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ABSTRACT

In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed
configuration bulges out and eventually opens up. However, a spontaneous transition between these field con-
figurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock
theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal
field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state,
which may not be taken for granted. In this study, we have constructed force-free fields containing tangential
discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint
motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found
to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are
compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also
discussed.

Subject headings: magnetic fields — MHD — Sun: coronal mass ejections (CMEs)

1. INTRODUCTION

A typical coronal mass ejection (CME) starts with the rising
of a cavity and the formation of a CME loop, and it proceeds
to an opening up of field lines, which reconnect in a flare and
eventually recover closed configurations as before the eruption
(e.g., Hundhausen 1988, 1999; Gosling 1993a, 1993b). These
sequential processes are considered to occur spontaneously be-
cause the timescale of a CME (hours to a day) is much shorter
than the timescale of energy buildup (days to a month). The
free energy driving a CME is believed to be stored in the pre-
eruption magnetic field, most of which has a closed configu-
ration. Here the term “closed” means that both ends of field
lines are connected to the solar surface. A spontaneous tran-
sition from a closed magnetic configuration to an open-field
configuration requires that more magnetic energy should be
contained in the closed magnetic field than in the open field.

The investigation of this energy hypothesis dates back to the
early days of flare research (Barnes & Sturrock 1972). Due to
the dominance of magnetic field pressure over plasma pressure
in the corona, the research has been mostly concentrated on
force-free fields (FFFs). Ground-breaking progress in this re-
search was made by Aly (1984), who showed that there is an
upper bound of magnetic energy of FFFs in an infinite half-
space with the same boundary normal field ( ) distribution.Bn

Aly (1984) further conjectured that the maximum energy of
the closed FFFs should be the corresponding open-field energy.
This conjecture was backed up by “physical proofs” provided
by Aly (1991) and Sturrock (1991) and, since then, has been
commonly called the “Aly-Sturrock theorem.”

As Aly (1991) pointed out, the proofs by Aly (1991) and
Sturrock (1991) are not complete because their validity is con-
ditioned by two important assumptions. First, in the set of
admissible FFFs, whose lines are connected to the bottom
boundary and unknotted, an energy-maximizing sequence of
FFFs should be able to converge to a fieldB�, which may or
may not belong to the set. Second, if the sequence converges,
it should hold that , where designates theE[B�] p E E[B�]m

magnetic energy ofB� and is the least upper bound ofEm

energy of the FFFs. Although these two conditions intuitively
seem trivial, their validity cannot be taken for granted at all.

Even if B� exists, there is a possibility that (J. J.E[B�] ! Em

Aly 2002, private communication). In other words, no admis-
sible FFF configuration may exist for the energy supremum

. The argument in § 4 of Sturrock (1991) does not considerEm

such a possibility. In short, no rigorous proof for Aly’s con-
jecture has been presented yet.

Aly’s conjecture has been supported by quite a few numerical
(Yang, Sturrock, & Antiochos 1986; Mikic´ & Linker 1994;
Roumeliotis, Sturrock, & Antiochos 1994; Amari et al. 1996)
and analytical (Lynden-Bell & Boily 1994; Aly 1994a; Wolfson
1995) studies of twisted or sheared magnetic fields. All these
studies dealt with only those force-free states that are physically
accessible under the ideal MHD conditions from potential fields
by footpoint motions always conserving the boundary normal
field distribution. In this Letter, we investigate FFFs numeri-
cally constructed in multiple flux systems. The FFFs in our
study differ from the FFFs in the previous studies in that our
FFFs contain singular current sheets (tangential discontinuities)
and in that our FFFs cannot be generated from a potential field
by -conserving footpoint motions. We find that some of ourBn

FFFs have more energy than the corresponding open fields. In
§ 2, we describe our FFF model and the numerical procedure.
Our computational results for field configurations and magnetic
energy are presented in § 3. In § 4, a comparison is made
between our results and observational features of eruptive ac-
tive regions. A summary and discussions regarding possible
mechanisms of CMEs are provided in § 5.

2. MODELING OF FORCE-FREE FIELDS IN TWO-FLUX SYSTEMS

Our study of multiple flux systems is motivated by the fact
that magnetic fields in and below the solar photosphere are
made of filamentary flux tubes. After a magnetic field emerges
from below the solar surface, the highb-plasma barrier between
elementary flux tubes will be drained, and only current sheets
will separate individual flux tubes. Unless magnetic reconnec-
tion totally destroys the current sheets, the magnetic field will
probably retain the cellular structure. The simplest model of
such a cellular magnetic structure is two interwinding flux
tubes. The formation of interwinding flux tubes of a much
larger scale is expected when a new flux tube emerges under
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Fig. 1.—Possible configurations of a two-flux system (not in equilibrium).
The configuration in (a) has the same field connectivity as the potential field.
The configuration in (b) can be created by rotational boundary motions under
the ideal MHD conditions.

a preexisting field. Since there is no reason for these two flux
systems to have any connectivity, the magnetic field is dis-
continuous in the interface of two flux systems. Large-scale
photospheric motions can interwind these flux tubes.

We consider a magnetic field system occupying the infinite
half-space above a plane. The magnetic field normal{z 1 0}
to the boundary plane is concentrated on four separate{z p 0}
circular patches of a finite area so that

B (x, y) p B (x, y, 0) p B (r ), (1)�n z zi i
i

where

22� 1 � (r /R) if r ≤ R,[ ]i iB (r ) p (2)zi i {0 if r 1 R,i

in which is the distance from the center positionr p Fr � rFi i

of the i-indexed patch, , to a point in the plane andr r z p 0i

R is the radius of the patches. We assume that for ,x 1 0i

, and that for , . Let us consider two fluxB 1 0 x ! 0 B ! 0zi i zi

tubes designated bya and b, whose intersections with the
plane are circular patches of radius centered atz p 0 R p 0.7

r p (�1.7, 0, 0), r p (�3.3, 0, 0). (3)a� b�

One possible configuration of the two-flux system (not in equi-
librium) satisfying the above boundary conditions is shown in
Figure 1a. The potential field satisfying the boundary condition
given by equations (1)–(3) will have the field line connectivity
as follows:

x p �x , y p y , (4)0� 0� 0� 0�

where and are coordinates of two conjugate(x , y ) (x , y )0� 0� 0� 0�

field line footpoints, one in and the other in . Nowx 1 0 x ! 0
we impose horizontal boundary motions, respectively, on each
side of the polarity inversion line so that each pair of flux
patches undergoes a rotational motion with a constant angular
velocity centered at . Be-r p (r � r )/2 p (�2.5, 0, 0)C� a� b�

yond a distance wholly covering each pair of flux patches, the
angular speed is assumed to be gradually tapered down to 0
with the increasing distance. Under ideal MHD conditions, two
flux tubes are interwound by this rotational boundary motion,
conserving the field line connectivity. The angle of twist (or
interwinding) between two flux tubes, which will be denoted
by F, is twice the rotation angle on each side of the polarity
inversion line. Figure 1b shows one possible configuration of
the two-flux system (not in equilibrium) for . If weF p 2p
relax the two-flux system to a force-free equilibrium after in-
terwinding by any nonzero angleF, part of the separatrix be-
tween two flux systems will become a current sheet (tangential
discontinuity). The field connectivity of an FFF withF ( 0
is definitely different from that of the potential field for the
same and cannot be created from the potential field byB (x, y)n

any footpoint motions conserving under the ideal MHDB (x, y)n

conditions.
In this study, we have numerically constructed FFFs for

different twist angles. Since our FFFs contain current sheets,
it is important to prevent any spurious magnetic reconnection
and maintain the specified field connectivity. To do this, we
describe the magnetic field with “unmatched Euler potentials”

(e.g., Stern 1970) as

B p F (a , b )(�a � �b ), (5)� j j j j j
j

where indexj denotes the flux systema or b. Either orF Fa b

is allowed to have a nonzero value at any location .(x, y, z)
The Euler potential description has the advantage of inducing
far less spurious magnetic reconnection than employing the
three components of a magnetic field or a vector potentialB

. To specify the location of field line footpoints easily, weA
select a functional form of Euler potentials as ,2a p a(x )0

, where and are the coordinates of field lineb p b(y ) x y0 0 0

footpoints at when the angle of twistF is zero. Withz p 0
this setting, we have

da dbj jB (x, y, 0) p F (a , b ) . (6)�z j j j dx dyj 0 0

With the field description given by equation (5), the magnetic
induction equation (Faraday’s law) can simply be written as

�a �b
p �v · �a, p �v · �b, (7)

�t �t

where is the bulk velocity of plasma. To construct force-freev
equilibria, we have employed a magnetofrictional method (e.g.,
Chodura & Schlu¨ter 1981; Choe & Lee 1996), which drives
the system to the minimum energy state by continuously re-
moving kinetic energy with the field connectivity conserved.
In this method, we also employ equation (7), in whicht is now
a relaxation parameter and is a vector proportional to thev
Lorentz force.

In specifying boundary conditions, we have to consider two
points. First, different from time-dependent problems (e.g.,
Mikić & Linker 1994; Amari et al. 1996), an equilibrium prob-
lem is well defined only if is specified at all boundariesBn

(Chodura & Schlu¨ter 1981). Second, the stress exerted by the
boundary should be minimized in order to simulate an open
system. Thus, we specify as given by equations (1)–(3) atBn

the bottom boundary and set to zero at all other boundaries.Bn

This boundary condition naturally allows field movement tan-
gential to the boundary where during the relaxationB p 0n

process.

3. CONSTRUCTED FORCE-FREE FIELDS AND THEIR ENERGY

We have constructed a total of seven FFFs with , 0.5p,F p 0
p, 1.5p, 2p, 2.5p, and 3p. Two flux surfaces containing a quarter
of the total flux in each flux tube are shown in Figure 2 for
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Fig. 2.—Flux surfaces of the numerically generated FFFs consisting of two
interwinding flux systems. Each flux surface contains 25% of the total flux in
each flux system.

Fig. 3.—Energy of the numerically generated FFFs for different twist angles.
The energies of the potential fields (dashed curve) and of the open fields (solid
curve) are also shown as a function of the twist angle.

and 3p. It is interesting that the flux system occupyingF p 1.5p
a finite flux volume at (the red one in Figs. 1 and 2)F p 0
always takes a finite volume after interwinding, whereas the other
system (the green one) always takes an infinite volume (the rest
volume). The notable pleated structure of the flux surfaces can
be attributed to the self-twist of the flux tubes generated by the
rotational footpoint motion.

The magnetic energy of the FFFs that we have constructed
increases with the twist angle, as shown in Figure 3. The en-
ergies of the potential fields and of the open fields can be
obtained with a Green function method familiar in electrostatics
and are plotted in the figure for reference. An upper bound (not
the least upper bound) of energy of FFFs derived by Aly (1984),

1/2 1/2
1 2 2 2E p B dx dy r B dx dy ,( ) ( )UB � n � n4p z p0 z p0

is , far greater than the10.7E (F p 0) p 8.69E (F p 0)pot open

energies we have obtained. In the figure, we can find that the
magnetic energy of FFFs exceeds the open-field energy for

.F � 1.5p
Although we deal with systems in an infinite half-space, our

computation is performed in a finite computational box. Thus,
we need to make sure that the uncertainty in energy does not
affect our conclusion. To do this, we first compared the energies
of FFFs that we obtained in domains of different sizes. The
energies obtained in a box of the size (refer160# 160# 160
to eq. [3] for units) differ from those obtained in a box of the
size by not more than 5%. The latter differ300# 300# 300
from the energies obtained in a box of the size400#

by not more than 1.4%. The values presented in400# 400
Figure 3 are obtained with the largest box. The energy of a
magnetic field whose whole flux is confined in a box of a finite
volume will approximately vary as , as3L E ∼ E � C/L L rL �

, because field strength roughly varies as far enough away�2� L
from the boundary normal flux concentrations. The energy dif-
ferences given above thus tell that the error due to the finite
box size would not exceed 5%. The energy of the constructed
FFF for is about 30% more than the open-field energy.F p 3p
This difference is considered to be well above the error level
because of the finite size of the domain. Another way of as-
sessing the effect of the finite box size is to check integral
relations that should be satisfied by FFFs in an infinite half-
space above a plane. Aly (1984) derived the following equa-

tions from the tensor virial theorem:

2 2 2(B � B )dx dy p B dx dy. (8)� x y � z
z z

1 12 2 2E(z 1 0) p (B � B � B )dx dy dz p� x y z8p 4p1z 0

# (xB � yB )B dx dy. (9)� x y z
z p0

For our FFF solutions, the discrepancy between the left-hand
side and the right-hand side of the above equations is found
to be less than 3% for equation (8) and of less than 9% for
equation (9), respectively. For not too large twist angles, the
discrepancies are even smaller than the above values. There-
fore, we conclude that some of the FFFs we have constructed
indeed have more energy than the open field.

What, then, makes our results on multiple flux systems dif-
ferent from the results of previous studies on single flux systems
(Yang et al. 1986; Mikic´ & Linker 1994; Roumeliotis et al.
1994; Amari et al. 1996; Lynden-Bell & Boily 1994; Aly
1994a; Wolfson 1995)? The single flux systems treated in most
previous studies have smooth, well-ordered field structures.
Their field lines tend to partially open beyond a certain shear
or twist so that further accumulation of magnetic energy in the
system is hindered. On the contrary, we do not find any ten-
dency of field opening in our interwinding two-flux system,
although the system takes a larger flux volume with increasing
F. By interwinding, each flux system seems to suppress free
expansion of the other. This shackling behavior of twisted fields
is also reported by Klimchuk, Antiochos, & Norton (2000) for
a single flux system in a smooth equilibrium.
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Fig. 4.—(a) Vector magnetogram generated from our FFF solution for
at the height . (b) Projected image of the flux surfaceF p 2.5p z p 0.22

containing 95% of the total flux of the inner flux tube (the red one in Figs. 1
and 2).

4. RELEVANCE TO OBSERVATIONS

The most well-known observational condition for solar erup-
tion detected in the photosphere and chromosphere is the high
magnetic shear (e.g., Krall et al. 1982). In addition, polarity
inversion lines also show a tendency of distortion during the
evolution of active regions toward eruption (e.g., Uddin, Pande,
& Shelke 1986). Recent X-ray observations have revealed the
appearance of anS- or inverse-S–shaped bundle of coronal
loops before solar eruption (Acton et al. 1992; Canfield, Hud-
son, & McKenzie 1999). This structure is called a sigmoid
(Rust & Kumar 1996).

To compare our FFF model with these observations, we have
generated vector magnetograms at a height level ofz p 0.22
with our FFF solutions. Also, images projected onto the bottom
boundary are created for a flux surface containing 95% of the
total flux of the inner flux tube. Figure 4 shows one set (for

) of those plots. As much expected, the magneticF p 2.5p
shear increases along the polarity inversion line with the twist
angle. Moreover, the polarity inversion line becomes more and
more tilted and distorted from the original straight line with
the increase of the twist angle. The projected image of a flux
surface takes an inverse-S shape and becomes more twisted
and larger in size with increasingF. We note that the outermost
flux surface of the inner flux tube, which is the separatrix
between the two flux systems, also takes a shape similar to the
flux surface shown in the figure, but with a little larger scale.
If the emission from a sigmoid is due to the heating by magnetic
reconnection in the pre-eruption stage, the resulting change in
field topology may play an important role in the subsequent
solar eruption.

5. SUMMARY AND DISCUSSION

We have found that there is a class of FFFs of closed-field
configuration having more energy than the open fields. The
FFFs considered in our study consist of two interwinding flux
systems with current sheets.

Although we have constructed closed FFFs having more
energy than the open fields, we still do not know whether they
can lead to a CME eruption and what kind of mechanism is
involved if eruption can take place. For future studies, we can

think of several possibilities leading to eruption. The eruption
up to field opening may be solely an ideal MHD process or
may somehow involve magnetic reconnection. In the former
case, a global nonequilibrium (see Aly 1994b for the definition)
may take place beyond a certain amount of twist. So far, how-
ever, our study does not hint at this possibility. If magnetic
reconnection is involved, a variety of possibilities can arise.
Magnetic reconnection results in a change of field topology. If
no equilibrium of closed configuration is available in a field
topology created during a reconnection process and if the field
still retains more energy than the open field, an eruption with
field opening can take place. If closed equilibrium states are
always available in field topologies generated by a reconnection
process and if flux volumes become much larger in the new
equilibrium states, CMEs with apparent field opening to a finite
distance can occur. If flux volumes in the new equilibrium states
are not considerably larger than the original flux volume, a
flare may take place without a CME. Investigation of these
possibilities will be performed in our future studies.

We greatly thank J. J. Aly and A. A. van Ballegooijen for
helpful comments and discussions. This work has been sup-
ported by DoE contract DE-AC02-76-CH03073 and NSF grant
ATM-9906142.

REFERENCES

Acton, L., et al. 1992, Science, 258, 618
Aly, J. J. 1984, ApJ, 283, 349
———. 1991, ApJ, 375, L61
———. 1994a, A&A, 288, 1012
———. 1994b, in Cosmical Magnetism, Contributed Papers of the NATO

Advanced Research Workshop, ed. D. Lynden-Bell (Cambridge: Inst. As-
tron.), 7

Amari, T., Luciani, J. F., Aly, J. J., & Tagger, M. 1996, ApJ, 466, L39
Barnes, C. W., & Sturrock, P. A. 1972, ApJ, 174, 659
Canfield, R. C., Hudson, H. S., & McKenzie, D. E. 1999, Geophys. Res. Lett.,

26, 627
Chodura, R., & Schlu¨ter, A. 1981, J. Comput. Phys., 41, 68
Choe, G. S., & Lee, L. C. 1996, ApJ, 472, 360
Gosling, J. T. 1993a, Phys. Fluids B, 5, 2638
———. 1993b, J. Geophys. Res., 98, 18,937
Hundhausen, A. J. 1988, in Proc. Sixth Int. Solar Wind Conf., ed. V. J. Pizzo,

T. E. Holzer, & D. G. Sime (NCAR Tech. Note 306; Boulder: NCAR), 181

Hundhausen, A. J. 1999, in The Many Faces of the Sun: A Summary of the
Results from NASA’sSolar Maximum Mission, ed. K. T. Strong, J. L. R.
Saba, B. M. Haisch, & J. T. Schmelz (New York: Springer), 143

Klimchuk, J. A., Antiochos, S. K., & Norton, D. 2000, ApJ, 542, 504
Krall, K. R., Smith, J. B., Hagyard, M. J., West, E. A., & Cummings, N. P.

1982, Sol. Phys., 79, 59
Lynden-Bell, D., & Boily, C. 1994, MNRAS, 267, 146
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