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Outstanding Issues

• How is mass, momentum and energy 
transferred from the magnetosheath to the 
magnetosphere?

• Can low frequency MHD waves contribute 
significantly to plasma transport at the 
magnetopause?
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Transport at the Magnetopause
due to Waves
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GEOTAIL Magnetopause 
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GEOTAIL Magnetopause 
Crossing

• Dawnside LLBL to   dayside 
magnetosheath

• Northward IMF for 2 hours 
prior to interval

• Dense ions in LLBL

slow flow

indistinct from sheath ions

• Counterstreaming electrons

closed field lines

• Large Compressional 
Fluctionations in Sheath

[Hasegawa et al., 2003]



Particle Distributions
• Ions

– Low energy: anisotropic
– High energy: isotropic
– No distinct populations

B
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Particle Distributions
• Ions

– Low energy: anisotropic
– High energy: isotropic
– No distinct populations

• Electrons
– Field-aligned
– Counterstreaming

B

[Hasegawa et al., 2003]
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GEOTAIL magnetic field data (and/or plasma data) were provided by S. Kokubun and T. Mukai through DARTS at the ISAS in Japan
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Summary of Observations
• Northward IMF for 2 hours
• Dayside, dawn LLBL on closed field lines

– counter-streaming electrons 
• Sheath ions in the LLBL 

– indistinguishable from magnetosphere ions
• No evidence of reconnection

– No D shaped ion distributions
– No flows

• Sheath ions heated perpendicular to B
• Electrons heated parallel to B
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Summary of Observations
• Additional Properties

– Large gradients in VA

– Compressional waves in magnetosheath (δB ∼ B0)
– Transverse waves in LLBL
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Kinetic Alfvén Waves at the 
Magnetopause

VA ~200km/s

λ ~ RE

f   ~ 30 mHz



Example of Compressional Wave Incident on 
the Magnetopause

⇐ Magnetosheath Magnetosphere ⇒Class II

Incoming Compressions

Shear KAW

δ Bk

δ B⊥



Consequences for Transport

• Prescribe a kinetic Alfvén wave solution
– wave dispersion: 

ω2 ≈ kk2 VA
2 (1 + (1 + Te / TI) k⊥2 ρI

2)
– parallel electric field (heats electrons parallel to B)
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Consequences for Transport

• Prescribe a kinetic Alfvén wave solution
– wave dispersion: 

ω2 ≈ kk2 VA
2 (1 + (1 + Te / TI) k⊥2 ρI

2)

– parallel electric field (heats electrons parallel to B)

• Follow single particle orbits in waves
• Construct Poincaré sections or delay diagrams
• Examine onset of stochastic behavior
• Examine statistics of heating and transport



Poincare Section



Wave-Particle Resonances

ω = Ω/5



Onset of Stochasticity
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Core Heating of Ion Distribution

Distribution: Kinetic Alfven Wave



Core Heating of Ion Distribution

Observed Distribution:Distribution: Kinetic Alfven Wave

[Hasegawa et al., 2003]
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Multiple Waves Lower Threshold
Single Wave Ten Waves

δB/B0=0.15δB/B0=0.1

δB/B0=0.2 δB/B0=0.25

δB/B0=0.1 δB/B0=0.25

δBB0=0.6 δB/B0=0.65



Diffusion and Heating Rate

Ωt

Ωt

x

y

W⊥

W||

dW/dt~Ti Ωi/50 
~(Ti/10)eV/s

D~5x109m2/s<X2>/ρi
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Conclusions

Transverse waves at magnetopause: 
consistent with KAW mode conversion
accelerate electrons parallel to B
heat ions perpendicular to B
can produce flattened core distributions as 
observed
Produce significant diffusion of sheath ions into 
dayside LLBL---D ≈ 5x109 m2/s





Supplemental Material:
Additional Evidence of Transport



Evidence for Wave Induced 
Transport---Flank MP Crossing

Phan et al., 1997



Flank MP Crossing
Magnetosheath Magnetosphere

VAsh↑ 10VAsph

[Phan et al., 1997; Johnson et al., 2000]
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Evidence of Wave 
Induced Transport
• Transition Parameter
• Real LLBL Profile 

Smooth and Gradual
• Smooth T⊥for ions and 

electrons indicates local 
transport

• Heating of ions ⊥ to B and 
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• Gradual transition of flow 
across B

• No Evidence of 
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Wave Spectra for Flank 
Magnetopause Crossing



Observed Distribution:
Wilber,Lin,Parks

Distribution: Kinetic Alfven Wave

Core Heating of Ion Distribution
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