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Abstract. The knowledge of plasma pressure is essential
for many physics applications in the magnetosphere, such
as computing magnetospheric currents and deriving mag-
netosphere-ionosphere coupling. A thorough knowledge of
the 3-D pressure distribution has, however, eluded the com-
munity, as most in situ pressure observations are either in
the ionosphere or the equatorial region of the magnetosphere.
With the assumption of pressure isotropy there have been at-
tempts to obtain the pressure at different locations,by either
(a) mapping observed data (e.g. in the ionosphere) along the
field lines of an empirical magnetospheric field model, or (b)
computing a pressure profile in the equatorial plane (in 2-D)
or along the Sun-Earth axis (in 1-D) that is in force balance
with the magnetic stresses of an empirical model. However,
the pressure distributions obtained through these methods
are not in force balance with the empirical magnetic field
at all locations. In order to find a global 3-D plasma pres-
sure distribution in force balance with the magnetospheric
magnetic field, we have developed the MAG-3-D code that
solves the 3-D force balance equationJ ×B = ∇P compu-
tationally. Our calculation is performed in a flux coordinate
system in which the magnetic field is expressed in terms of
Euler potentials asB = ∇ψ × ∇α. The pressure distribu-
tion,P = P (ψ, α), is prescribed in the equatorial plane and
is based on satellite measurements. In addition, computa-
tional boundary conditions forψ surfaces are imposed using
empirical field models. Our results provide 3-D distributions
of magnetic field, plasma pressure, as well as parallel and
transverse currents for both quiet-time and disturbed magne-
tospheric conditions.
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1 Introduction

The magnetospheric plasma pressure is a quantity essential
to many physical processes. In particular, plasma pressure
regulates the magnetospheric currents, thus strongly affect-
ing the magnetosphere-ionosphere (M-I) coupling through
the change in the field-aligned currents.

Significant efforts in space physics research have gener-
ally been concentrated on the magnetospheric magnetic field,
which has been subject to extensive observations and mod-
eling. Among the magnetospheric field models developed,
probably the most popular are the empirical models, in which
one postulates the structure of the magnetospheric currents,
and the model parameters are obtained by fitting the model
field to an array of observations. Those observations rep-
resent data collected by many spacecraft at different loca-
tions and at different times, and thus, the empirical mod-
els describe large-scale time-averaged magnetospheric states
rather than instantaneous “snapshots” of the magnetospheric
field. Among the better known empirical models we mention
those by Olson and Pfitzer (1974); Ostapenko and Maltsev
(1997); Tsyganenko (1987, 1989, 1995, 2002); Tsyganenko
and Stern (1996). As opposed to the rather extensive obser-
vations and studies of the magnetic field, the magnetospheric
plasma pressure is much less known. Direct measurements
of the pressure over a large domain are scarce, yet the knowl-
edge of the pressure is extremely important from a physical
point of view, especially in regions such as the plasma sheet
where the plasma parameterβ (the ratio of plasma pressure
to magnetic pressure) has very large values (e.g. Borovsky
et al., 1997). Since in regions of largeβ the pressure crit-
ically determines the magnetic field, it is of crucial impor-
tance to know the global pressure distribution. One way
of obtaining such a global distribution, starting from scarce
pressure data, will be presented in this study.

We start our paper by a succinct review of several pres-
sure observations, both at low altitudes (in the ionosphere)
and farther in the plasma sheet in the magnetospheric tail.
We then briefly describe the way such observations have
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commonly been used in space physics research, mostly in
conjunction with empirical magnetic field models. Then, we
put forth the theoretical and numerical background of our
method of obtaining force-balanced magnetospheric config-
urations. Finally, we present computational results for both
quiet and active-time magnetospheres, with both isotropic
and bi-Maxwellian plasma pressure distributions.

2 Plasma pressure – observations and modeling

2.1 Pressure observations

In the magnetosphere, the plasma pressure tensor has gener-
ally only two distinct diagonal components, corresponding to
directions perpendicular and parallel to the ambient magnetic
field. Their values can be obtained in a straightforward man-
ner once the particle distributions are known, being given by
(ignoring the flow effects)P⊥ = 1/2

∫
mv2f (v) sin2 θ d3v

andP‖ =
∫
mv2f (v) cos2 θ d3v, respectively, wheref (v) is

the velocity distribution function of the particle population,
while m andθ represent the particle mass and pitch angle,
respectively. When the particle distribution is isotropic, as is
the case in the plasma sheet (see below), the plasma pressure
can be described by a scalar:P = P⊥ = P‖.

Quite a few plasma pressure measurements have been per-
formed using observations of particle distribution functions
in the plasma sheet, a region which plays a very important
role, due to its large plasmaβ, in the dynamics of the mag-
netosphere. Both in situ observations (Stiles et al., 1978;
Nakamura et al., 1991) and theoretical studies (Noetzel et al.,
1985; Hill and Voigt, 1992) overwhelmingly suggest that the
pressure in the plasma sheet is isotropic. Among plasma
sheet pressure measurements at distances|X| > 10 RE, we
mention observations using ISEE spacecraft: ISEE1 (Huang
and Frank, 1994) and ISEE2 (Spence et al., 1989; An-
gelopoulos et al., 1993). Closer to Earth, where plasma pres-
sure is generally bi-Maxwellian, extensive pressure studies
have been performed (Lui and Hamilton, 1992; De Michelis
et al., 1999) using AMPTE/CCE particle observations. Fi-
nally, probably the most extensive observations of plasma
sheet pressure are those of the GEOTAIL mission (e.g. Hori
et al., 2000). Besides in situ plasma sheet measurements, a
novel technique (Wing and Newell, 1998) has allowed imag-
ing of plasma sheet ions by analyzing their precipitation at
low altitudes in the ionosphere. The theoretical background
of the method relies on the isotropization of plasma sheet
ions when the ratio of their gyroradius to the magnetic field
curvature exceeds a certain value (Sergeev et al., 1993). By
observing the distribution of field-aligned precipitating ions
in the ionosphere, one thus obtains an accurate reflection
of their isotropic distribution function in the plasma sheet.
Based on the theory of Sergeev et al. (1993), Wing and
Newell (1998) have inferred the plasma sheet pressure con-
tribution due to protons by observing particle precipitation in
the ionosphere at latitudes higher than the so-called “isotropy
boundary.” Their method relies on the technique, commonly

employed in the space physics community, of relating 2-D
pressure measurements to different points in space (thus ob-
taining a 3-D distribution) by “mapping” the pressure using
empirical magnetic field models. The implicit assumptions
in such an approach are: (i) the plasma pressure is assumed
to be isotropic; and (ii) the observed pressure is considered
to be in force balance with the magnetic stresses of the em-
pirical model field.

2.2 Plasma pressure and empirical field models: lack of
force balance

Another series of approaches go further than using empiri-
cal model fields for mapping observed plasma pressure dis-
tributions and try to infer the pressure from the empirical
model itself, by attempting to calculate the pressure values
that would be in force balance with the model fields in 1-D
along the Sun-Earth axis (e.g. Spence et al., 1987; Lui et al.,
1994) or in 2-D in the equatorial plane (Horton et al., 1993;
Cao and Lee, 1994). One important question poses itself with
regard to this approach, and the question is “Can the em-
pirical model fields be equilibrated by plasma pressure of a
certain pressure tensor form?” Partially answering the ques-
tion, Zaharia and Cheng (2003b) have shown that the field
of the T96 empirical model cannot be balanced globally with
isotropic plasma pressure. Their findings show that while
in 1-D along the Sun-Earth axis the Lorentz force|J × B|

is a good approximation to the observed values of|∇P |, in
more than 1-D the quiet-time T96 field cannot be in equilib-
rium with an isotropic pressure. Other studies have shown
that anisotropic pressure profiles in equilibrium with empir-
ical magnetic fields can only be found on a maximum of
two planes (Horton et al., 1993; Cao and Lee, 1994), as the
problem is over-determined in 3-D. With the lack of global
force balance, the use of empirical field models in conjunc-
tion with observed pressure profiles can give rise to physical
errors (Zaharia and Cheng, 2003b).

2.3 Possible solutions to the force balance problem

As pointed out by Stern (1994), the most probable reason for
the lack of equilibrium in the empirical field models is the
loss of accuracy in the derivatives of the model magnetic field
B. While the model field can provide a good approximation
to the observed field through least-square fitting, the compar-
ison between the derivatives of the model and observed field,
respectively, will not present such a good correlation.

An alternate method is then needed to obtain force-
balanced magnetospheric states. One such method that com-
putes a 3-D magnetospheric equilibrium is the “ballistic”
frictional approach (Hesse and Birn, 1992, 1993; Toffoletto
et al., 2001), in which an empirical magnetic field structure
is used as an initial state in a modified-MHD simulation. The
approach usually seeks to find force-balanced states in which
the magnetic field is not too different from the initial empir-
ical field (Toffoletto et al., 2001). The final force-balanced
magnetospheric state in the frictional method is not unique
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however, depending on the choice of the polytropic indexγ

(Hesse and Birn, 1993).
While the magneto-friction method “evolves” the pressure

in a fashion dependent onγ , the method presented in this
paper allows one to obtain the magnetic field configuration
in 3-D force balance with a given (desirably observation-
based) pressure distribution. Our method consists of numer-
ically solving the 3-D equilibrium equation in a flux coordi-
nate system (Cheng, 1995), with pressure profiles and real-
istic boundary conditions as input. The results we present in
this work are obtained using plasma pressure in the plasma
sheet from GEOTAIL observations (e.g. Hori et al., 2000),
or along the midnight meridian in the equatorial plane, from
the so-called Spence-Kivelson formula (Spence and Kivel-
son, 1993), as well as anisotropic pressure closer to Earth
based on AMPTE/CCE measurements (Lui, 1993; Lui et al.,
1994; De Michelis et al., 1999). The computation is per-
formed inside a domain defined by magnetic flux boundaries
obtained from Tsyganenko’s T96 and T01 empirical field
models (Tsyganenko, 1995; Tsyganenko and Stern, 1996;
Tsyganenko, 2002).

3 Calculation of 3-D quasi-equilibrium

In the rationalized EMU unit system, the equilibrium with
isotropic pressureP can be expressed as

J × B = ∇P. (1)

It is generally believed that such an equilibrium exists in
the “slow-flow” region of the magnetosphere (the inner and
middle magnetosphere and on closed-field lines) at all times
(Wolf, 1983), except during periods of very explosive mag-
netospheric activity, such as substorm onset and expansion
phases.

3.1 Euler potential representation ofB: flux coordinate
system

From∇ · B = 0, the vectorB can be expressed as

B = ∇ψ ×∇α, (2)

whereψ andα are called Euler potentials (e.g. Stern, 1967).
ObviouslyB · ∇ψ = B · ∇α = 0 and thus, the intersec-
tion of constantψ andα surfaces defines the magnetic field
lines. Our 3-D equilibrium computation will be performed
in a flux coordinate system in which two of the coordinates
are chosen to be the Euler potentials defining the magnetic
field. However, there is freedom in the choice of the third
coordinate,χ , representing the position along the field line.
A particular choice for this coordinate is equivalent to choos-
ing a specific form for the Jacobian of the(ψ, α, χ) system,
J = [(∇ψ ×∇ζ ) · ∇χ ]−1 (Cheng, 1992, 1995). Our choice
for χ in this study will be the “equal arc length” (Cheng,
1995; Zaharia and Cheng, 2003b), such that equaldχ vari-
ations correspond to equal length variationsds along a field
line.

3.2 Equilibrium equations in flux coordinate system

In the flux coordinate system{ψ, α, χ}, by considering the
components of the equilibrium equation, Eq. (1), in the di-
rections of(B ×∇ψ) and(B ×∇α), respectively, one has:

J · ∇ψ = ∇ ·
[
(∇ψ)2∇α − (∇α · ∇ψ)∇ψ

]
= −

∂P

∂α
, (3)

J · ∇α = ∇ ·
[
(∇α · ∇ψ)∇α − (∇α)2∇ψ

]
=
∂P

∂ψ
, (4)

as obtained before (e.g. Birn et al., 1977; Cheng, 1995;
Zaharia and Cheng, 2003b). In the work presented here,
Eqs. (3) and (4) are solved numerically using an improved
version of the MAG-3D code (Cheng, 1995), by considering
observation-based pressure distributionsP (ψ, α) and realis-
tic boundary conditions forψ obtained from empirical field
models.

The two coupled equations, Eqs. (3) and (4), are second-
order “quasi-2D” inhomogeneous elliptic partial differential
equations (PDEs) forα andψ in the (α, χ) (i.e. keeping
ψ constant) and(ψ, χ) (i.e. keepingα constant) coordi-
nate spaces, respectively, and they admit unique solutions if
boundary conditions and the inhomogeneous terms on the
right-hand sides (RHS) (∂P/∂α and∂P/∂ψ) are prescribed.
While Cheng (1995) used analytical profilesP = P(ψ) to
calculate near-Earth magnetospheric configurations, such a
choice is not too realistic for the plasma sheet located farther
than about 10RE from Earth (Zaharia and Cheng, 2003b). In
this paper we present results withP(R, φ,Z = 0) from ob-
servations as input (R, φ andZ in this paper define the usual
cylindrical coordinate system, with the Earth in the center
andφ = π at midnight). TheP(R, φ,Z = 0) functional is
kept fixed, i.e. we are interested in finding a magnetic field
configuration in equilibrium with a given 2-D pressure pro-
file in the equatorial plane. To do this, the functionP(ψ, α)
will be changed at each iteration asψ andα change, in order
to maintain the input pressure distribution fixed in space.

3.3 Field-aligned currents

The field-aligned currents can be calculated numerically
once the magnetic field is known, from Ampere’s law:J‖ =
(∇ × B) · B/B. This method, however, presents accuracy
problems due to the large values of the magnetic field close
to the Earth’s surface. A more accurate computation of the
field-aligned currents can be performed by noting that, in
a quasi-equilibrium state with isotropicP , the component
density of the electric current parallel to the magnetic field,
J‖, can be obtained from the charge neutrality condition
∇ · J = 0 by the so-called Vasyliunas relation (Vasyliunas,
1970, 1984):

B · ∇

(
J‖

B

)
=
∇B2
× B · ∇P

B4
=

2B · (∇P × κ)

B2
. (5)

An integration of Eq. (5) along the field line readily pro-
videsJ‖ if the quasi-equilibrium magnetic field configuration
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is known. The calculation ofJ‖ using the Vasyliunas rela-
tion was performed before by Cheng (1995), in a computed
3-D magnetospheric state in force balance with aP(ψ) pro-
file. The reverse problem was considered by Antonova and
Ganyushkina (1996), who obtained∇P at the ionosphere by
using the observedJ‖ there (Iijima and Potemra, 1976) and
empirical magnetic fields.

4 Numerical method; boundary conditions and pres-
sure input

4.1 Computational domain

Our computational domain is a topologically closed region,
delimited by the inner and outer magnetic flux surfaces,ψin
andψout , which are kept fixed throughout the computation.
In this work theψin andψout surfaces are obtained by field-
line mapping using the latest empirical models, T96 and T01.
The advantage of using these models is the possibility of
quantifying the level of activity of the magnetosphere, by a
proper choice of the solar wind parameters:PSW (solar wind
dynamic pressure),BIMF (interplanetary magnetic field) and
Dst index – that enter as input in the models. We note that,
even though the inner and outer flux boundaries are being
kept fixed during the computation, the magnetic field lines
are never fixed, even on those surfaces, as they have the abil-
ity to move along the surfaces throughout the iterative pro-
cess.

Ideally, one would start the magnetic field line mapping
from the Earth’s surface, such that the computational domain
would be closed by a band representing the surface of revo-
lution of the arcs of the circle of the Earth’s surface between
the lower and higher latitudes corresponding toψin andψout ,
respectively. The inner and outer flux surfaces delimiting a
typical closed domain can be seen in Fig. 1.

While this choice of starting points can be considered in
some cases (when the outer flux boundary is not very far from
Earth), generally, if one wants to include the mid- and far-
tail regions of the plasma sheet, then computational problems
may appear with such a choice. Specifically, if the domain
extends too far in the magnetotail, the discrepancy between
the very strong magnetic field at the Earth’s surface and the
weak field in the tail, coupled with the strong deformation of
the flux coordinate system in real space, leads to huge val-
ues and steep gradients in the JacobianJ (e.g. Becker et al.,
2001), giving rise to numerical problems in the computation.
Therefore, in those cases we do not extend the domain down
to the Earth’s surface, but instead only to a sphere of radius
r > 1RE enveloping the Earth, but close enough to it that
the deviations of the field on the surface of the sphere from a
dipole field are not significant.

4.2 Computational method

The two coupled equilibrium Eqs. (3) and (4) are solved nu-
merically (Cheng, 1995) in a computational flux coordinate
system(ρ, ζ, θ). As mentioned in the previous section, they

are coupled quasi-2-D elliptic PDEs forα andψ on constant
ψ andα surfaces, respectively. Solving for the 3-D equilib-
rium, as explained by Cheng (1995), consists of an alternat-
ing process of solving the above equations (one at a time),
cast in inverse form (Cheng, 1992), through the so-called it-
erative metric method (Cheng, 1992; DeLucia et al., 1980).
Since the cited literature provides extensive descriptions of
the iterative metric method, we will not repeat here the algo-
rithm. Instead, we concentrate our discussion in this section
on the alternating process of rearranging the computational
points once each equation is solved, and also on describing
some of the changes we implemented in the MAG-3-D code
for a more accurate computation.

We consider a numerical grid in the(ρ, ζ, θ) system, con-
sisting ofNψ × Nα × Nχ computational grid points. When
equilibrium is reached, the Euler potentialsψ andα, defin-
ing the magnetic field, are only functions ofρ and ζ , re-
spectively. In our approach, the magnetic field configuration
is expressed in “inverse form”, i.e. we computer(ρ, ζ, θ).
In order to have a large grid density in regions of interest,
the computational points are generally not equidistant in real
space. Instead,ρ is chosen such that equalρ intervals corre-
spond to equaldr intervals in real space along the midnight
axis in the equatorial plane;ζ is chosen such that a large
grid point density is concentrated in the vicinity of midnight
local time (the area of largest plasmaβ). The third compu-
tational flux coordinate is obtained from the choice of equal
arc length along each field line:θ = χ .

In the above computational flux coordinate system, the
boundary conditions that need to be specified for the 2 equa-
tions, Eqs. (3) and (4), are values ofα andψ on the bound-
aries of the(ζ, θ) and(ρ, θ) domains, respectively. Specif-
ically, for Eq. (3) forα, the boundary conditions in theζ
coordinate are simply prescribed by periodicity. In theθ co-
ordinate, the boundary conditions forα are obtained from the
knowledge of the values ofα at the ends of each field line.
This knowledge comes from the fact that the magnetic field at
the Earth’s surface can be assumed to be overwhelmingly due
to internal Earth sources (Tsyganenko, 1990). By only taking
into account the highly-dominant dipole term on the Earth’s
surface, we simply haveα ≡ φ (the azimuthal angle in cylin-
drical coordinates) on the Earth’s surface (e.g. Stern, 1970).
This boundary condition is approximately correct, even when
we do not extend the domain down to the Earth’s surface, but
only to a sphere of radiusr enveloping the Earth, withr not
too large. Now for Eq. (4) forψ , again boundary conditions
in the θ coordinate mean knowing the value ofψ at both
ends of a field line. If those are on the Earth’s surface and if
we again consider the field there to be dipolar, their value of
ψ is then analytically known (e.g. Stern, 1967; Cheng, 1992,
1995):ψ = −BDRE

2 sin22, whereBD and RE are the equa-
torial dipole field on the Earth’s surface and the Earth’s ra-
dius, respectively, while2 represents the colatitude. Finally,
the boundary condition forψ in theρ coordinate is obtained
from empirical field models by mapping magnetic field lines
with footpoints on the Earth’s surface corresponding to the
inner and outer flux surfaces,ψin andψout .
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Fig. 1. Inner and outer flux (ψ) surfaces enveloping the computational domain (obtained here by field line mapping of quiet-time T01 model).
The inner surface, seen through a cut in the outer flux surface, is almost a torus, due to the quasi-axisymmetry in magnetic field so close to
Earth (the Earth, not visible in the figure, is at [X, Y,Z] = [0,0,0]). The outer surface, however, is highly asymmetric, due to magnetic field
stretching in the magnetotail. Constantχ lines (circling in the azimuthal direction) andα lines (also representing theB field lines, since
B = ∇ψ ×∇α) are also shown on both flux surfaces.

A configurationr(ρ, ζ, θ) is needed as the starting point
in the iterative procedure, and usually we take this to be the
configuration given by the empirical model. The inverse it-
erative technique consists of the following steps: (1) on the
constantψ = ψ(ρ) surfaces, Eq. (3) is solved forα in the
(ζ, θ) space, with the inhomogeneous term∂P/∂α kept con-
stant; (2) the result of the previous calculation is a function
α(ρ, ζ, θ); based on this solution, newα = α[ζ(X, Y, Z)]

= constant surfaces are obtained by moving the grid points
in (ζ, θ) space on eachψ surface using cubic spline in-
terpolation; (3) on eachα(ζ ) = constant surface, Eq. (4)
is solved in(ρ, θ) space, keeping the inhomogeneous term
∂P/∂ψ fixed; (4) newψ[ρ(X, Y,Z)] = constant surfaces
are obtained by moving the grid points in(ρ, θ) space on
each constantα surface. A procedure typically needed in
iterative equilibrium calculations to ensure numerical stabil-
ity is the so-called “blending” (e.g. Hudson et al., 2002), a
process through which some fraction of the solution of the
previous iteration is “blended” into the latest iterative so-
lution: ψ (n+1)

← γψψ
(n)
+ (1 − γψ )ψ (n+1); α(n+1)

←

γαα
(n)
+ (1− γα)α(n+1), whereγψ andγα are the blending

parameters.

The iterative steps described, with blending parameters
chosen empirically for maximum convergence rate, are re-
peated until theα = constant andψ = constant surfaces con-
verge to some tolerance. One simple criterion for conver-
gence is represented by the cumulative difference between
the values forα or ψ between two consecutive iterationsn
andn−1 (e.g. forα: 6(αn) = 6i,j,k|α

(n)
i,j,k−α

(n−1)
i,j,k |). A more

physical measure of the convergence is the value of the force
“imbalance” at iterationn, defined in a manner similar to
(Toffoletto et al., 2001) as||F || =

∫
|J×B−∇P |dV/

∫
dV .

We normalize this force imbalance to the initial imbalance,
‖F0‖, by considering the quantityfn = ||Fn||/||F0|| and fol-
lowing its decrease throughout the iterations.

5 Results with different pressure profiles

In this section we present several computed quiet- and
active-time 3-D magnetospheric quasi-equilibria, in which
the magnetic fields are in force balance with different ob-
served pressure distributions: the pressure given by the
so-called Spence-Kivelson formula (Spence and Kivelson,
1993), plasma sheet pressure from the GEOTAIL satellite, as
well as anisotropic pressure profiles based on observations
close to Earth by AMPTE/CCE (Lui and Hamilton, 1992;
De Michelis et al., 1999). In all cases presented in this paper,
we take the tilt of the Earth’s magnetic axis to be zero, for
simplicity.

5.1 Quiet-time case withP input from Spence-Kivelson
empirical formula

The Spence-Kivelson empirical formula (hereinafter, the SK
formula) was obtained for quiet-time conditions along the
midnight meridian in the equatorial plane by Spence and
Kivelson (1993), who employed a nonlinear least-square fit-
ting of quiet-time pressure data, mainly from ISEE-2 obser-
vations. The explicit form of the SK formula isP(nPa) =
89e−0.59|X|

+ 8.9|X|−1.53. It has been shown (Zaharia and
Cheng, 2003b) that the pressure values given by the SK for-
mula are very close to values obtained by integrating the
J ×B force of the quiet-time T96 empirical model along the
equatorial midnight meridional line. Since the SK formula is
only valid along that line, additional assumptions have to be
made with regard to the azimuthal (local-time) dependence
of the equatorial plane pressure before we can employ the
formula in our 3-D code. In this paper we present results with
equatorialP(R, φ,Z = 0) = P(R,Z = 0), whereR is the
distance from the Earth in the equatorial plane. This should
not be an unreasonable choice, since observations (e.g. Wing
and Newell, 1998) report the pressure farther than about 7RE



256 S. Zaharia et al.: 3-D force-balanced magnetospheric configurations

Fig. 2. The decrease with iteration numbern of the following quan-
tities in the SK case: normalized force imbalancefn (top); cumula-
tive ψ change between consecutive iterations (middle); and cumu-
lativeα change between consecutive iterations (bottom).

to vary little in the azimuthal (φ) direction. Closer to Earth,
on the other hand, the plasmaβ generally tends to be quite
low, and therefore the pressure does not influence much the
magnetic field configuration. It has to be mentioned that,
even with this pressure choice, the computed magnetospheric
state is still non-axisymmetric, due to the lack of axisymme-
try (tail stretching) in the boundary conditions. Other code
runs, not presented in this paper, with a small azimuthal (φ)
dependence lead to magnetic field configurations very simi-
lar to theP(R, φ,Z = 0) = P (R,Z = 0) case presented
here, with the only significant differences in the field-aligned
current configurations.

In order to portray a quiet-time magnetosphere, theψin
andψout flux boundaries of our domain are obtained by field
mapping using the T96 model, parameterized byDst =
−5 nT,PSW = 2.1 nPa,ByIMF = 0 andBzIMF = 1 nT, repre-
senting average solar wind parameters during quiet times as
obtained from the OMNI solar wind database. The computa-
tional domain is limited by a sphere of radiusr = 4RE en-
veloping the Earth, in order to avoid numerical problems, as
described before. The latitudes chosen for tracing the inner
and outer flux surfaces are such that the field lines mapped
using the model at midnight eventually intersect the equato-
rial plane atX = −5RE andX = −23RE , respectively.
The initial field configuration considered in the computation
is the one given by the T96 model with the solar wind param-
eters specified above. This configuration is not in equilib-
rium with an isotropic pressure profile (Zaharia and Cheng,
2003b).

The final force-balanced state is achieved by the code after
typically less than 20 iterations. Figure 2 shows the decrease
in the normalized force imbalancefn defined before vs. the

iteration numbern, as well as decreases in theψ andα “er-
rors” previously defined. The decrease withn is monotonic
for all three quantities, and is quite steep during the first few
iterations. The force imbalance in the final state is down to
about 1/50 of its initial value (which is normalized to be 1).
Most of the decrease takes place during the first 10 iterations,
after which the force imbalance almost reaches a plateau.
With further iterations, the force imbalance does not decrease
much, however, the computational “errors” forψ andα con-
tinue to decrease at a significant rate. This can be due to
the nonlinear nature of the computation, whereby the plateau
reached byfn approaches the minimum value of force imbal-
ance reachable in the finite-difference computation with the
number of grid points considered. Our number of grid points,
N = 201× 65× 101, seems, however, to be more than ad-
equate for accurately computing a force-balanced state, as
seen in the significant decrease of the force imbalancefn (cf.
Toffoletto et al., 2001). Inspection of several physical param-
eters of the magnetospheric state throughout the iterations
reinforces this conclusion, with the convergence actually set-
ting in after iterationn = 7, as the physical parameters do
not change more than 5% betweenn = 7 and the final state
atn = 15.

Several physical quantities along the Sun-Earth axis char-
acterizing the computed equilibrium state are presented in
Fig. 3a: the pressureP (basically the SK formula), together
with the magnetic field magnitudeB and plasmaβ. One ob-
serves thatB decreases whileβ increases monotonically with
|X| on the nightside. The very large values ofβ are only at-
tained for|X| > 20RE , with a maximum of around 150 at
23RE . In theB plot we also show by dashed lines the value
of the magnetic field of the T96 model, seen to be close to the
computed value. This fact is not surprising, considering that
the SK pressure profile agrees very well (Zaharia and Cheng,
2003b) with the integral ofJ × B along the equatorial mid-
night meridian in quiet-time T96.

Plot (b) of Fig. 3 shows the northwestern quadrant of the
closed field-line magnetospheric domain under considera-
tion, with constantψ contours of the computed equilibrium
state plotted in the noon-midnight and equatorial planes. The
electric currents of the computed 3-D equilibrium are pre-
sented in Fig. 4. Plots (a) and (b) in the figure show con-
tours of constant azimuthal currentJφ in the noon-midnight
and equatorial planes, respectively. The current reaches a
maximum of 2.6 nA/m2 at around 6.6RE , its spatial loca-
tion is rather broad in theZ direction and extends to all local
times. The contours also show that the ring current gradu-
ally transforms into cross-tail current at larger distances from
Earth, without a definite boundary between the two current
systems. Plot (c) of Fig. 4 shows the field-aligned currents
(FACs) as computed from the Vasyliunas relation, Eq. (5) in
the obtained force-balanced state. The FACs are mostly of a
Region-2 sense, with a maximum current density of around
0.25µA/m2. The total Region-2 sense current is found by
integration to be 0.17 MA. Both this integrated value, as well
as the current density, are a bit on the low side, most prob-
ably due to theP(R,Z = 0) pressure dependence consid-
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Fig. 3. (a)Profiles along the Sun-Earth axis forP , |B| andβ in the quiet-time 3-D equilibrium with Spence-Kivelson pressure; the dashed
line in the second plot represents|B| from the T96 model;(b) Noon-midnight and equatorial plane cross sections of constant flux surfaces
in the northwestern quadrant for the computed 3-D equilibrium; dashed lines show semi-circles of radius 4RE , corresponding to the sphere
at the inner domain boundary.

Fig. 4. Contours of constant azimuthal current densityJφ in the(a) noon-midnight and(b) equatorial planes for the quiet-time 3-D equilib-
rium with Spence-Kivelson pressure; the dotted lines represent constantψ contours;(c) Contours of field-aligned current densityJ‖ in the
ionosphere (at 1RE , computed by assumingJ‖/B = const. between 1 and 4RE); solid lines show currents into the ionosphere, while dashed
lines currents out of the ionosphere.

ered. Other code runs where aφ-dependence was introduced
in the pressure profile lead to a significant increase in the
field-aligned current. The Region-1 current is almost nonex-
istent, its total value amounting to only 0.01 MA (this could
also be a numerical boundary effect, since the current appears
only on the lastψ surface). The fact that we find no signif-
icant Region-1 currents in this case (which again, might be

changed by introducing aφ dependence inP ) does not mean
that they could not be present in the plasma sheet at 20RE
away from midnight, for example, just that they are not in-
cluded in our computational domain.
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Fig. 5. (a) Sun-Earth axis profiles ofP , |B| andβ for the disturbed-time computation; the dashed line in the top plot represents the SK
pressure used in the previous case, while the dashed lines in the middle plot show|B| from the T96 model;(b) Noon-midnight plane cross
sections of constant flux surfaces for the Tsyganenko field (top) and the computed 3-D disturbed-time equilibrium field (bottom).

Fig. 6. Contours of constant azimuthal current densityJφ in the (a) noon-midnight and(b) equatorial planes for the disturbed-time equi-
librium; the dotted lines represent constantψ contours;(c) Contours of field-aligned current densityJ‖ in the ionosphere (at 1RE in our
model).

5.2 Disturbed-time case

In order to obtain a quasi-equilibrium state characteristic of
a disturbed magnetospheric time the pressure profile used
in the quiet-time case (the SK formula) is modified such
that the pressure values close to Earth (between 5 and 8RE)
are increased, consistent with observations (e.g. Lui et al.,

1987; Kistler et al., 1992) showing larger plasma pressure
and earthward pressure gradients during periods of magne-
tospheric activity. The modification, which models both of
the above observed features, is to consider the equatorialP

of the formP(R,Z = 0) = P0[1+ tanh(X1 − R)/11] +

PSK [1+ tanh(R − X2)/12], wherePSK is the correspond-
ing pressure profile at distanceR, whileP0, X1, X2,11,12
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are constants. In this paper we chooseP0 = 5 nPa,X1 = 8,
X2 = 9.25, and11 = 12 = 2.5. The pressure profile, shown
at the top of Fig. 5a, reaches a value of 2PSK tailward at dis-
tances significantly farther than 9RE , twice the correspond-
ing quiet-time pressure at the same distances. The pressure
values are, however, more than twice their quiet-time cor-
respondents between 5 and 10RE , consistent with observa-
tions. The inner and outer flux surfaces for this case are again
obtained by field-line mapping using the T96 empirical field
model, however, with different parameters:Dst = −40 nT,
PSW = 5.0 nPa,ByIMF = 0 andBzIMF = −2 nT, typical for
active magnetospheric times.

Besides the pressureP , the left plot of Fig. 5 presents Sun-
Earth axis profiles of other physical parameters in the com-
puted magnetospheric equilibrium. The value of the equilib-
rium magnetic fieldB is seen to first decrease monotonically
with increasing|X| at midnight, however,B soon reaches a
local minimum of about 15 nT at a distance of 7RE . The dip
in theB-field value also corresponds to a peak in plasmaβ,
with β ' 100 around 7RE . Finally, looking at plot (b) of
the same figure, we remark a striking difference between the
computed flux surfaces (bottom picture) vs. the flux surfaces
in the T96 model (top picture) (since at midnightα = φ,
the constantψ contours portrayed in Fig. 5b also represent
the field lines). Specifically, the field line curvature in the
computed magnetospheric state in the region between 7 and
10RE on the nightside is much larger than the curvature of
the T96 field lines in the same region. The large curvature
suggests a strong current sheet in that region, which can in-
deed be seen in Fig. 6a, which shows the noon-midnight
meridional plane contours of constantJφ . The maximum
current value, of about 15 nA/m2 at 7.2RE, is almost an
order of magnitude larger than in the corresponding quiet-
time picture. The current sheet has a limited extent inZ,
with a minimum half-thickness (defined as the distance inZ

over whichJφ decreases to half of its value on the equato-
rial plane) of∼ 0.8RE , and also in azimuth, as can be seen
in plot (b) of the same figure. The existence of such current
sheets has been observationally confirmed during disturbed
magnetospheric times, such as a substorm growth phase. Un-
derstanding their appearance and features is crucial to hot
research topics, from substorm onset mechanisms to space
weather. A more detailed study of the disturbed-time current
sheets is relegated to a separate paper (Zaharia and Cheng,
2003a). Plot (c) of the figure shows the field-aligned currents
in this case, which are predominantly of a Region-1 sense.
The maximum value of the current density is 2.6µA/m2,
typical of values measured in the ionosphere for disturbed
times. The total current values for the Region-1 and Region-
2 currents are 1.18 MA and 0.27 MA, respectively. Again,
an azimuthal dependence in the pressure distribution could
change theJ‖ results.

5.3 Pressure input from GEOTAIL

While in the previous two cases presented theα-dependence
of P(ψ, α) was dictated by the choiceP = P(R,Z = 0),

in this section we present results with a more realistic 2-D
pressure input in the equatorial plane from GEOTAIL satel-
lite data. The GEOTAIL data represents spatial and temporal
averages of plasma pressure (considered isotropic) at differ-
ent points in a 2-D spatial domain in the nightside, delim-
ited by the GEOTAIL apogee of about 30RE and perigee of
10RE . The data at each point is the average in space of 1-
minute time-averaged pressure observations in a rectangle of
size 1 RE in theX direction and 2 RE in theY direction, cen-
tered around that point. Further, the GEOTAIL data is sorted
according to magnetospheric activity as a function ofKp.
In this section we present results obtained using low-activity
data, defined by 0< Kp < 1. This pressure data is presented
in Fig. 7a.

Before using the GEOTAIL data as input into the code, a
certain degree of smoothing is necessary. Due to very high
β values in the plasma sheet (for example, the plasmaβ as
measured by GEOTAIL can exceed 100), even slight varia-
tions inP can lead to dramatic changes in the magnetic field
configuration in force balance with the pressure. The raw
GEOTAIL data is generally characterized by sharp gradients,
which cannot be equilibrated by any equilibrium magnetic
field configuration. The very sharp gradients do not neces-
sarily have a physical meaning, with their existence being
more likely due to the limited amount of data, which might
be insufficient for completely averaging out the time varia-
tions (note that the data for any two adjacent cells among
those shown in Fig. 7 may come from different orbits of
the satellite, separated time-wise by more than five days).
A solution to the problem is to apply standard image pro-
cessing techniques to the raw pressure data; however, such
a method is not very objective – while sharp gradients will
indeed be smoothed, no physical measure exists as to what
degree of smoothing is necessary such that vital informa-
tion about the spatial dependence of the pressure is not lost.
We employed a more phenomenological approach, by per-
forming a least-square fit of the GEOTAIL data against a
chosen 2-D function. We only considered the data in the
spatial domain delimited by−20 < X < −9.75RE and
−10< Y < 10RE (this restrained spatial domain was cho-
sen both for reasons of numerical convergence and to avoid
GEOTAIL data gaps in the inner plasma sheet). There were
183 rectangles of 1RE × 2RE size containing data points
in this domain. The fitting function was taken in the form
P(R, φ,Z = 0) = (A+Be−CR +DRE) ·

∑
m Fm sin(mφ).

The fit is thus non-linear inr andφ, and has 14 parame-
ters:A,B,C,D,E and the differentFm, with 0 ≤ m ≤ 8.
The angleφ was defined asφ = arcsin(Y/R), such that
φ has opposite signs in the eastern vs. the western hemi-
sphere, and the series above is able to reproduce the ob-
served dawn-dusk asymmetry in the pressure. The resulting
fit is quite accurate, as described by its correlation coeffi-
cientR = 0.92. While only nightside GEOTAIL pressure
was used for the least-square fit, we nevertheless employ the
obtainedP (R, φ,Z = 0) function on the dayside as well
in our 3-D equilibrium code. Of course, while there are no
guarantees about the accuracy of the formula when applied
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Fig. 7. (a)GEOTAIL plasma sheet pressure data for times of low magnetospheric activity (0< Kp < 1); (b) Sun-Earth axis profiles ofP ,
|B| andβ for the computation with GEOTAIL plasma sheet pressure; the dashed line in the second plot represents|B| from the T96 model.

to dayside, the low dayside plasmaβ (generally< 1) does
not allow any pressure inaccuracies to significantly change
the magnetic field configuration there.

Plot (b) of Fig. 7 shows the profiles along the Sun-Earth
axis for pressure, magnetic field and plasmaβ in the com-
puted equilibrium, with the pressure fitted against the GEO-
TAIL data taken as input (the inner and outer flux surfaces
were obtained by T96 field-line mapping, with the same T96
parameters, as in the SK case; due to considerations of nu-
merical stability, the outer surface was chosen to extend only
to−18RE in the nightside, however). It is seen that the mag-
netic field of the computed equilibrium is lower in the night-
side beyond 11RE than the corresponding T96 field, hinting
that the field lines of T96 might not be stretched enough to
equilibrate observed plasma pressure gradients. Due to the
smallerB, the plasmaβ is larger compared to the SK case.
The electric current densities, both transverse and parallel,
are shown in Fig. 8. While there is no pressure information
from GEOTAIL outside the plasma sheet (in this case, for
|X| < 8RE) and therefore, no ring current in the figure, one
can see, however, that there is a local maximum for the cross-
tail current density at aroundX = −13RE , suggesting that,
in this case, as opposed to the SK case, the ring and cross-tail
currents are distinct. As opposed to the previous two cases,
in which both pressure and boundary conditions have an east-
west symmetry, in this case the computedJφ exhibits a dawn-
dusk asymmetry, with the current density actually larger on
the dawn side (the maximum value being at around 1:00 lo-

cal time). This feature is related to the particular dawn-dusk
asymmetry (values higher on the dawn side than on the dusk
side atR ≈ 12RE in Fig. 7a) in the GEOTAIL pressure data,
and that asymmetry is presently not well understood. Since
the plasma sheet is typically observed to be thinner on the
dusk side, it may be that some of the lower pressure values
in the evening sector in the data do not actually belong to the
plasma sheet. This would warrant in the future both a refine-
ment in the pressure data values considered for the computa-
tion, as well as a relaxation of the dawn-dusk symmetry in the
computational boundary conditions in our model. Finally,
Fig. 9 depicts the field-aligned currents. While our computa-
tional domain in this case corresponds to a narrow region in
the polar plot, the FACs in this case are less structured than
before, due to the more complex pressure input. The FACs,
which reach maxima of around 1.93µA/m2, are of both a
Region-1 and Region-2 sense and overlap in intricate ways.
While the current densities are significantly higher than in the
SK case (likely due to the azimuthal dependence of the pres-
sureP ), the total Region-1 and Region-2 currents are only
0.2 and 0.23 MA, respectively, due to the limited extent of
the computational domain considered in this case.

5.4 Anisotropic pressure input

The 3 cases presented so far consider the pressure to be
isotropic, i.e. described by a scalarP. However, at distances
close to Earth (generally forrR < 15RE), the pressure has
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Fig. 8. Azimuthal current densityJφ in the (a) noon-midnight and
(b) equatorial planes for the equilibrium obtained with GEOTAIL
pressure input.

generally been found to be not isotropic but bi-Maxwellian,
with the degree of anisotropyP⊥/P‖ exceeding 2 very close
to Earth (Lui and Hamilton, 1992). For a more accurate de-
scription of the near-Earth magnetosphere, it is important,
therefore, to obtain a magnetic field structure in force bal-
ance with observed anisotropic pressure distributions. The
extension of our approach to include anisotropic pressure is
straightforward and will not be presented here. Suffice to
say that the only modifications in the equilibrium Eqs. (3)
and (4) appear in the inhomogeneous terms on the right-hand
sides. Starting with the equilibrium equation for anisotropic
pressure (see, for example, Eq. (1) in (Cheng, 1992)), these
terms can be easily obtained by the method explained in
Sect. 3.2, i.e. by dotting the equation withB × ∇ψ and
B × ∇α, respectively. For the anisotropic case computa-
tion, we use bi-Maxwellian pressure profiles and degrees
of anisotropy based on AMPTE/CCE observations (Lui and
Hamilton, 1992; De Michelis et al., 1999). The 2-D pro-
files obtained by De Michelis et al. (1999) exhibit as a main
feature an azimuthal asymmetry in pressure, with higher val-
ues at midnight and dusk than at dawn, and the highest pres-
sure at noon local time. On the other hand, the degree of
anisotropy is lowest at midnight and higher at other local
times, but again, with a maximum at noon. For this com-
putation we use the polynomial empirical formula obtained
by Lui et al. (1994) for the degree of anisotropy on the
midnight meridional line from AMPTE/CCE observations,

and we add a simple dependence of the form 2+ cosφ to
model the azimuthal variation, in accordance with the qual-
itative behavior found by De Michelis et al. (1999). With
regard to the pressure itself, the “average” pressure (defined
as 〈P 〉 = (2P⊥ + P‖)/3) obtained from AMPTE/CCE on
the nightside (Lui and Hamilton, 1992) has been shown (Za-
haria and Cheng, 2003b) to be very close to the isotropic
P values of the SK formula. Therefore, on the equatorial
plane we obtainP⊥ andP‖ from the system of equations
P⊥(R)/P‖(R) = A(R, φ = 0) and 2P⊥ + P‖ = 3PSK(R).
Finally, we also assume aφ dependence in〈P 〉, also of the
form 1+ a sinφ, with a chosen to model the qualitative az-
imuthal dependence of pressure described above. In order to
model the dawn-dusk asymmetry we choosea = −0.2 in
the western hemisphere anda = 0.33 in the eastern hemi-
sphere. Plot (a) of Fig. 10 shows contours in the equatorial
plane of constant perpendicular pressure,P⊥. OnceP⊥ and
P‖ are known in the equatorial plane, their values along the
field lines are uniquely determined from energy and magnetic
moment conservation (e.g. Cheng, 1992).

Theψin andψout surfaces delimiting our computational
domain are obtained in this case using the T01 empirical
field model (Tsyganenko, 2002). The advantage of the T01
model vs. T96 is that the former has much better data cov-
erage of the near-Earth region we investigate here. Since
the T01 model is only valid forX > −15RE , we choose
the outer flux surfaceψout to only extend to 15RE on the
nightside. The parameters we choose in the T01 model are
the same as in our previous quiet-time case:Dst = −5 nT,
PSW = 2.1 nPa,ByIMF = 0 andBzIMF = 1 nT. Plot (b) of
Fig. 10 shows profiles along the Sun-Earth axis of several
quantities describing the computed 3-D equilibrium: perpen-
dicular plasma pressure andβ, P⊥ andβ⊥, as well as degree
of anisotropy (defined here asA = P⊥/P‖−1) and the mag-
netic field magnitudeB.

The electric currents obtained in the computed 3-D equi-
librium in this case are presented in Fig. 11. The most in-
teresting feature appears in plot (a) of the figure, showing the
fact that the azimuthal (toroidal) current is peaked away from
the equator, a result previously obtained for the 2-D case by
Cheng (1992). The reason for the bifurcated structure of the
current contours in Fig. 11 is the existence of an eastward
term in theJφ formula, due to pressure anisotropy, which op-
poses the main term representing the westward current (see
Eq. (12) in Cheng, 1992). The eastward term has its maxi-
mum magnitude on the equatorial plane, thus decreasingJφ
there enough for current maxima to shift above and below
the plane. The field-aligned currents for this case, shown in
Fig. 11c, are mostly of a Region-2 sense in the nightside, and
of a Region-1 sense on the dayside. This is consistent with a
quiet time and a domain limited to|X| < 15 RE. The maxi-
mum value of the current density is 0.1µA/m2, however, the
currents exist in a very large region, spanning many degrees
of latitude. This makes the total value of the field-aligned
currents quite significant, at 1.33 MA and 1.15 MA for the
Region-1 and Region-2 currents, respectively.
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Fig. 9. Field-aligned current densityJ‖ in the ionosphere (at 1RE in our model) for the equilibrium with GEOTAIL pressure.

Fig. 10. (a)Contours of constantP⊥ in the equatorial plane;(b) Profiles along the Sun-Earth axis for: perpendicular pressureP⊥, perpen-
dicularβ⊥, degree of anisotropyA = P⊥/P‖ − 1, and magnetic field magnitudeB; the dashed line in the bottom plot representsB from the
T01 model.

5.5 Discussion of results

A synopsis of the results in the four cases presented is given
in Table 1. When comparing the obtained states with the em-
pirical magnetic field structures from the Tsyganenko mod-
els, we note that while during quiet times the force-balanced
configuration is not too different from the field predicted by
the empirical model, for disturbed magnetospheres this is
not true anymore, as the equilibrium configuration can be
radically different from the empirical Tsyganenko field. For
the disturbed time with isotropic pressure presented, we find

that a rather thin (half-thickness∼ 0.8RE) cross-tail current
sheet appears in the near-Earth plasma sheet (around 7RE),
with important implications for substorm onset mechanisms.
Another interesting feature also involving the azimuthal elec-
tric current is found when anisotropy in pressure is consid-
ered: the region of maximum current density value is no
longer on the equatorial plane, but instead two regions above
and below the plane appear.
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Fig. 11. Azimuthal current densityJφ contours in the(a) noon-midnight and(b) equatorial planes for a 3-D equilibrium with anisotropic
pressure; the dotted lines represent constantψ contours;(c) Contours of constantJ‖ in the ionosphere (at 1RE).

Table 1. Physical characteristics of the four computed 3-D equilibrium configurations.

Property / Case SK pressure Disturbed-time GEOTAIL pressure Anisotropic pressure

Magnetospheric activ-
ity / Boundary choice

quiet-time (T96) disturbed-time (T96) quiet-time (T96) quiet-time (T01)

Magnetic fieldB close to T96 field magnetic well atX =
−7RE

lower than T96 field close to T01 field

β vs. |X| at midnight monotonically increas-
ing

high near Earth (peak at
7RE)

plateau for
X < −13RE

monotonically increas-
ing

Max. azimuthalJφ 2.6 nA/m2 at 6.6RE
(on Sun-Earth axis)

15 nA/m2 at 7.2RE
(on Sun-Earth axis)

1.5 nA/m2 at 13RE (in
midnight-to-dawn sec-
tor)

2.5 nA/m2 at 7RE
(peaked away from
equatorial plane)

Jφ sheet half-thickness
whereJφ = max.

2RE 0.8RE 1.6RE 1.5RE

Region-1J‖ max. no R-1 current in our
computational domain

large (2.6µA/m2) at
63◦

moderate (1.5µA/m2)
at 68◦

small (0.06µA/m2) at
68◦ (dayside)

Region-2J‖ max. small (0.25µA/m2) at
68.5◦

small (0.2µA/m2) at
62◦

moderate (1.5µA/m2)
at 68◦

small (0.1µA/m2) at
68.5◦
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6 Summary and conclusions

In addition to knowing the magnetic field vector, the knowl-
edge of the 3-D magnetospheric plasma pressure distribution
is needed for many physical applications. There are how-
ever no global synoptic observations for the pressure, with
most measurements being limited either to low altitudes in
ionosphere or to the plasma sheet region. Although using the
scarce pressure observations in conjunction with empirical
field models has been a popular practice in the community,
the lack of force balance between the pressure and the em-
pirical fields poses problems for some applications (Zaharia
and Cheng, 2003b). Consequently, it is imperative to obtain
3-D force-balanced states in which the pressure distribution
is in equilibrium with the Lorentz forceJ × B. Using pres-
sure observations in limited domains as input for calculating
such states would effectively yield 3-D global pressure dis-
tributions once the force-balance state is found.

A method to find force-balanced magnetospheric configu-
rations is presented, and it consists of solving the 3-D force-
balance equation numerically with computational boundary
conditions obtained from empirical field models (e.g. T96
or T01) and observation-based pressure profiles as input.
We present results for both quiet- and active-time magne-
tospheres, with a choice of either isotropic or anisotropic
(bi-Maxwellian) pressure distributions. All pressure distri-
butions used are based on observations. The level of mag-
netospheric activity is parameterized by the values of the so-
lar wind parameters in the empirical models determining the
boundary conditions, as well as by changes in pressure dis-
tributions used as input. The resulting 3-D force-balanced
states successfully reproduce the large observed values of the
plasmaβ in the plasma sheet. The knowledge of the force-
balanced states is even more important in regions of high
plasmaβ, as at those locations small variations in pressure
can lead to very large changes in the magnetic field configu-
ration.

The main purpose of our work here is to present and
demonstrate the feasibility of using our improved MAG-3-D
code for a wide variety of magnetospheric situations, while
only concentrating on the major physical features of the re-
sulting computations. Due to space considerations, we do not
present in this paper an extensive analysis of how the com-
putation results depend on changes in boundary conditions
(e.g. distance to the outer flux boundary). Such an analysis
will, however, be addressed in a future study, as it is very
relevant to an important aspect (in fact, a restriction) of our
method – the fact that our boundary choices effectively spec-
ify the total amount of magnetic flux in the modeling region.
Keeping the inner and outerψ boundaries fixed is necessary
in order to have a well-posed problem; however the effect of
this restriction on the physical solutions should be minimal
if one has confidence that the chosenψ surfaces are realistic.
For this reason (and this is one of the major improvements in
this work compared to the initial work of Cheng, 1995) we
have chosen two of the most up-to-date empirical field mod-
els (T96 and T01), parameterized with realistic solar wind

input, to build those surfaces.
Finally, we note again that besides the field and current

structure provided by the code, the 3-D force-balanced states
obtained by our model yield the pressure at all locations of
our computational domain, and thus our approach represents
a rigorous method for obtaining a 3-D global pressure dis-
tribution, starting with observations in limited domains. The
3-D code results have recently been used as background con-
figurations for computing field-line resonances in the mag-
netosphere (Cheng and Zaharia, 2003), and the model should
also be of great use for other applications where a 3-D force-
balanced magnetospheric state is essential, such as stability
calculations, plasma wave and particle simulation studies.
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