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Solar Storms - Flares and Coronal Mass Ejections

Apr 17 2002 23:59:32

Are flares and CMEs related by a common physical mechanism?




CME Motion and Flare X-Ray Emission
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CMEs Are Accelerated During Flare Rise Phase
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Nov. 24, 2000
X1.8 flare event:

1) CME acceleration
occurs in low corona

2) CME acceleration
peaks during flare rise
phase

3) HXR emission occurs
at peak CME
acceleration
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Physics Issues

e |s there a common physical mechanism
underlying CME motion and flare
emissions? =» magnetic reconnection

* \What is the cause-effect relationship
between magnetic reconnection and

CME acceleration?

e Can electrons be accelerated by
reconnection electric field to hard X-ray

emitting energy of > 10 keV?



Magnetic Reconnection Model
of CMEs and Flares

CME. Flux rope
X-ray ejecta, )
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LDE (long duration event) Flare
(Yokoh SXT, ~ 1 keV, Tsuneta et al. 1992)

21-FEB-1992 Flare SXT Image Filter : Al.1
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T.~10"K, n, ~ 10" cm™



TRACE and Yohkoh SXT Images
(1998 Nov. 22 flare by H. Warren)
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Outer loops have higher temperature



Soft X-ray Source

Yohkoh X-ray Ima#a of a Solar Flare, Combined Image in Soft X-rays (left) and

Soft X-rays with Hard X-ray Contours (right). Jan 13, 1992,

=>» Looptop HXR source suggests acceleration site is above SXR loop.




MHD Simulation of Arcade Field Reconnection

e Magnetic reconnection in thin current sheet
IS responsible for formation of flux rope
and 1ts upward acceleration.

e Reconnection rate depends on nonuniform
anomalous resistivity (assumed as a
function of current density) and overlying
field.

« Simulation results provide understanding
of correlation between observed flux rope
acceleration and enhanced reconnection
rate during flare rise phase.



Magnetic Reconnection in Arcade Field

B=& xV(x,y,t)+B, (x, y,t)é,

Z

 Increase of
magnetic shear In

arcade field (e.q., by
shearing of field line
footpoints near neutral line

or flux emergence)
causes current sheet
formation.

e Magnetic
reconnection creates
flux rope and causes
Its acceleration.



Magnetic Field, Footpoint Motion, and
Anomalous Nonuniform Resistivity

1 (a) By (y=0) and ¥ (y=0) S Nonuniform
Anomalous
o - Resistivity:
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Anomalous Resistivity

7 =770(JZJ_JC)“ for J, > J,
=0 for J, < J,
T]O: 10_6— 10_5
a=0-2
J.=15

=» Reconnection rate and CME acceleration
depends on resistivity model.



Reconnection and Flux Ropes

‘t."tu= 1128002

t‘tu=‘| 1760.14

- Continuing increase of
shear near neutral line forms
CS, causes magnetic
reconnection and creates flux
ropes

e Reconnection rate depends
on nonuniform anomalous
resistivity model (o)

e Merging of flux ropes
further enhances
reconnection rate

 Repetitive reconnection
events -- homologous flares
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3D Field Structure

E... IS mainly along B
In current sheet.

prominence

(Shibata) *




T. Forbes




Reconnection Rate vs. Anomalous Resistivity

Third event

18

16}

o Erec )x— point

-
-

. » Gl T

el L gy

0 2000 4000 6000 8000 10000

Impulsive E,. accelerates particles along B in current sheet.



Maximum Reconnection Rate increases with
Maximum Flux Rope Acceleration

No=10", o =2, J.=1.5 (third reconnection event)

e Reconnection
ek rate and flux rope
Erec 2 acceleration
decrease by about
a factor of 10 for
i _ a=0,1
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Reconnection Rate vs. Anomalous Resistivity

x 10>

2.5

D First event
Second event
Third event

Fourth event

Mo :10_5
3, =15

1.5
max

0.5+

O 0.5 1 1.5 2

 Each event has different overlying field configuration.
» Reconnection rate and flux rope acceleration depend on
both anomalous resistivity and overlying field.



Comparison Between Observation and Model

Nov. 24, 2000 X1.8 flare event [Cheng, et al., ApJ, 2003]
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& o » Good agreement between

105 observation (blue curves) and
3000
£ 2000 model results (black curves)
§ 1000 during flux rope acceleration
" & phase.
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CMEs Are Accelerated During Flare Rise Phase
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April 21, 2002
X1.5 flare event

CME acceleration
peaks during flare
rise phase
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Comparison with Gallagher’s Observation
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« oo = 2 (third event)

*Good agreement between
observation (black curves)
and model results (red
curves) during flux rope
acceleration phase.
 Impulsive HXR emission
at peak CME acceleration
and peak reconnection E-
field.

Model Parameters

B,=250 G, n, =10°cm °°
L, =10 °km

V, =1.72 x10 “km /s

t, = 5.8 sec

Max. E _ ~ 900 V /m

rec



2000 September 12

< Coronal Mass Ejection

(from http://cdaw.gsfc.nasa.gov/)

C2: 2000/09/12 11:06  EIT: 2000/09/12 11:00

Flare emission on the sola
surface (with two separating
ribbons) rises during CME
acceleration phase
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Reconnection Rate vs. CME Acceleration

Sept. 12, 2000 I\/Ill.O flare event
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Qiu, et al., ApJ, 2004

e Peak reconnection
rate and acceleration:

E...~50V/m
a ~ 0.4 km/s?

CME heights taken from
http://cdaw.gsfc.nasa.gov/CME_ list/
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Reconnection Rate vs. CME Acceleration

Oct. 19, 2001 X1.6 flare event
100001 ' ' ' Qiu, et al., ApJ, 2004

e CME acceleration,

reconnection rate (electric
field), flare non-thermal
7 emissions are temporally
acceleration (km/s’) ¢ correlated, all reach their
1,  peak values during SXR
emission rise phase
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Magnetic Reconnection Rate in Flares

X 1.6 flare on 2001 October 19
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Acceleration o« Reconnection Rate

Event (magnitude)

2000/09/12 (M1.0)

2001/10/19 (X1.6)

Max CME acceleration (km/s?)

Duration of acceleration (min)

Mean and Max. velocity (km/s)

Max. magnetic field (Gauss)

Max. electric field (V/m)

Duration of reconnection (min)




Physics of Anomalous Resistivity

MHD simulations employ “phenomenological”
anomalous resistivity (assumed as a function of
current density).

Simulation results (for oo = 2) provide good
agreement with X-class flare observations.

It Is impractical, if not impossible, to simulate
current sheet magnetic reconnection physics in
global solar corona scale by self-consistent kinetic
models.

Can simulation results provide insights on Kinetic
physics In reconnecting current sheet?



How Are Electrons Accelerated to X-
Ray Flare Emission Enerqy?

o Particles are accelerated In current sheet by
magnetic field-aligned electric field (E)

* For E;=1000 V/m, electrons are accelerated to
1 MeV in a field-aligned distance of 1 km in 10™>s
e Particle motion In evolving current sheet and
arcade field must be considered:
- ExB drift (Vg ~ 102 - 103 km/s)
- magnetic trapping
- magnetic (gradient B and curvature) drift
- particle collisions
=» Need kinetic calculations with simulated fields!



Summary and Discussion

 MHD simulations employing model anomalous resistivity
have provided physical understanding of observed
correlation between flux rope acceleration and enhanced
reconnection rate during flare rise phase.

 To further understanding we propose to pursue the
following tasks:

1. 3D Resistive MHD Simulations with more realistic
arcade field and nonuniform anomalous resistivity In
reconnecting current sheet.

2. Test Particle Simulations of particle acceleration
during flare impulsive phase based on dynamical
electric and magnetic fields obtained from MHD
simulations = a first step toward understanding of
particle acceleration in evolving global (E,B) fields.
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