
A Kinetic-Fluid Model

C. Z. Cheng and Jay R. Johnson
Princeton University, Plasma Physics Laboratory, Princeton, NJ

Received ; accepted

published in Journal of Geophysical Research, 104, 413-427, 1999

Short title: KINETIC-FLUID MODEL



2

Abstract. A nonlinear kinetic-fluid model for high β plasmas with multiple

ion species which can be applied to multiscale phenomena is presented. The model

embeds important kinetic effects due to finite ion Larmor radius (FLR), wave-particle

resonances, magnetic particle trapping, etc. in the framework of simple fluid descriptions.

When further restricting to low frequency phenomena with frequencies less than the

ion cyclotron frequency the kinetic-fluid model takes a simpler form in which the fluid

equations of multiple ion species collapse into one-fluid density and momentum equations

and a low frequency generalized Ohm’s law. The kinetic effects are introduced via plasma

pressure tensors for ions and electrons which are computed from particle distribution

functions that are governed by the Vlasov equation or simplified plasma dynamics

equations such as the gyrokinetic equation. The ion FLR effects provide a finite parallel

electric field, a perpendicular velocity that modifies the E×B drift, and a gyroviscosity

tensor, all of which are neglected in the usual one-fluid MHD description. Eigenmode

equations are derived which include magnetosphere-ionosphere coupling effects for low

frequency waves (e.g., kinetic/inertial Alfvén waves and ballooning-mirror instabilities).
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1. Introduction

A grand challenge in space plasma physics is to study low frequency multiscale

phenomena in which kinetic physics involving small spatial and fast temporal scales can

strongly affect the global structure and long time behavior of plasmas. Dominant global

magnetospheric dynamical behavior such as magnetospheric substorms; reconnection and

plasma transport processes at the magnetopause; and storm time plasma transport in

the ring current region involve complex multiscale low-frequency phenomena with time

scales much longer than the ion cyclotron period.

Coupling between multiple spatial and temporal scales is an inherently difficult

process to model. The difficulty stems from the disparate scales which traditionally

are analyzed separately. Global-scale phenomena are generally studied using the MHD

framework, while microscale phenomena are best described with kinetic theories. The

most fundamental kinetic description of a collisionless plasma system is to employ the

Vlasov equation to obtain particle distribution functions for all particle species and

compute the electric and magnetic fields from the particle density and plasma current by

the Maxwell’s equations. Such a treatment would involve plasma temporal and spatial

scales over many orders of magnitude, and consequently, it is extremely difficult to

perform analytical analysis or numerical simulations for low frequency global phenomena.

To effectively model kinetic effects on low frequency MHD phenomena, we need not only

eliminate high frequency (higher than ion cyclotron frequency) and small scale (smaller

than ion gyroradius) phenomena from the governing dynamical and field equations, but

also retain essential coupling between fast temporal and small spatial scale kinetic physics

with slow temporal and large spatial scale MHD physics.

We have previously developed a kinetic-MHD model [Cheng, 1991] to study particle

kinetic effects on MHD phenomena by taking advantage of the simplicity of the MHD

model while properly including major kinetic effects of energetic particles. The kinetic-

MHD model assumes that the plasma consists of two components: (1) a low energy

core component which has major density fraction and (2) an energetic component which

has low density, high energy and high β, and does not satisfy the MHD description.

Each component can consist of more than one particle species. Instead of employing full

kinetic approach for all particle species, the kinetic-MHD model treats the low energy

core plasma by the MHD description and energetic particles by kinetic approach such

as the gyrokinetic equation [Frieman and Chen, 1982; Hahm et al., 1988; Brizard, 1989]

or Vlasov equation, and the coupling between the dynamics of these two components of

plasma is through the plasma pressure in the momentum equation. Because kinetic effects

of the core component are neglected and the energetic particle density is low, the parallel

electric field is negligible. The kinetic-MHD model optimizes both the physics content

and theoretical (analytical as well as numerical) effort for studying such two-component
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plasmas, and properly accounts for the energetic particle dynamics of high-β plasma with

pressure anisotropy in general magnetic field geometries. The kinetic-MHD model has

been successfully employed to study the stability of ballooning-mirror instability which

has improved understanding of the compressional Pc 5 waves in the ring current region

[Cheng and Qian, 1994].

The basic assumption of the previously developed kinetic-MHD model will break

down if the energetic particle density is comparable to core plasma density. Another

major weakness of the kinetic-MHD model [Cheng, 1991] is that the kinetic effects

associated with core plasma component are neglected. It is thus important to extend the

kinetic-MHD model to properly include important kinetic effects of all particle species.

It is expected that the core plasma kinetic effects will modify the Ohm’s law, introduce

gyroviscosity stress tensor to the momentum equation, and modify the adiabatic pressure

law.

In this paper we present a new kinetic-fluid model that includes important kinetic

effects of all particle species with a minimum of modification to the one-fluid equations:

the mass density continuity equation, momentum equation, and a generalized Ohm’s

law. Kinetic effects are included in the particle pressure tensors which are obtained from

the moments of the particle distribution functions. Specifically, important global effects

such as background density, temperature and magnetic field gradients; magnetic field

curvature; large plasma β; and pressure anisotropy are retained, while important kinetic

effects, such as finite Larmor radius; resonant wave-particle interactions; and bounce

resonance are added. These kinetic effects are essential when describing multiscale

coupling processes; for example, we have demonstrated that wave-particle resonance

and background plasma gradients are important in determining the wave structure and

stability of global mirror modes in the magnetosheath [Johnson and Cheng, 1997a].

In the presence of background gradients, finite Larmor radius effects couple global

disturbances with kinetic Alfvén waves which can strongly interact with ions because the

perpendicular wavelength is the order of the ion gyroradius. Wave-particle interaction

leads to anomalous particle transport and dissipation which can significantly alter the

background equilibrium on the transport time scale as demonstrated at the magnetopause

for kinetic Alfvén waves [Johnson and Cheng, 1997b]. Energetic trapped particles can

strongly affect the stability of ballooning-mirror modes in the ring current region. The

importance of these effects is exemplified in observed Pc 4-5 waves [Takahashi et al.,

1987] which generally exhibit antisymmetric mode field-aligned structure in the parallel

magnetic field component contrary to the MHD theory prediction. Energetic trapped

particles which are accounted for in the kinetic-fluid theory, but not in MHD, stabilize

the symmetric modes and therefore explain the observations [Cheng and Qian, 1994;

Cheng et al., 1994].

In the following sections we will first motivate the need for a new kinetic-fluid model
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by discussing the advantage and shortcomings of the ideal MHD model and our previously

developed kinetic-MHD model. Then, we present a kinetic-multifluid model for plasmas

with multiple ion species that includes kinetic effects of finite ion gyroradii and wave-

particle resonances for all particle species. The kinetic-multifluid mode is appropriate for

studying phenomena with frequencies up to the order of ion cyclotron frequencies. If we

further restrict the temporal scales to frequencies below the ion cyclotron frequency, the

kinetic-multifluid mode is greatly simplified to a low frequency kinetic-fluid model that

consists of one-fluid equations. Then, we demonstrate that our low frequency kinetic-

fluid model properly describes all major particle kinetic effects by obtaining a dispersion

relation for low frequency waves and instabilities which properly accounts for the well

known kinetic Alfvén waves. Finally we summarize the paper.

2. Limitation of Ideal MHD Model

The most commonly employed model used to study global plasma dynamics is the

one-fluid ideal MHD model. The global dynamics of the ideal MHD plasma is governed

by the mass density continuity equation, momentum equation, adiabatic pressure law

and Ohm’s law. We shall employ the rationalized MKSA unit system in the paper. The

center-of-mass density continuity equation is given by

d

dt
ρ+ ρ∇ ·V = 0, (1)

where d/dt = ∂/∂t+V ·∇ is the total time derivative, ρ =
∑
j njmj is the center-of-mass

density with the summation over all particle species, nj is the particle density of each

particle species, mj is the particle mass, V =
∑
j njmjVj/ρ is the bulk fluid velocity, and

Vj is the fluid velocity of each particle species. The momentum equation is given by

ρ
d

dt
V = −∇P + J×B, (2)

where J is the plasma current, B is the magnetic field, P is the isotropic plasma pressure

due to all particle species in the center-of-mass reference frame. Both the center-of-

mass density continuity equation and the momentum equation are exact. The Maxwell’s

equations in the magnetostatic limit hold: the Faraday’s law, ∂B/∂t = −∇× E, where

E is the electric field; the Ampere’s law, J = ∇×B; and ∇ ·B = 0.

To close the above equations, the ideal MHD model prescribes the relation between

the electric field and the fluid velocity by the Ohm’s law,

E + V ×B = 0, (3)

so that the perpendicular fluid motion is determined by the E × B motion, and the

parallel electric field is zero. In the resistive MHD limit the parallel electric field is
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proportional to the parallel current density through plasma resistivity. The dynamics

of plasma pressure is described by the adiabatic pressure law which relates the plasma

pressures to the plasma density, plasma convection as well as compression by

d

dt

(
Pρ−5/3

)
= 0. (4)

The major advantage of the one-fluid MHD model is that the governing equations are

much simpler than the kinetic equations and properly describe the global profile and

geometrical effects.

The fundamental shortcomings of the MHD model are in the Ohm’s law and

adiabatic pressure law: (a) the plasma is frozen in the field lines and moves across the field

with a E × B drift velocity, (b) the plasma pressure changes adiabatically. The Ohm’s

law and adiabatic pressure law are appropriate only if the frequency, ω, and perturbation

wavenumber, k, of MHD phenomena satisfy the frequency and spatial scale ordering

assumptions that ωci > ω > ωb, ωd and L > k−1 > ρi, where ωci is the ion cyclotron

frequency, ωb is the particle bounce frequency, ωd is the particle magnetic (∇B and

curvature) drift frequency, L is the background plasma and magnetic field scale length,

and ρi is the ion Larmor radius. These assumptions break down if the particle magnetic

drift velocity is not small in comparison with the E×B drift velocity or if kinetic effects

such as finite particle Larmor radii, wave-particle resonances and particle trapping in a

nonuniform magnetic field are important. For example, because ωd is proportional to

the particle energy, energetic particles can significantly affect the MHD stability. For

low frequency MHD modes with ω � ωd the energetic particle dynamics perpendicular

to B are no longer governed by the E × B drift, but rather by the magnetic drift. For

MHD modes with ω ' ωd, the energetic particle can resonate with MHD waves and

excite new type of kinetic-fluid modes. When the Alfvén speed is approximately equal to

the particle velocity, the MHD shear Alfvén waves can be driven unstable by free energy

of particle pressure gradient via wave-particle bounce resonance processes if the wave

frequency is less than the particle diamagnetic drift frequency. In addition, because ion

motion across field lines is different from the electron E × B motion, significant charge

separation can result if the perpendicular wavelength is on the order of ion gyroradii. The

resultant charge separation not only allows the kinetic Alfvén waves to travel across the

field lines but also gives rise to a parallel electric field. Because the particle gyroradius

is proportional to the particle velocity, energetic ions resonating with the kinetic Alfvén

waves can decouple from the magnetic fields and lead to significant diffusion across the

magnetic field [Johnson and Cheng, 1997b]. In addition, the electric field can effectively

accelerate or decelerate resonant ions.

In order to study kinetic effects on MHD phenomena, we have previously developed

a hybrid kinetic-MHD model [Cheng, 1991] for describing low-frequency phenomena in

high β (β ' O(1)) anisotropic plasmas for general magnetic field geometries. However,
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while the kinetic-MHD model retains full kinetic effects of energetic particles, it neglects

kinetic effects of the core plasma component by assuming that the core plasma component

satisfies ideal MHD description. The kinetic-MHD model is applicable to magnetized

collisionless plasma systems where the energetic particle density is small in comparison

with the low energy core plasma component so that parallel electric field effects are

negligibly small. However, for problems that require core plasma kinetic effects (such

as kinetic Alfvén waves) it is important to modify the kinetic-MHD model so that it

properly addresses the relevant core plasma kinetic effects. In the following sections

we shall first present a kinetic-multifluid model that is applicable to ion cyclotron wave

phenomena for multiple ion species. Then, the kinetic-multifluid model is reduced to a

low frequency kinetic-fluid model that is applicable to MHD phenomena with frequencies

below ion cyclotron frequencies. The low frequency kinetic-fluid model preserves the

one-fluid framework, but retains the kinetic effects of multiple ion species.

3. Kinetic-Multifluid Model

We consider a plasma with multiple ion species which is common in space

environment and laboratory fusion devices. First, we shall present a general kinetic-

multifluid model that eliminates temporal scales with frequency higher than the ion

cyclotron frequency. Because the magnetic field can vary by orders of magnitude in the

magnetosphere, it is often necessary for a global model to be valid at the ion cyclotron

frequency of each ion species as well as in the MHD regime. For example, consider

ion cyclotron waves generated in the central plasma sheet by ion temperature anisotropy

which frequently are associated with ground based observations. The magnetic field varies

several orders of magnitude between the central plasma sheet and the ionosphere, and in

order to describe these waves with a global model, it must be sufficiently general to include

ion cyclotron resonances. The kinetic-multifluid model consists of a set of fluid equations

which are closed by the solutions of kinetic equations for each species. The fluid equations

consist of continuity equations and momentum equations for each particle species and will

be closed provided the particle pressure tensors are obtained from solutions of the Vlasov

equation. The particle kinetic physics is incorporated through plasma pressure tensors.

Because of small electron mass, the electron momentum equation can be replaced by the

Ohm’s law and the electron density determined by the charge quasi-neutrality condition.

In this form, the model is sufficiently general to describe global structures with frequency

up to the ion gyrofrequency. Hence, it is appropriate for studying ion-cyclotron waves

and other low frequency phenomena.

For each particle species the density continuity and momentum equations are given

by
∂nj
∂t

+∇ · (njVj) = 0 (5)
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and

njmj

(
∂

∂t
+ Vj · ∇

)
Vj = njqj (E + Vj ×B)−∇ · Pj (6)

where qj is the particle charge, mj is the particle mass, the pressure tensor for each

species is defined in its moving frame by

Pj = mj

∫
d3v(v−Vj)(v−Vj)fj, (7)

and fj is the particle distribution function for species j.

A generalized Ohm’s law that relates the current to the electric field is obtained

by multiplying Eq. (6) by qj/mj and by summing over all particle species (conveniently

ignoring corrections which are O(me/mi)) and is given by

me

nee2

[
∂J

∂t
+∇ · (JV + VJ)

]
+ ηJ =

E +
1

nee

(∑
i

niqiVi − J

)
×B +

1

nee
∇ ·

(
Pcm
e −∑

i

qime

emi
Pcm
i

)
, (8)

where the summation over i is for all ion species, e = |qe|, the center-of-mass pressure

tensor for each species is defined relative to the bulk flow velocity V by

Pcm
j = mj

∫
d3v(v−V)(v−V)fj , (9)

which is related to Pj by Pcm
j = Pj+njmj(V−Vj)(V−Vj), and the plasma resistivity (η)

contribution is conveniently added to model collisional effects. In deriving the generalized

Ohm’s law we have made use of the charge quasi-neutrality condition, nee =
∑
i niqi,

which relates the electron density to the ion densities. The charge quasi-neutrality

condition is equivalent to ∇ · J = 0. Note that the generalized Ohm’s law essentially

replaces the electron momentum equation. For a single ion species, the generalized Ohm’s

law reduces to the well known one-fluid form with Vi = V(1+O(me/mi)). However, for

multiple ion species, the generalized Ohm’s law relates the electric field to the density

and fluid velocity of all ion species. This complication arises because the diamagnetic

and polarization drift velocities are different for each ion species. The one-fluid mass

density and momentum can thus not be used to couple with the generalized Ohm’s law.

Therefore, in our kinetic-multifluid model, we shall adopt the density and momentum

equations for each ion species. The electron momentum equation is replaced by the

generalized Ohm’s law. The electric and magnetic fields are related to the plasma current

and are obtained from Maxwell’s equations in the magnetostatic limit: the Faraday’s

law, ∂B/∂t = −∇ × E, where E is the electric field; the Ampere’s law, J = ∇ × B;

and ∇ · B = 0. To close the above multifluid equations, we need to specify the
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pressure tensor for each particle species. Instead of prescribing a fluid description for

electron and ion pressure tensors, we shall compute the pressure tensor from the particle

distribution functions. For collisionless plasmas the most fundamental description of

particle dynamics is by the Vlasov equation:

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∂f

∂v
= 0. (10)

The particle dynamics are correct even for systems with equilibrium profile scale length

on the order of ion gyroradii. In many plasma systems the electron dynamics can be

adequately simplified by the guiding center particle description with the fast electron

gyro-motion ignored. If possible, the electron pressure tensor will be expressed in terms

of an appropriate equation of state or in an analytic form to minimize the computational

requirements so that computational resources can be devoted to wave-ion interactions and

complicated dynamics which occur when the gyroradius is on the order of the background

field gradients.

This kinetic-multifluid model has eliminated high frequency wave phenomena with

frequency the order of the electron cyclotron frequency. It is appropriate for studying

Alfvén , ion cyclotron, and MHD waves. The difference between the kinetic-multifluid

model and full kinetic Vlasov model is that the ion densities and velocities are governed

by the continuity and momentum equations instead of computing from the particle

distribution functions, so that high frequency phenomena involving electron dynamics

are basically eliminated. This kinetic-multifluid model is different from the previously

developed kinetic-MHD model [Cheng, 1991] in that (1) the dynamics of multiple ion

species are properly treated, (2) a generalized Ohm’s law is adopted instead of the

simplified Ohm’s law, (3) the particle pressure tensor is computed from appropriate

particle distribution functions for all particle species, (4) the Vlasov equation, instead of

the low frequency gyrokinetic equation, is employed for particle dynamics if ρi/L ∼ O(1)

and/or ω/ωci ∼ O(1), (5) effects of equilibrium flow are included.

This kinetic-multifluid model is appropriate for nonlinear simulations of multiscale

phenomena for general magnetic field geometry. However, it still contains the fast ion

cyclotron time scale and is therefore difficult for performing simulations of phenomena

which have a longer, MHD time scale. Moreover, it is also difficult for analytical analysis

because analytical solutions of the Vlasov equation for systems with complex magnetic

field geometries are, in general, difficult to obtain. To improve the kinetic-multifluid

model for longer time scale simulations of global MHD behavior, we will further reduce

the multifluid equations by employing one-fluid equations and a low frequency Ohm’s

law as well as simplify particle dynamics by employing the gyrokinetic equations.
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4. Low Frequency Kinetic-Fluid Model

A major purpose of this paper is to further restrict the temporal scales to frequency

below the ion cyclotron frequency and to obtain a low frequency nonlinear kinetic-fluid

model involving one-fluid equations. The model eliminates ion cyclotron waves, but is

appropriate for studying kinetic effects on MHD phenomena. It is in this regime that the

multi-ion fluid model reduces to an one-fluid model. The basic reason for this is that to

the lowest order in ω/ωci, all ion velocities are dominated by the E×B and diamagnetic

drift motion. Hence an one-fluid description of a low frequency generalized Ohm’s law

can be obtained by keeping the information on the ion diamagnetic drift motion which

depends on ion mass, charge and pressure gradient. The information that is lost in the

one-fluid model is the individual ion cyclotron waves.

To obtain an one-fluid description of the generalized Ohm’s law, we first rewrite the

ion momentum equation, Eq. (6), as

∂

∂t
(nimiVi) = niqi (E + Vi ×B)−∇ · P0

i , (11)

where

P0
i = mi

∫
d3vvvfi. (12)

The perpendicular ion velocity, Vi⊥ = B× (V ×B)/B2, can be written as

Vi⊥ = VE + Vdi + Vpi, (13)

where

VE =
E×B

B2
, (14)

Vdi =
B×∇ · P0

i

niqiB2
, (15)

and

Vpi =
1

niqi

B

B2
× ∂(nimiVi)

∂t
(16)

are the E×B, diamagnetic and polarization drift velocities, respectively, for each species.

Multiplying nimi to the ion perpendicular velocity and summing over all ion species we

obtain

ρV⊥ = ρVE +
∑
i

nimi(Vdi + Vpi). (17)

Finally, multiplying niqi to the ion perpendicular velocity and summing over all ion

species we have∑
i

niqiVi⊥ = neeV⊥ +
∑
i

niqi(Vdi + Vpi)− nee
∑
i

nimi

ρ
(Vdi + Vpi). (18)
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We note that the difference(
niqi
nee

− nimi

ρ

)
Vpi << Vpi ∼ O(ω/ωci)(VE + Vdi), (19)

which can be neglected in Eq. (18). For a single ion species the difference is zero. Then

we have ∑
i

niqi
nee

Vi⊥ ' V⊥ +
∑
i

(
mi

ρqi
− 1

nee

)
∇ · P0

i ×
B

B2
, (20)

and from Eq. (8) a low frequency generalized Ohm’s law can be obtained as

E + V ×B =
1

nee

[
J×B−∇ ·

(
Pcm
e −∑

i

qime

emi
Pcm
i

)]

+
∑
i

(
mi

ρqi
− 1

nee

)
B

B
×
(
∇ · P0

i ×
B

B

)
+

me

nee2

[
∂J

∂t
+∇ · (JV + VJ)

]
+ ηJ, (21)

which eliminates the ion density and fluid velocities for all ion species in favor of the

center-of-mass density, bulk fluid velocity and the ion pressure tensors. For a single

ion species case, the P0
i term is on the order of me/mi and can be ignored and Eq. (21)

reduced to the well known generalized Ohm’s law [e.g., Krall and Trivelpiece, 1986]. Note

that Eq. (21) is for multi-ion species and has not been derived previously.

In addition to the low frequency generalized Ohm’s law we need to obtain one-fluid

mass density and momentum equations which can be found in most plasma physics text

books [e.g., Krall and Trivelpiece, 1986]. Multiplying Eq. (5) by mj and summing the

equations over all particle species, the equation for mass density transport in the one-fluid

form is given by
∂ρ

∂t
+∇ · (ρV) = 0, (22)

where the summation is over all particle species including both electron and ions.

Summing Eq. (6) over all particle species and assuming the charge quasi-neutrality

condition gives the equation for momentum transport in the one-fluid form

ρ

(
∂

∂t
+ V · ∇

)
V = J×B−∇ ·∑

j

Pcm
j . (23)

Thus, our low frequency kinetic-fluid model consists of the set of one-fluid equations,

Eqs. (21–23), which is closed by coupling with kinetic descriptions for particle distribution

such as the gyrokinetic equation from which pressure tensors for all particle species can be

determined. The electron density can be determined either via ion densities by using the

charge quasi-neutrality condition or from the electron distribution function. Consistent

with the low frequency generalized Ohm’s law, the electron density and pressure tensors

for all particle species must be valid to O(ω/ωci). Note that there are only three one-fluid
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equations in our one-fluid model which is much simpler than the multifluid model when

there are more than one ion species. Moreover, we have the flexibility of dealing with

particle pressure tensors for hot ion species by kinetic analysis and for thermal or cold

ion species by fluid descriptions such as adiabatic pressure law or truncated pressure

equations derived from the kinetic equations.

5. Gyrokinetic Formulation

If the particle magnetic moment is an adiabatic invariant (which is satisfied if

the gyroradius is smaller than the equilibrium magnetic field gradient scale length

perpendicular to the magnetic field, L⊥), the gyrokinetic formulation, instead of the

full Vlasov equation, can be employed to describe the particle dynamics in our kinetic-

fluid model for low-frequency phenomena. The gyrokinetic formulation is also limited

by the assumptions that k‖L‖ > 1 and k⊥L⊥ > 1, where L‖ is the parallel background

equilibrium scale length. It is well known that it is unusual to have zero magnetic field

in the magnetosphere except in isolated points because of the complexity of IMF and

solar wind structure. It is also unlikely that the ion gyroradii exceed the magnetic field

gradient scale length except in very thin tails which may occur at substorm onset region

or far magnetotail. In laboratory plasmas the gyrokinetic formulation is valid because of

the strong magnetic field employed to confine the plasmas. Thus, the assumptions of the

gyrokinetic formulation can be satisfied for most space and laboratory plasma conditions.

To simplify the analytical treatment we shall consider collisionless plasmas without

equilibrium flow. The case with equilibrium flow will be presented in the future. In

a general three-dimensional equilibrium with nested flux surfaces, the magnetic field

can be expressed as B = ∇ψ × ∇α, where ψ is chosen as the magnetic flux function.

Both ψ and α are three-dimensional functions and are constant along magnetic field

lines. The lines where surfaces of constant ψ and α intersect represent magnetic field

lines. For a collisionless plasma the particle energy per particle mass (E = v2/2) and

the adiabatic invariants, magnetic moment per particle mass (µ = v2
⊥/2B) and the

longitudinal invariant (J‖ =
∫
v · dx), are constant during the drift motions, where v‖

and v⊥ are the components of the velocity parallel and perpendicular to B in the guiding

center coordinate, respectively. The guiding-center equilibrium particle distribution

function must have the form F = F (E, µ, J‖). In general, J‖ = J‖(E, µ, ψ, α) and

F = F (E, µ, ψ, α). If all particles on each field line share the same drift surface, where

ψ labels the drift surface, then J‖ = J‖(E, µ, ψ) and F = F (E, µ, ψ). The guiding-center

particle distributions F = F (E, µ, ψ) can be either prescribed by an analytical form or

obtained from the satellite measurements of the particle flux. The equilibrium parallel
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and perpendicular pressures for each particle species are given by(
P‖
P⊥

)
=
∑
σ‖

2πm
∫ ∞

0
dE
∫ E/B

0
dµ
BF

|v‖|
(

v2
‖

µB

)
, (24)

where the summation is over the particle species j and σ‖ which represents the direction

of particle velocity parallel to B, and mj is the particle mass. The parallel velocity v‖
has the form v‖ = σ‖

√
2(E − µB). By inspection, P⊥ and P‖ are functions of ψ and B

only.

We consider perturbations with k⊥ > k‖ and assume a WKB eikonal representation

for perturbed quantities, i.e., δf(x,v, t) = δf(s,k⊥,v, t) exp (i
∫
dx⊥ · k⊥) , where s is

the distance along the equilibrium magnetic field. Following the gyrokinetic formulation

the perturbed particle distribution function can be expressed as

δf = − q

m

∂F

∂E Φ +
q

mB

∂F

∂µ
(Φ − v‖A‖) +

∑
l

{
gl − q

mB

∂F

∂µ
〈δLl〉

}
eiLl, (25)

where the summation over l is over all integers,

〈δLl〉 =

[
(Φ− v‖A‖)Jl(λ)− v⊥δB‖

k⊥
J ′l (λ)

]
, (26)

Φ is the perturbed electrostatic potential, A‖, and δB‖ are the vector potential and

perturbed magnetic field parallel to the equilibrium magnetic field B, respectively, Jl is

the Bessel function of order l with argument λ = k⊥v⊥/ωc, Ll = k⊥ × v⊥ · b̂/ωc − lθ,

θ is the particle gyrophase angle between k⊥ and v⊥, b̂ = B/B, and gl, is the l-th

nonadiabatic contribution to the perturbed particle distribution function. For l = 0, gl
represents the main low frequency (ω < ωc) contribution and is governed by the nonlinear

gyrokinetic equation for high β, anisotropic pressure plasmas in a general magnetic field

geometry [Frieman and Chen, 1982; Hahm et al., 1988; Brizard, 1989] given by[
∂

∂t
+ (v‖ + vd) · ∇

]
g0 = −

[
q

m

∂F

∂E
∂

∂t
− B×∇(F + g0)

B2
· ∇

]
〈δL0〉, (27)

where vd = (B/Bωc) × [∇(µB) + κv2
‖] is the particle magnetic drift velocity in the

equilibrium magnetic field, and κ = b̂ · ∇b̂ is the equilibrium magnetic field curvature.

Equation (27) shows that the nonlinearity arises from a gyrophase-averaged effective

Eeff ×B · ∇ coupling, where Eeff = −∇(Φ− v ·A). Note that the nonlinear polarization

drift is contained within the finite Larmor radius corrections in J0 and J1. The

electric field is related to the electrostatic potential and the vector potential A by

E = −∇Φ− ∂A/∂t, where δB = ∇×A.

For l 6= 0, gl represents the (ω/ωc) correction to the particle distribution function,

which contributes to the leading order finite ion Larmor radius effects in the gyroviscosity



14

and the fluid velocity. Because we are interested in low frequency phenomena, the

nonlinear effects in gl can be ignored. Then, gl is governed by the linearized general

frequency gyrokinetic equation [?Chen and Tsai, 1983; Berk et al., 1983](
ω + iv‖

∂

∂s
− ωd − lωc

)
gl =

qF

T
(ω̃l − ωT∗ )〈δLl〉, (28)

where ω̃l = −T/m[ω∂/∂E + (lωc/B)∂/∂µ] lnF , ωT∗ = (T/qB)k⊥ · b̂ × ∇ lnF , ωd =

ωbmµB/T + ωκmv
2
‖/T , ωb = (T/qB2)k⊥ · b̂ × ∇B, and ωκ = (T/qB)k⊥ · b̂ × κ. We

emphasize that the important effects of background gradients, magnetic curvature, and

wave-particle resonances are all retained in the gyrokinetic equations through the various

drift effects. Finite Larmor radius effects are included through the Bessel functions, and

the theoretical framework is valid even for k⊥ρi ∼ O(1). For low frequency phenomena

with ω/ωc << 1, the contribution to the pressure tensor from gl with l 6= 0 can be

obtained to the leading order in ω/ωc. With the frequency ordering: ωc > ω, k‖v‖, ωd,
the solution of gl is given by

gl − q

mB

∂F

∂µ
〈δLl〉 =

 q

mB

∂F

∂µ

ω̂

lωc
− qF

T

ω̃0 − ωT∗
lωc

+O

(
ω̂

ωc

)2
 〈δLl〉, (29)

where ω̂ = (ω − k‖v‖ − ωd).

The pressure tensor P of each particle species in the guiding center coordinate can

be expressed in terms of the diagonal elements and off-diagonal elements:

P = P⊥(I− bb) + P‖bb + Π, (30)

where I is the unit dyadic, , I = k̂⊥k̂⊥+ b̂× k̂⊥b̂× k̂⊥+ b̂b̂, Π is the off-diagonal tensor

element and b = B/B is the unit vector along the magnetic field. Usually the diagonal

(parallel and perpendicular) elements is more important than the off-diagonal elements

in the momentum equation. The diagonal pressure tensor elements are computed from

the particle distribution function f by

P‖ = m
∫
d3vv2

‖f,

P⊥ =
1

2
m
∫
d3vv2

⊥f, (31)

where v‖ is the particle velocity along the b direction, and v⊥ is the particle velocity

perpendicular to the b direction in the guiding center coordinate. Employing Eq.(25)

and carrying out the gyrophase angle average and the summation over l, the perturbed

diagonal pressure elements are given by

δP⊥ =
∫
d3v

mv2
⊥

2

(
g0J0 +

q

m

∂F

∂E Φ +
q

mB

∂F

∂µ

[
(Φ− v‖A‖)(1− J2

0 )− v⊥δB‖
k⊥

J0J1

])
,

(32)
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and

δP‖ =
∫
d3vmv2

‖

(
g0J0 +

q

m

∂F

∂E Φ +
q

mB

∂F

∂µ

[
(Φ− v‖A‖)(1− J2

0 )− v⊥δB‖
k⊥

J0J1

])
.

(33)

The off-diagonal pressure tensor element is contributed by the perturbed particle

distribution and is given by

Π = Π̃ +
1

2
m
∫
d3v(v‖v⊥ + v⊥v‖)δf (34)

where the gyroviscosity tensor is defined as

Π̃ =
1

2
m
∫
d3v

[
v⊥v⊥ − v2

⊥
2

(I− bb)

]
δf (35)

If k⊥ � k‖, the contribution from Π̃ need only be considered in the off-diagonal pressure

tensor element. Furthermore, because Π̃ is on the order of ω/ωc in comparison with

the diagonal pressure tensor elements, we shall retain only linearized perturbed particle

distribution function in obtaining Π̃. To evaluate the off-diagonal terms in the pressure

tensor, first we obtain

v⊥v⊥ − v2
⊥
2

(I− b̂b̂) =
v2
⊥
2

[(cos 2θC + sin 2θS)] , (36)

where θ is the particle gyrophase angle between b̂ and k̂⊥, C = 2k̂⊥k̂⊥ − (I − b̂b̂),

S = k̂⊥b̂ × k̂⊥ + b̂ × k̂⊥k̂⊥, and b̂ and k̂⊥ are the unit vector along the magnetic field

and perpendicular wave vector directions, respectively. Then,

∇ · Π̃ = b̂× (∇δPc × b̂) + b̂×∇⊥δPs, (37)

b̂ · ∇ × ∇ · Π̃ = ∇2
⊥δPs, (38)

and

b̂ · ∇ × (b̂×∇ · Π̃) = ∇2
⊥δPc, (39)

where

δPc =
∫
d3v

mv2
⊥

2
cos 2θδf =

∫
d3v

mv2
⊥

2

∑
l

gl(Jl(λ) + 2J ′′l (λ)), (40)

and

δPs =
∫
d3v

mv2
⊥

2
sin 2θδf =

∫
d3v

mv2
⊥

2

∑
l

2ilgl

(
Jl(λ)

λ2
− J ′l (λ)

λ

)
. (41)

In deriving the above equations, the following identities and definitions are used:

eiλ sin θ =
∑
l Jl(λ)e

ilθ, 〈eiLl cosnθ〉 = 1
2
[Jl−n(λ) + Jl+n(λ)], 〈A(θ)〉 = 1/2π

∫ 2π
0 dθA(θ)
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is the gyrophase average of A(θ), n is an integer, 〈eiLl sinnθ〉 = 1
2i

[Jl−n(λ) − Jl+n(λ)],∑
l J

2
l = 1,

∑
l J

′2
l = 1/2,

∑
l JlJ

′′
l = −1/2, and

∑
l JlJ

′
l =

∑
l J

′
lJ

′′
l = 0.

Making use of the solution of gl given in Eq. (29), the summation over l in δPc and

δPs can be carried out, and to leading order in (ω/ωc) we obtain

δPc = δPc1 + δPc2, (42)

where

δPc1 =
∫
d3v

mv2
⊥

2
g0(J0 − 2J ′1) (43)

is due to g0, J
′
1 = J0 − J1/λ, and

δPc2 =
∫
d3v

mv2
⊥

2

q

mB

∂F

∂µ

[
(Φ− v‖A‖)(2J0J

′
1 − J2

0 )− v⊥δB‖
k⊥

(J0J1 − 2J1J
′
1)

]
(44)

has no contribution due to g0. Note that δPc contain the finite gyroradius contribution

and those corrections come in at the same order as δP⊥. There is no contribution due to

g0 in δPs which is given by

δPs =
∫
d3v

imv2
⊥

λ2

[
qF

T

ω̃0 − ωT∗
ωc

− q

mB

∂F

∂µ

ω̂

ωc

]
(45)

×
[
(Φ− v‖A‖)(λJ0J1 + J2

0 − 1) − v⊥δB‖
2k⊥

(λ(1− 2J2
1 )− 2J0J1)

]
.

Note that δPs is smaller than δPc by ω/ωc. Because of the small electron mass the

gyroviscosity tensor is mainly from ion contribution. We also note the gyroviscosity

tensor elements are smaller than the diagonal pressure elements by (k⊥ρi)2 in the small

ion gyroradius limit. From the particle equilibrium guiding center distribution functions

δPc2 and δPs can be straightforwardly computed.

In order to completely determine the plasma pressure tensor, we need to obtain g0

by integrating the low frequency gyrokinetic equation, Eq.(27), which is a nonlinear

equation and in general can be solved by simulation techniques. However, for the

purpose of studying linear stability, progress can be made by integrating the gyrokinetic

equation, which has been obtained previously [Cheng, 1991]. Employing the gyrokinetic

formulation in the kinetic-fluid model is in principle much simpler than that using the

Vlasov formulation because particle and wave dynamics involving time scales faster

than ion cyclotron period are eliminated so that large numerical time steps can be

used in the numerical simulation. It is also important to point out that employing

the gyrokinetic formulation in the kinetic-fluid model primarily requires the frequency

ordering ω/ωc << 1, which is fully justified for low frequency MHD phenomena and

associated plasma transport.
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Finally we summarize this section with the expression for each particle species:

∇ · P = ∇P⊥ + BB · ∇
(
P‖ − P⊥
B2

)
+

(
P‖ − P⊥
B2

)
B · ∇B

+
B

B
×
(
∇δPc × B

B

)
+

B

B
×∇δPs. (46)

The divergence of the perturbed pressure tensor is approximately given by

∇ · δP ≈ ∇⊥δP̄⊥ + b ×∇⊥δPs + bb · ∇δP‖, (47)

where δP̄⊥ = δP⊥+δPc. Note that the gyroviscosity contribution, δPc and δPs, are mainly

due to ions because the electron gyroviscosity is much smaller and can be neglected due

to small mass.

6. Low Frequency Kinetic-Fluid Eigenmode Equations

In order to show that our low frequency kinetic-fluid model provides proper kinetic

and global effects, we will derive the linear eigenmode equations for describing nonlocal

low frequency phenomena with ω < ωci. In particular, the kinetic-fluid eigenmode

equations should properly take into account the effects of FLR for each ion species as

well as electron inertia for kinetic Alfvén waves. To derive the kinetic-fluid eigenmode

equations, we will first decompose the nonlinear one-fluid momentum equation into three

scalar components by following the paper by Cheng [1991]. First we rewrite the one-fluid

momentum equation as

ρ
dV

dt
= −∇(P⊥ +B2/2) + σB · ∇B + B(B · ∇σ)−∇ ·Π, (48)

where σ = 1 + (P⊥ − P‖)/B2. Note that ∇(P⊥ + B2/2) is the dominant term for

perturbations with k‖ < k⊥ and k⊥ρi < 1. The one-fluid momentum equation can

be decomposed into three components. First, the component parallel to B is given by

B ·
(
ρ
dV

dt
+∇ ·Π

)
= −B · ∇P‖ +

P‖ − P⊥
B

B · ∇B. (49)

To eliminate the ∇(P⊥ + B2/2) term we apply B · ∇× to the one-fluid momentum

equation, Eq. (48). Also making use of the quasi-neutrality condition, ∇ · J = 0, we

obtain the parallel current (or vorticity) equation

B2B · ∇
[
σJ ·B
B2

]
−B× κ · ∇(σB2)

+∇ ·
(
ρB× dV

dt

)
−B · ∇ × (∇ ·Π)− ρJ · dV

dt
= 0, (50)
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where κ = (B/B) ·∇(B/B). To retain the ∇(P⊥ +B2/2) term we apply the B ·∇×B×
operator to the one-fluid momentum equation, Eq. (48), and we obtain the perpendicular

current equation

B · ∇ ×
[
B×

(
ρ
dV

dt
+∇ ·Π

)]
+B2∇2

(
P⊥ +

B2

2

)
−B · ∇

[
B · ∇

(
P⊥ +

B2

2

)]

−σB2

(
∇2B

2

2
−B · ∇2B

)
+ B · ∇

[
σB · ∇B

2

2

]
−
(
J×B +∇B

2

2

)
· ∇

(
σB2

)
+σ(B · J)2 +

(
J×B +∇B2

)
· ∇

(
P⊥ +

B2

2

)
− σJ×B · ∇B

2

2
= 0. (51)

To obtain the linearized one-fluid momentum equation for low frequency

perturbations we consider perturbed quantities δB ∼ e−iωt with ω � ωci and k‖ � k⊥.

For simplicity quantities such as B, ρ, B, etc., are denoted as equilibrium values. The

linearized parallel momentum equation, which describes slow magnetosonic waves and

maintains parallel force balance, becomes

−iωρB · δV + B · ∇δP‖ + δB · ∇P‖ − P‖ − P⊥
B2

B · ∇B · δB ' 0. (52)

The linearized parallel current equation, which mainly describes the transverse Alfvén

type waves and instabilities, reduces to

B2B · ∇
[
σδJ ·B
B2

]
−B× κ · ∇(B · δB− δP‖)

−∇ · (iωρB× δV)−B · ∇ × (∇ · δΠ) ' 0, (53)

We need to obtain the perturbed center-of-mass velocity δV and parallel electric field

potential Ψ from the low frequency generalized Ohm’s law, Eq. (21). Substituting the

momentum equation, Eq. (23), into the low frequency generalized Ohm’s law and making

use of Eq. (46), we have

δV ×B ' −δE⊥ +
∑
i

(
mi

ρqi

)[
∇⊥(δP⊥i + δPic) +

B

B
×∇⊥δPis

]
− iωρ

nee
δV⊥. (54)

Combining this equation with the gyroviscous force expression, Eq. (38), and neglecting

terms on the order of (ω/ωci) we have

∇ · (iωρB× δV) + B · ∇ × (∇ · δΠ)

' iωρ∇ · δE⊥ − iω∇2
⊥
∑
i

mi

qi
(δPi⊥ + δPic)− B∇2

⊥
∑
i

δPis

' −iω∑
i

nimi∇2
⊥

[
Φ +

1

niqi

(
δPi⊥ + δPic − ωci

iω
δPis

)]
. (55)
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Note that the parallel current is related to the parallel vector potential through the

parallel Ampere’s law, ∇2
⊥A‖ = −δJ‖ and the parallel vector potential is related to the

parallel electric field by δE‖ = −∇‖Ψ = −∇‖Φ + iωA‖. Then, Eq. (53) becomes

B · ∇
[
σ∇2

⊥
B2

B · ∇(Φ−Ψ)

]
+
iωB× κ

B2
· ∇

(
B · δB− δP‖

)
+
∑
i

nimiω
2

B2
∇2
⊥

[
Φ +

1

niqi

(
δPi⊥ + δPic − ωci

iω
δPis

)]
' 0. (56)

We can give a physical interpretation to Eq. (56). This equation is the charge quasi-

neutrality condition ∇ · J = 0. The Larmor radius corrections that appear are due to

∇⊥ · J⊥ which is carried by the ion diamagnetic and polarization drift currents. The ion

diamagnetic drift contributes only through the gyroviscosity while the ion polarization

drift results from the time variation of the δE× B and diamagnetic drift. The Larmor

radius corrections also contribute to the parallel electric field which influences the parallel

current.

The linearized perpendicular current equation, which mainly describes the

compressional Alfvén type waves and instabilities, reduces to

B · ∇
[
σ

B2
B · ∇(B · δB)

]
+ B · ∇ × [B× (−iωρδV +∇ · δΠ)]

+∇2
⊥(δP⊥ + B · δB) ' 0. (57)

Because the B× operator removes the parallel dynamics information, Eq. (57) describes

mainly waves associated with the compressional magnetic field. For ω � k⊥VA, the

perturbed perpendicular pressure is out of phase with the perturbed magnetic pressure.

From Eq. (57) δP⊥ is related to the compressional magnetic field, and from Eq. (53)

δP‖ enters with the magnetic field curvature. From Eq. (54) and the gyroviscous force

expression, Eq. (39) and making use of the Faraday’s law, we have

B · ∇ × [B× (−iωρδV +∇ · δΠ)] ' ρω2B · δB +B2∇2
⊥
∑
i

δPic, (58)

where terms on the order of (ω/ωci) have been neglected. Then, Eq. (57) becomes

B · ∇
[
σ

B2
B · ∇(B · δB)

]
+
ρω2

B2
B · δB

+∇2
⊥

(
B · δB + δP⊥ +

∑
i

δPic

)
' 0, (59)

Note that the gyroviscosity enters this equation through δPic, which gives a finite ion

gyroradius correction. Eq. (59) describes the fast magnetosonic (compressional Alfvén)

waves and mirror instabilities.
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To close Eqs. (56) and (59) we need to obtain another relationship between Ψ, Φ

and δB‖. This relationship may be obtained using the charge quasi-neutrality condition

or the parallel component of the low frequency generalized Ohm’s law which is given by

B · δE = − 1

nee

[
B · ∇

(
δP‖e −

∑
i

qime

emi
δP‖i

)
+ δB · ∇P‖e

]
−
(
iωme

nee2
− η

)
B · δJ. (60)

Thus, Eqs. (56), (59) and (60) form the kinetic-fluid eigenmode equations for low

frequency waves such as kinetic Alfvén waves [Hasegawa, 1976], inertial Alfvén waves

[Goertz and Smith, 1989] as well as the kinetic ballooning and mirror modes [Cheng

and Qian, 1994]. In the next section we verify that the correct dispersion relations are

obtained for well-known kinetic effects on MHD waves.

The perturbed pressures, δP⊥ and δP‖, for each particle species must be obtained

from the perturbed particle distribution functions. In the paper by Cheng [1991] the

perturbed particle distribution functions were derived and the perturbed pressures are

written as (
δP‖
δP⊥

)
= − iB×∇Φ

ωB2
· ∇̃

(
P‖
P⊥

)

+
B · δB
B

(
∂

∂B

)
ψ

(
P‖
P⊥

)
+

(
δP̂‖
δP̂⊥

)
, (61)

where ∇̃ = ∇− ∇B(∂/∂B)ψ, the finite Larmor radius and other kinetic effects such as

wave-particle resonances and trapped particle dynamics are included in the nonadiabatic

perturbed pressures δP̂⊥ and δP̂‖, which can be properly derived by obtaining the

solutions of the gyrokinetic equation [see Appendix C in the paper by Cheng, 1991]. Note

that on the right-hand side of Eq. (61) the first term represents the convective derivative

of plasma pressure, and the second term represents the compressional magnetic field

effect associated with pressure non-uniformity along the field line resulting from pressure

anisotropy.

We point out here that the linear eigenmode equations used in our previous kinetic

Alfvén wave paper [Johnson and Cheng, 1997b] and global mirror mode paper [Johnson

and Cheng, 1997a] are more simplified than the more general eigenmode equations,

Eqs. (56), (59) and (60), because couplings between δB⊥ and δB‖ were ignored. The

eigenmode equations employed in the paper by Cheng and Qian [1994] for studying Pc

4-5 waves in the ring current region do not include core plasma kinetic effects which can

give rise to a finite parallel electric field. These shortcomings are now fixed in the present

eigenmode equations, Eqs. (56), (59) and (60) which are derived from the kinetic-fluid

model. It is thus important to revisit these problems using the more general eigenmode

equations.
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7. Alfvén Waves and Instabilities

We have at this point obtained a closed set of kinetic-fluid eigenmode equations for

low frequency (ω < ωci) waves and instabilities. Our strategy is to solve the gyrokinetic

equation in various limits and obtain particle kinetic corrections to the low-frequency

eigenmode equations. We will obtain explicit expressions of the perturbed particle

pressures and ion gyroviscosity tensors by neglecting the magnetic drift frequency.

We consider a Bi-Maxwellian ion equilibrium distribution with F (E, µ, ψ) =

N(ψ)(2πT‖(ψ)/m)−3/2 exp[−mE/T‖ + mµB0(ψ)/T0(ψ)] = n(ψ,B)(2πT⊥/m)−1

(2πT‖/m)−1/2 exp[−mv2
⊥/2T⊥ − mv2

‖/2T‖], where n(ψ,B) = N(ψ)T⊥/T‖ is the particle

density, T⊥/T‖ = (1 − B0T‖/BT0)
−1, the parallel pressure is P‖ = nT‖, and

the perpendicular pressure is P⊥ = nT⊥. Then, (q/m)∂F/∂E = −qF/T‖ and

(q/m)∂F/∂E + (q/mB)∂F/∂µ = −qF/T⊥. We now proceed to evaluate the perturbed

ion pressures and gyroviscosity in the limit ω, k‖vi > ωdi, where vi is the ion thermal

velocity and ωdi is the ion magnetic drift frequency. The solution of the linearized ion

gyrokinetic equations is obtained from Eq. (27) and is given by

gi0 ' − qi
mi

∂F

∂E
ω − ω̂∗
ω − k‖v‖

[
(Φ− v‖A‖)J0 +

v⊥δB‖
k⊥

J1

]
, (62)

where ω̂∗ = miB × k · ∇F/qiB(∂F/∂E). Then, by ignoring the temperature gradient

effect we obtain from Eq. (33) the perturbed parallel ion pressure

δP‖i = P‖i

[
−qiΦ
T‖i

+
(
1− ω∗i

ω

)(
Γ0
qiΦ

T‖i
+ (Γ0 − Γ1)

T⊥i
T‖i

δB‖
B

)]

−P‖i
(
1− ω∗i

ω

) [
1− ζ2

i Z
′](Γ0

qiΨ

T‖i
+ (Γ0 − Γ1)

T⊥i
T‖i

δB‖
B

)
, (63)

where ω∗i = (T‖i/qiB2Ni)B × ∇Ni · k⊥ is the ion diamagnetic drift frequency, ζi =

ω/
√

2k‖vi, v2
i = T‖i/mi, Z(ζi) is the plasma dispersion function, Z ′ = −2(1 + ζiZ),

Γn(bi) = In(bi)e
−bi, In is the modified Bessel function of the first kind of order n,

bi = k2
⊥Ti⊥/miω

2
ci.

Similarly, from Eqs. (32), (43), (44), and (45) we obtain the perturbed ion

perpendicular pressure and ion gyroviscosity tensor contributions:

δP⊥i + δPic = P⊥i

[
−qiΦ
T⊥i

+

(
1− ω∗iT⊥i

ωT‖i

)
(Γ0 − Γ1)

(
qiΦ

T⊥i
+ 2

δB‖
B

)]

−P⊥i
(
T⊥i
T‖i

)(
1− ω∗i

ω

)
[1 + ζiZ(ζi)] (Γ0 − Γ1)

(
qiΨ

T⊥i
+ 2

δB‖
B

)
, (64)
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and

iωciδPis
ω

= P⊥i

(
1− ω∗iT⊥i

ωT‖i

)

×
[(

1− Γ0

bi

)
qiΦ

T⊥i
+
(

1− Γ0 + Γ1

bi

)
δB‖
B

− (Γ0 − Γ1)

(
qiΦ

T⊥i
+ 2

δB‖
B

)]

+P⊥i

(
1− T⊥i

T‖i

)
k2
‖T‖i
miω2

(
1− Γ0

bi
− (Γ0 − Γ1)

)
qi(Φ −Ψ)

T⊥i
. (65)

From Eqs. (64) and (65), the vorticity equation, Eq. (56), reduces to

B · ∇
[
σ∇2

⊥
B2

B · ∇(Φ−Ψ)

]
+
iωB× κ

B2
· ∇

(
δB‖B − δP‖

)

+
∑
i

nimiω
2

B2
∇2
⊥

{(
1− ω∗iT⊥i

ωT‖i

)[(
1− Γ0

bi

)
Φ +

(
1− Γ0 + Γ1

bi

)
T⊥iδB‖
qiB

]

−T⊥i
T‖i

(
1− ω∗i

ω

)
(1 + ζiZ) (Γ0 − Γ1)

(
Ψ +

2T⊥iδB‖
qiB

)

+

(
1− T⊥i

T‖i

)
k2
‖T‖i
miω2

(
1− Γ0

bi
− (Γ0 − Γ1)

)
(Φ−Ψ)

}
' 0. (66)

Eq. (66) describes mainly the transverse/kinetic Alfvén waves and ballooning instabilities

in high β plasmas with anisotropic pressure. Note that a Padé approximation can be

used to simplify the Bessel functions so that the differential operators can remain valid

for general values of k⊥ρi. Physically, the Larmor radius corrections modify the zero

order polarization current which arises from ion inertia. Also note that for βi ∼ O(1) the

δB‖ contribution resulting from the gyroviscous force is at least of the same order as the

finite Larmor radius correction to the electrostatic potential.

For electrons, we consider k‖ve, ω� ωde so that the transition from kinetic to inertial

Alfvén waves which occurs for k‖ve ∼ ω is retained. Neglecting effects of trapped particle

dynamics, gyroradii, and pressure anisotropy, the linear perturbed electron distribution

function can be straightforwardly obtained from Eqs. (25) and (27) and is given by

δfe ' − e

m

∂F

∂E
[
ωT∗
ω

Φ +

(
1− ωT∗

ω

)
Ψ +

ω − ωT∗
k‖v‖ − ω

(
Ψ +

v2
⊥

2ωce
δB‖

)]
(67)

Integration over the velocity space and ignoring the temperature gradient we obtain the

perturbed electron density

δne = ne

[
ω∗e
ω

eΦ

Te
+
(
1− ω∗e

ω

)(
(1 + ζeZ(ζe))

eΨ

Te
− ζeZ(ζe)

δB‖
B

)]
, (68)
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the perturbed parallel electron pressure is given by

δP‖e = neTe

[
ω∗e
ω

eΦ

Te
+
(
1− ω∗e

ω

)((
1− ζ2

eZ
′(ζe)

) eΨ
Te

+ ζ2
eZ

′(ζe)
δB‖
B

)]
, (69)

and the perturbed perpendicular electron pressure is given by

δP⊥e = neTe

[
ω∗e
ω

eΦ

Te
+
(
1− ω∗e

ω

)(
(1 + ζeZ(ζe))

eΨ

Te
− 2ζeZ(ζe)

δB‖
B

)]
, (70)

where ζe = ω/
√

2k‖ve, v2
e = Te/me, and ω∗e = −(Te/eB

2ne)B×∇ne · k⊥.

We obtain the parallel current and parallel electric field from the parallel component

of the low frequency Ohm’s law, Eq. (60). Because δB⊥ = ∇ × A‖ and the parallel

electric field definition, δE‖ = −∇‖Ψ = −∇‖Φ + iωA‖, we also have

δB · ∇Pe = −ieneBk‖
(
ω∗e
ω

)
(Φ−Ψ) . (71)

Employing the parallel Ampere’s law, ∇2
⊥A‖ = −δJ‖, and ignoring plasma resistivity,

the parallel component of the low frequency Ohm’s law, Eq. (60) then reduces to

δJ‖ = −∇2
⊥

[
k‖
ω

(Φ−Ψ)

]
'∑

j

njq
2
j

T‖j

ω − ω∗j
k‖

Z ′(ζj)
2

[
Γ0Ψ + (Γ0 − Γ1)

T⊥j
qj

δB‖
B

]
(72)

where the summation over j is over all particle species. We have also neglected terms

that are on the order of (me/mi). Note that the parallel electric field in the Ohm’s law

is cancelled by a contribution from the B ·∇δP‖e term and thus the parallel electric field

potential is determined by the balance of other terms in the low frequency Ohm’s law.

Equations (59), (66), and (72) together with the expressions for perturbed particle

pressures and ion gyroviscosity tensors form a closed set of eigenmode equations

describing the dispersion of dispersive kinetic/inertial Alfvén waves as well as kinetic

ballooning and mirror modes for high β plasmas. The operator ik‖ = ∇‖ acts along

field lines, and an integral equation should be used if there are plasma and magnetic

field gradients along field lines. Kinetic effects of finite ion Larmor radii and electron-

wave particle resonances are included for nonuniform plasmas in a general magnetic field

geometry. However, kinetic effects of trapped particles and particle magnetic drifts are

neglected.

It is worthwhile to note that for high β plasmas we must retain in Eq. (72) the ion

parallel current contribution, δJ‖i, which is due to the
∑
i(meqi/mie)B·∇δP‖i term in the

parallel Ohm’s law. This term has been neglected in all previous studies involving the

Ohm’s law. To assess the importance of δJ‖i relative to δJ‖e we consider three different

limits. In the small parallel wave phase velocity limit, ω/k‖ � vi � ve, we have Z ′ ' −2,

and
δJ‖i
δJ‖e

∼ ω − ω∗i
ω − ω∗e

Te
Ti
∼ Te
Ti
.
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Thus, the ion parallel current is on the same order as the electron parallel current and

must be retained. In the medium parallel wave phase velocity limit, vi � ω/k‖ � ve, we

have Z ′(ζi) ' 1/ζ2
i and thus

δJ‖i
δJ‖e

∼ −ω − ω∗i
ω − ω∗e

Te
Ti

(
k‖vi
ω

)2

.

In the high parallel wave phase velocity limit, vi � ve � ω/k‖, the ion parallel current

can be neglected because

δJ‖i
δJ‖e

∼ ω − ω∗i
ω − ω∗e

Te
Ti

(
vi
ve

)2

∼ me

mi
� 1.

For transverse Alfvén waves, ω ' k‖VA, and thus 2(k‖ve/ω)2 = βemi/me and

2(k‖vi/ω)2 = βi. For βe > me/mi and βi > 1 the small parallel wave phase velocity limit

applies and the ion parallel current is the same order as the electron parallel current.

For βe > me/mi and βi < 1 the medium parallel wave phase velocity limit applies and

δJ‖i/δJ‖e ∼ βe/2. Obviously, if βe > 1 (due to Te/Ti � 1) the parallel ion current

contribution becomes important. For βe < me/mi and βi < 1, the high parallel wave

phase velocity limit applies and the ion parallel current can be neglected. Near the

ionosphere, ve < VA (βe < me/mi) and the electron inertia effect is important.

7.1. Dispersive Transverse Alfvén Waves in Low β Limit

We will demonstrate the dispersive aspects of Larmor radius corrections and electron

inertia on the shear Alfvén waves. For low β (β < 1) plasmas the kinetic-fluid eigenmode

equations for dispersive transverse Alfvén waves can be further simplified by considering

the limit ω � k‖vi. We can also neglect the parallel ion current contribution, the δB‖
terms, and the magnetic field curvature term in Eq. (66) which is usually smaller than

the ion inertia and field line bending terms. Then, from Eq. (72) the parallel electric

field potential is given by

Ψ = k2
⊥λ

2
pΦ
[
k2
⊥λ

2
p +

(
1− ω∗e

ω

)
ζ2
eZ

′(ζe)
]−1

, (73)

where λp = c/ωpe is the electron skin depth. By neglecting the temperature anisotropy

effect we obtain from Eq. (66) the eigenmode equation for describing nonlocal properties

of dispersive transverse Alfvén waves

B · ∇
[
σ∇2

⊥
B2

B · ∇Υ

]

+
∑
i

nimiω(ω − ω?i)

B2

(
1− Γ0

bi

)(
1− ωλ2

p∇2
⊥

(ω − ω∗e) ζ2
eZ

′(ζe)

)
∇2
⊥Υ ' 0, (74)
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where Υ = Φ−Ψ and the effects of full ion Larmor radii, diamagnetic drifts, and electron-

wave resonances are included. Note that new diamagnetic drift effects are included in

the nonlocal eigenmode equation in comparing with the previously derived dispersion

relation for kinetic Alfvén waves [Hasegawa and Chen, 1976; Lysak and Lotko, 1996]. For

bi � 1 the Bessel function can be expanded with (1 − Γ0)/bi ' 1 − 3bi/4. The Bessel

function can also be approximated by the Padé approximation, (1− Γ0)/bi ' 1/(1 + bi),

which is correct for both the bi � 1 and bi � 1 limits. Equation (74) is a three-

dimensional eigenmode equation and determines the magnetosphere-ionosphere coupling

of transverse Alfvén waves. Near the field line resonance location the equation can be

simplified to a one-dimensional field-aligned equation by taking the limit k⊥ � k‖ and

treating ∇2
⊥ = −k2

⊥.

Two limits of Eq. (74) are worth pointing out. For the limit ζe � 1 (i.e., VA � ve
and me/mi � βe < 1), Z ′(ζe) = −2 + O(ζ2

e ), and the parallel electric field potential is

given by Ψ ' k2
⊥λ

2
pΦ/

(
k2
⊥λ

2
p −meω(ω − ω∗e)/k2

‖Te
)
. For ω � ω∗e and k2

⊥Te/miω
2
ci � 1,

we have the well-known parallel electric field potential Ψ ' −(k2
⊥Te/miω

2
ci)Φ for kinetic

Alfvén waves. For one ion species we obtain the dispersion relation for kinetic Alfvén

waves

ω(ω − ω?i)

k2
‖V

2
A

=
σbi

1− Γ0
+
k2
⊥Te

miω2
ci

(
ω − ω?i
ω − ω?e

)
. (75)

Considering bi < 1 and ignoring the diamagnetic drift and pressure anisotropy effects,

we obtain the well-known dispersion relation for the kinetic Alfvén waves

ω2 = k2
‖V

2
A

[
1 +

(
3

4
+
Te
Ti

)
k2
⊥Ti

miω2
ci

]
. (76)

Equation (76) had been previously derived based on the gyrokinetic theory [Hasegawa,

1976; Hasegawa and Mima, 1978; Goertz, 1984] for low β plasmas. The eigenmode

equations including full Larmor radius effects have also been derived for kinetic Alfvén

wave and kinetic ballooning modes [Cheng et al., 1995].

Near the ionosphere where ve � VA we adopt the ordering 1 � ζe (βe � me/mi),

then Z ′(ζe) ∼ 1/ζ2
e , and we find the well known parallel electric field for inertial Alfvén

waves with Ψ ' k2
⊥λ

2
pΦ/(1 − ω∗e/ω + k2

⊥λ
2
p). It is worthwhile to note that for ω � ω∗e

and k2
⊥Te/miω

2
ci � 1 this parallel electric field potential has an opposite sign from the

kinetic Alfvén wave case. For one ion species we obtain the dispersion relation for inertial

Alfvén waves

ω(ω − ω?i)

k2
‖V

2
A

=
σbi

1− Γ0

(
1− ω∗e/ω

1− ω∗e/ω + k2
⊥λ2

p

)
. (77)

Ignoring the diamagnetic drift and pressure anisotropy effects, the inertial Alfvén wave
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dispersion relation for bi � 1 becomes

ω2 =
k2
‖v

2
A

1 + k2
⊥λ2

p

(78)

as previously obtained [Goertz and Boswell, 1979].

7.2. Reduced Two Fluid Equations for Dispersive Transverse Alfvén Waves

A reduced two-fluid model has been employed in studying shear/kinetic Alfvén waves

in low β plasmas [Streltsov et al., 1998] without gradient in density and temperature.

The equations involved are the electron parallel momentum equation, electron continuity

equation, current continuity equation and ion momentum equation. The perpendicular

current is determined by the ion momentum equation, and the parallel current from the

electron equation. An important question is whether an isothermal electron pressure,

δPe = δneTe, can be properly used in the electron momentum equation.

The electron density and parallel momentum equations are

∂ne
∂t

+∇ · (neV‖e) ' 0, (79)

and

mene
dV‖e
dt

+ eneE‖ +∇‖pe ' 0. (80)

If we use the representation E‖ = −∇‖Ψ, assume δJ‖ ' −neeV‖e, and ignore the

diamagnetic drift frequency contribution, then from the parallel Ampere’s law and the

linear electron continuity equation, Eq. (79), we obtain

δne
n0

= −e
(
k‖vA
ω

)2
k2
⊥

miω2
ci

(Φ −Ψ) . (81)

Combining this equation with the parallel electron momentum equation, Eq. (80), yields

Ψ =
k2
⊥λ

2
p

(
1− (k‖ve/ω)2

)
1 + k2

⊥λ2
p

(
1− (k‖ve/ω)2

)Φ. (82)

The result is in agreement with the (k‖ve/ω)2 � 1 and (k‖ve/ω)2 � 1 limits of Eq (73).

However, from Eqs. (68) and (69) we can easily obtain

δPe = Teδne

[
1 + 2ζ2

e (1 + ζeZ(ζe))

1 + ζeZ(ζe)

]
. (83)

Near the ionosphere ζe � 1, δPe ∼ 3Teδne, which is a factor of 3 different from

the isothermal model. But, the pressure does not enter the leading order balance
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of the parallel electric field and inertia so the pressure law is not important. In the

magnetosphere ζe � 1 and the pressure balances the electric field in the leading order

and the inertia is not important. Any attempt to keep the inertia term in the reduced two-

fluid model in this limit is, in fact futile because the error introduced by the isothermal

electron pressure model is larger than the inertia term and gives the wrong sign. (Note

that for ζe � 1, δPe ≈ Teδne(1 + 4ζ2
e ), and the error is the same order as the inertia

term.) While the qualitative behavior of dispersive transverse Alfvén waves is recovered

by the simple isothermal electron pressure model, quantitative studies will be inaccurate

because they neglect important physical effects near the transition where ζe ∼ 1 where

electron Landau damping is important.

8. Summary and Discussion

In this paper we have formulated two nonlinear kinetic-fluid models for high β

plasmas with multiple ion species to study multiscale phenomena: one is a kinetic-

multifluid model for studying phenomena with frequency on the order of ion cyclotron

frequencies; the other is a low frequency kinetic-fluid model for studying phenomena

with frequency below the ion cyclotron frequency. These two kinetic-fluid models were

developed by taking advantage of the simplicity of the fluid models and by properly

taking into account finite ion Larmor radius (FLR) and other major particle kinetic

effects. The kinetic-multifluid model treats each particle species by fluid descriptions as

well as particle kinetic approach such as the Vlasov or gyrokinetic equation to determine

particle distribution functions from which particle pressure tensors are obtained, and

the coupling between the particle kinetic dynamics and multifluid models is through the

particle pressure tensor in the fluid momentum equations.

The low-frequency kinetic-fluid model is obtained from the kinetic-multifluid model

by further restricting the time scales to be longer than the ion cyclotron time. Instead

of the electron and multiple ion fluid equations, the one-fluid density and momentum

equations, Eqs. (22) and (23), and a newly derived low frequency Ohm’s law, Eq. (21),

are employed. The particle kinetic physics is again coupled to the one-fluid equations and

the low-frequency Ohm’s law through particle pressure tensors. The major advantage of

the low-frequency kinetic-fluid model is that important kinetic effects can be accurately

described with a minimum of modification to the one-fluid equations. We note that

important particle kinetic effects such as finite Larmor radii; resonant wave-particle

interaction; and trapped particle dynamics are properly retained. These kinetic effects

are essential when describing multiscale coupling processes for long time scale global

phenomena.

From the low frequency kinetic-fluid model we have derived the eigenmode equations

for low frequency (ω < ωci) waves and instabilities in high β plasmas such as dispersive
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transverse Alfvén waves (kinetic and inertial Alfvén waves) and ballooning-mirror

instabilities. The eigenmode equations take into account the magnetosphere-ionosphere

coupling. For β < 1 plasmas effects due to ion Larmor radii, electron Landau damping

and electron inertia on parallel electric field are properly retained in the dispersion

relation of dispersive transverse Alfvén waves. Note that the ion Larmor radius effects

on the KAW are not properly included in the popularly employed reduced two-fluid

equations without the proper gyroviscosity contribution. In the presence of background

gradients, finite ion Larmor radius effects couple global MHD disturbances with kinetic

Alfvén waves which can strongly interact with ions because the perpendicular wavelength

is on the order of ion gyroradii.

It is also helpful to point out the differences between the kinetic-fluid model and

the previously developed kinetic-MHD model [Cheng, 1991]. The previously developed

kinetic-MHD model is based on the assumptions that the energetic particle density is

much smaller than the core plasma density and the core plasma kinetic effects are not

important. Thus, in the kinetic-MHD model the core plasma dynamics is assumed

to satisfy the ideal MHD model, Eqs. (1) - (4), and the energetic particle kinetic

effects couple with core plasma fluid dynamics via energetic particle pressure in the

one-fluid momentum equation. The energetic particle pressure is obtained from the

particle distribution functions which are governed by particle kinetic equations. The

assumptions of the kinetic-MHD model will break down if the energetic particle density

is comparable to the core plasma density or the kinetic effects associated with the core

plasma component are significant. The weakness of the kinetic-MHD model is now

mitigated in the kinetic-fluid model by introducing a new generalized Ohm’s law (valid

for multi-ion species plasmas) and by determining particle pressure tensors from kinetic

particle distribution functions for all particle species.

It is also useful to discuss the major advantages of the kinetic-fluid model over the

conventional one-fluid model [e.g., Krall and Trivelpiece, 1986; Ma and Bhattacharjee,

1996; Winglee and Menietti, 1998]. In the one-fluid model the plasma pressure is assumed

to be isotropic and obey the adiabatic pressure law and the electron pressure is usually

assumed to be a fixed fraction of the total plasma pressure to avoid following electron

dynamics. Moreover, the Ohm’s law employed in the one-fluid model is valid only for

single ion species plasmas [Krall and Trivelpiece, 1986]. The ion finite Larmor radius

effects are partially included via the Ohm’s law and other particle kinetic effects are

absent. Thus, advantages of the kinetic-fluid model over the conventional one-fluid model

include: (1) kinetic effects for low frequency phenomena are fully retained via particle

pressure tensors for all particle species; (2) only one-fluid equations are needed even for

multi-ion species; (3) it allows the flexibility of treating different particle species with

different kinetic descriptions or even with fluid descriptions to compute particle pressure

tensors.
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Finally, the kinetic-fluid model presented in the paper represents a major advance in

laying the theoretical foundation for studying long time behavior of multiscale phenomena

in high β plasmas. Besides the study of wave propagation and stability analysis in realistic

plasma geometries the natural next step is to develop global simulation codes based on the

kinetic-fluid model. It is clear that when coupling kinetic models to one-fluid equations

one must perform additional simulation of kinetic equations such as gyrokinetic equation

or Vlasov equation to obtain pressure tensors. However, one major feature of the kinetic-

fluid model is that most higher frequency phenomena (ion cyclotron waves or higher

frequency waves) have been eliminated analytically. This feature will allow numerical

simulation kinetic-fluid phenomena with large time steps, but with the constraint that the

particle orbit under the influence of low frequency electromagnetic perturbations must be

accurately computed. The kinetic-fluid simulation will certainly be computationally more

expensive because of the additional computational effort that results from the difference in

following particle dynamics and in solving the fluid pressure and heat flux equations in the

one-fluid simulations. However, such an effort to retain essential particle kinetic effects

for low frequency phenomena is a small computational price to paid. It is worthwhile to

point out that a working simulation code based on the previously developed kinetic-MHD

model [Cheng, 1991] has been developed for studying energetic particle kinetic effects on

MHD phenomena in tokamaks [Park et al., 1992], which clearly supports the feasibility

of simulation based on the kinetic-fluid model. Such kinetic-fluid simulation studies will

greatly enhance our understanding of important nonlinear physics of plasma heating and

transport, which in turn determines the long time dynamics and structure of plasma and

magnetic field profiles.
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