms. of CUMES a¥e proviclieduinl§ 5 garding possi

This conjecture was backed up by “physical proofs” provided
by Aly (1991) and Sturrock (1991) and, since then, has been
commonly called the “Aly-Sturrock theorem.”

As Aly (1991) pointed out, the proofs by Aly (1991) and Our study of multiple flux systems is motivated by the fact
Sturrock (1991) are not complete because their validity is con- that magnetic fields in and below the solar photosphere are
ditioned by two important assumptions. First, in the set of made of filamentary flux tubes. After a magnetic field emerges
admissible FFFs, whose lines are connected to the bottomfrom below the solar surface, the higkplasma barrier between
boundary and unknotted, an energy-maximizing sequence ofelementary flux tubes will be drained, and only current sheets
FFFs should be able to converge to a fiBl¢t, which may or will separate individual flux tubes. Unless magnetic reconnec-
may not belong to the set. Second, if the sequence convergegjon totally destroys the current sheets, the magnetic field will
it should hold thatE[B+] = E,, , wher&[B+] designates the probably retain the cellular structure. The simplest model of
magnetic energy oB+ andE,, is the least upper bound of such a cellular magnetic structure is two interwinding flux
energy of the FFFs. Although these two conditions intuitively tubes. The formation of interwinding flux tubes of a much
seem trivial, their validity cannot be taken for granted at all. larger scale is expected when a new flux tube emerges under
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A typical coronal mass ejection (CME) starts with the rising

2. MODELING OF FORCE-FREE FIELDS IN TWO-FLUX SYSTEMS
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a preexisting field. Since there is no reason for these two flux
systems to have any connectivity, the magnetic field is dis-
continuous in the interface of two flux systems. Large-scale
photospheric motions can interwind these flux tubes.

We consider a magnetic field system occupying the infinite
half-space{z> 0} above a plane. The magnetic field normal gl

(a) ®=0 (b) ®=27

. = : R o
to the boundary planfz = 0} is concentrated on four separate e R
circular patches of a finite area so that X X
Fic. 1.—Possible configurations of a two-flux system (not in equilibrium).
B.(x,y) = B,(x,y,0) = 2 B, (o), Q) The configuration ind) has the same field connectivity as the potential field.
i

The configuration inlf) can be created by rotational boundary motions under
the ideal MHD conditions.

where
(e.g., Stern 1970) as

+[1- (0/RT* if p <R,
0

B,() = SR &) B = 2 F(ey, §)(Vey x V5, (5)

in which p; = [r —r| is the distance from the center position where index denotes the flux system or b. EitherF, orF,
of thei-indexed patchy, , to a poimt inthe= 0 plane and is allowed to have a nonzero value at any locatiany, )
R is the radius of the patches. We assume thatxfos O , The Euler potential description has the advantage of inducing
B, >0, and that forx <0 ,B, <0 . Let us consider two flux far less spurious magnetic reconnection than employing the
tubes designated bg and b, whose intersections with the three components of a magnetic fid8d or a vector potential
z = 0 plane are circular patches of radiBs= 0.7  centered at A. To specify the location of field line footpoints easily, we
select a functional form of Euler potentials as= «(x3)
. = (+1.7,0,0), r.. = (+3.3,0,0). 3) B = B(Y,), wherex, andy, are the coordinates of field line
footpoints atz = 0 when the angle of twidt is zero. With
One possible configuration of the two-flux system (not in equi- this setting, we have
librium) satisfying the above boundary conditions is shown in
Figure Ja. The potential field satisfying the boundary condition B(xy.0) = S Fla.p do; dB; ©)
given by equations (1)—(3) will have the field line connectivity T 7T dx dy,
as follows:
With the field description given by equation (5), the magnetic
Xor = Xoor Yor = Yooo (4) induction equation (Faraday’'s law) can simply be written as

where(X,., ¥o.) andX,_,Y,.) are coordinates of two conjugate da v B v -
field line footpoints, one ix>0 and the othersxx 0 . Now ot T VY T v B, @)

we impose horizontal boundary motions, respectively, on each

side of the polarity inversion line so that each pair of flux \herey is the bulk velocity of plasma. To construct force-free
patches undergoes a rotational motion with a constant angmarequilibria, we have employed a magnetofrictional method (e.g.,
velocity centered atc. = (L. +1,.)/2 = (¥2.5,0,0) . Be-  cpodura & Schiter 1981: Choe & Lee 1996), which drives
yond a dlstance_ wholly covering each pair of flux patches, the o system to the minimum energy state by continuously re-
angular speed is assumed to be gradually tapered down to Qnqying kinetic energy with the field connectivity conserved.
with the increasing distance. Under ideal MHD conditions, tWo |, this method. we also employ equation (7), in whiés now

flux tubes are interwound by this rotational boundary motion, 5 ejaxation parameter and is a vector proportional to the
conserving the field line connectivity. The angle of twist (or | grentz force.

interw_indin_g) between two flux tubes, which will be denotgd In specifying boundary conditions, we have to consider two
by &, is twice the rotation angle on each side of the polarity oints. First, different from time-dependent problems (e.g.,
inversion line. Figure i sh_ows one possmle configuration of  piki¢ & Linker 1994; Amari et al. 1996), an equilibrium prob-
the two-flux system (not in equilibrium) fob = 2z . If we |6 s well defined only ifB, is specified at all boundaries
relax the two-flux system to a force-free equilibrium after in- (Chodura & Schilter 1981). Second, the stress exerted by the
terwinding by any nonzero angi®, part of the separatrix be- 5 ndary should be minimized in order to simulate an open
tween two flux systems will become a current sheet (tangennalsystem_ Thus, we speci§, as given by equations (1)—(3) at
discontinuity). The field connectivity of an FFF with # 0 the bottom boundary and sBt  to zero at all other boundaries.

is definitely different from that of the potential field for the g houndary condition naturally allows field movement tan-
sameB, (X, y) and_ cannot be c_reated from the potentlal field by gential to the boundary whe®, = 0  during the relaxation
any footpoint motions conservi}(x,y) under the ideal MHD process.

conditions.

In this study, we have numerically constructed FFFs for
different twist angles. Since our FFFs contain current sheets,
it is important to prevent any spurious magnetic reconnection We have constructed a total of seven FFFs Wit 0 0.5
and maintain the specified field connectivity. To do this, we =, 1.5, 27, 2.5r, and 3r. Two flux surfaces containing a quarter
describe the magnetic field with “unmatched Euler potentials” of the total flux in each flux tube are shown in Figure 2 for

3. CONSTRUCTED FORCE-FREE FIELDS AND THEIR ENERGY
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interwinding flux systems. Each flux surface contains 25% of the total flux in

g

Fic. 2.—Flux surfaces of the numerically generated FFFs consisting of two 8 -
w

each flux system. "

® = 1.5rand 3r. Itis interesting that the flux system occupying
a finite flux volume atd = 0 (the red one in Figs. 1 and 2) 0751
always takes a finite volume after interwinding, whereas the other
system (the green one) always takes an infinite volume (the rest
volume). The notable pleated structure of the flux surfaces can _ . . ‘ . .
be attributed to the self-twist of the flux tubes generated by the 0 05 ! 15 2 25 3
rotational footpoint motion. o/r

The magnetic energy of the FFFs that we have constructed Fic. 3.—Energy of the numerically generated FFFs for different twist angles.
increases with the twist angle, as shown in Figure 3. The en-The energies of the potential fieldtaghed curve) and of the open fieldsglid
ergies of the potential fields and of the open fields can be SU'Vé) are also shown as a function of the twist angle.
obtained with a Green function method familiar in electrostatics
and are plotted in the figure for reference. An upper bound (nottions from the tensor virial theorem:
the least upper bound) of energy of FFFs derived by Aly (1984),

1 1/2 12
Eue = o (J B2 dx dy) (f r B2 dx dy) ,
™ z=0 z=0

is 10.7E,,(® = 0) = 8.6%,,.(® = 0), far greater than the
energies we have obtained. In the figure, we can find that the
magnetic energy of FFFs exceeds the open-field energy for
&= 1.5m. X (xB, + yB,)B, dx dy. 9
Although we deal with systems in an infinite half-space, our e
computation is performed in a finite computational box. Thus,
we need to make sure that the uncertainty in energy does no
affect our conclusion. To do this, we first compared the energies
of FFFs that we obtained in domains of different sizes. The
energies obtained in a box of the siz@0 x 160 x 160  (refer

J(Ber B?)dxdy = fodxdy. (8)

1 1
E(z>0)=§ (B2 + B+ BZ2)dxdydz=E
z0

{for our FFF solutions, the discrepancy between the left-hand
side and the right-hand side of the above equations is found
to be less than 3% for equation (8) and of less than 9% for
equation (9), respectively. For not too large twist angles, the
. . . . discrepancies are even smaller than the above values. There-
to eq. [3] for units) differ from those obtaTed in a box Of the fore, V\?e conclude that some of the FFFs we have constructed
size300 x 300 x 300 by _not more than 5%. The Ia}tter differ indeed have more energy than the open field.

from the energies obtained in a box of the si#80 x  \what, then, makes our results on multiple flux systems dif-
400 x 400 by not more than 1.4%. The values presented in ferent from the results of previous studies on single flux systems
Figure 3 are obtained with the largest box. The energy of a (yang et al. 1986; Mikic& Linker 1994; Roumeliotis et al.
magnetic field whose whole flux is confined in a box of a finite 1994: Amari et al. 1996; Lynden-Bell & Boily 1994; Aly
volumelL® will approximately vary ag, ~E,. + C/L , ds— 1994a; Wolfson 1995)? The single flux systems treated in most
o, because field strength roughly variegas  far enough awayprevious studies have smooth, well-ordered field structures.
from the boundary normal flux concentrations. The energy dif- Their field lines tend to partially open beyond a certain shear
ferences given above thus tell that the error due to the finite or twist so that further accumulation of magnetic energy in the
box size would not exceed 5%. The energy of the constructedsystem is hindered. On the contrary, we do not find any ten-
FFF for® = 3r is about 30% more than the open-field energy. dency of field opening in our interwinding two-flux system,
This difference is considered to be well above the error level although the system takes a larger flux volume with increasing
because of the finite size of the domain. Another way of as- ®. By interwinding, each flux system seems to suppress free
sessing the effect of the finite box size is to check integral expansion of the other. This shackling behavior of twisted fields
relations that should be satisfied by FFFs in an infinite half- is also reported by Klimchuk, Antiochos, & Norton (2000) for
space above a plane. Aly (1984) derived the following equa- a single flux system in a smooth equilibrium.
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4. RELEVANCE TO OBSERVATIONS

(a) vectormagnetogram (b) Flux Surface
The most well-known observational condition for solar erup- T u
tion detected in the photosphere and chromosphere is the high :
magnetic shear (e.g., Krall et al. 1982). In addition, polarity s B T o
inversion lines also show a tendency of distortion during the R - WERE.
evolution of active regions toward eruption (e.g., Uddin, Pande, > °

& Shelke 1986). Recent X-ray observations have revealed the

appearance of a- or inverseS—shaped bundle of coronal SESSEREEE s 3l -20/
loops before solar eruption (Acton et al. 1992; Canfield, Hud- :
son, & McKenzie 1999). This structure is called a sigmoid -5, i ! W,
(Rust & Kumar 1996). X X
To compare our FFF model with these observations, we have

. Fic. 4—(@) Vector magnetogram generated from our FFF solution for
generated vector magnetograms at a height level ©f0.22 ® = 2.57 at the heightz = 0.22 . If) Projected image of the flux surface

with our FFF solutions. Also, images projected onto the bottom containing 95% of the total flux of the inner flux tube (the red one in Figs. 1
boundary are created for a flux surface containing 95% of the and 2).

total flux of the inner flux tube. Figure 4 shows one set (for
$ = 2.57) of those plots. As much expected, the magnetic
shear increases along the polarity inversion line with the twist
angle. Moreover, the polarity inversion line becomes more and
more tilted and distorted from the original straight line with
the increase of the twist angle. The projected image of a flux
surface takes an inver&-shape and becomes more twisted
and larger in size with increasiriy We note that the outermost
flux surface of the inner flux tube, which is the separatrix

between the two flux systems, also takes a shape similar to th&,, equilibrium of closed configuration is available in a field
flux surface shown in the figure, but with a little larger scale.

gy X I . - topology created during a reconnection process and if the field
If the emission from a sigmoid is due to the heating by magnetic g\ retains more energy than the open field, an eruption with

reconnection in the pre-eruption stage, the resulting change ine|q gpening can take place. If closed equilibrium states are
field topology may play an important role in the subsequent 54 available in field topologies generated by a reconnection
solar eruption. process and if flux volumes become much larger in the new
equilibrium states, CMEs with apparent field opening to a finite

5. SUMMARY AND DISCUSSION distance can occur. If flux volumes in the new equilibrium states

We have found that there is a class of FFFs of closed-field areé not considerably larger than the original flux volume, a
configuration having more energy than the open fields. The flare may take place without a CME. Investigation of these
FFFs considered in our study consist of two interwinding flux Possibilities will be performed in our future studies.
systems with current sheets.

Although we have constructed closed FFFs having more We greatly thank J. J. Aly and A. A. van Ballegooijen for
energy than the open fields, we still do not know whether they helpful comments and discussions. This work has been sup-
can lead to a CME eruption and what kind of mechanism is ported by DoE contract DE-AC02-76-CH03073 and NSF grant
involved if eruption can take place. For future studies, we can ATM-9906142.

think of several possibilities leading to eruption. The eruption
up to field opening may be solely an ideal MHD process or
may somehow involve magnetic reconnection. In the former
case, a global nonequilibrium (see Aly 1994b for the definition)
may take place beyond a certain amount of twist. So far, how-
ever, our study does not hint at this possibility. If magnetic
reconnection is involved, a variety of possibilities can arise.
Magnetic reconnection results in a change of field topology. If
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