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Controlled fusion with hot-ion mode in a degenerate plasma
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Abstract

In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new
regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Of
great importance in the hot-ion mode operation are the ion–electron collision rate and the fraction of energy that goes from fusion by-products
into electrons, the previous calculations of which are refined here by including the relativistic effect and partial degeneracy.
© 2006 Published by Elsevier B.V.
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1. Introduction

The fuel which can sustain thermonuclear reactions most
easily is a mixture of deuterium and tritium (D–T). The D–T
reaction, however, has serious drawbacks. First, tritium does
not exist in substantial quantities. Second, the D–T reaction
produces neutrons; neutrons activate other material and dam-
age the first wall. Therefore, it would be desirable to utilize
controlled thermonuclear reactions that produce the fewest neu-
trons or no neutrons. The most promising fuel with no neu-
tron (sometimes called advanced fuel) is proton–boron-11 [P +
B11 → 3α(2.7 MeV)] and deuterium–helium-3 [D + He3 →
p(14.7 MeV) + α(3.6 MeV)]. But all advanced fuels require a
much higher temperature than does the D–T mixture. There are
many costs to maintaining the high temperature. In particular,
the bremsstrahlung losses in this regime might be greater than
the fusion power, which makes self-burning of advanced fuels
unlikely [1].

In classical plasmas, both the fusion power and the radia-
tion losses are proportional to the square of the density. Thus,
the power balance is essentially a function only of the temper-
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ature and the ratio of the fuel concentration since the power
balance is insensitive to the density, and self-sustained aneu-
tronic fusion burning remains unlikely [2]. However, in Fermi
degenerate plasmas, the prospect of the aneutronic fuel burning
can be very different due to the reduction of electron collisions,
which both allows the ion temperature to exceed the electron
temperature and reduces the bremsstrahlung loss.

In previous work [3,4], we showed that certain properties
of degenerate plasmas such as reduced i–e collisions enable
an attractive fusion regime. We also showed that the fusion
byproducts are primarily stopped not by electrons but by ions,
even in the limit when the electron temperature goes to zero,
thus allowing a regime of operation in which ions are hotter
than electrons, the so-called “hot-ion mode” of operation. We
estimated that the density should be more than 105 g/cm3,
at which the ion temperature is more than 100 keV and the
electron temperature is 30 keV. This regime has more favor-
able energy balance than the equal temperature mode, and so
can facilitate the self-sustained burning of aneutronic fuel. This
reduction of i–e coupling also can affect the current drive effi-
ciency [5].

However, in the previous Letter [3], we did not consider the
effects of partial degeneracy and the relativistic effects on the
i–e collisions (consequently, the fraction of energy that goes
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from fusion byproducts into the electrons) and the reduction
of the bremsstrahlung. In this Letter, we show how the par-
tial degeneracy and relativistic effects affects the i–e collision
rate (consequently, the fraction of energy from fusion byprod-
uct into electrons). While the effect of partial degeneracy on
the i–e collision [6] has been worked out previously, we in-
clude brief derivation of it so that we can apply these results in
the calculation of the fraction of energy that goes from fusion
byproduct into electrons. As a consequence of these refinement
along with the reduction of the bremsstrahlung [7], we propose
that the possible self-sustained burning regime is larger than
what we have predicted previously [3]. While the crude estima-
tion is presented at the conclusion, more thorough estimation
will be given in the companion Letter [8].

This Letter is organized as follows. In Section 2, we briefly
discuss the power balance in classical plasmas and summarize
prior work on fusing advanced fuel using inertial confinement.
In Section 3, we explain essential differences between degener-
ate electron plasmas and classical plasmas. In Section 3.1, we
show how the i–e collision rate in a degenerate plasma is greatly
reduced from the classical prediction. In Section 3.2, we apply
the result by Maynard and Deutsch [6] to obtain the partial de-
generacy effects on the i–e collision rate. In Section 3.3, we
calculate how the stopping power formula changes in a rela-
tivistic plasma. In Section 3.4, we calculate, based on the re-
duced stopping power formula, the fraction of energy that goes
from the fusion byproducts to electrons or ions. In Section 4,
our conclusions are summarized, giving the rough estimate of
the expanded self-burning regime.

2. Self-burning requirement of aneutronic fuel

2.1. Self-burning requirements

Ignition requires that the fusing fuel be maintained at high
ion-temperature long enough to produce enough fusion reac-
tions [9]. However, for advanced fuel, the bremsstrahlung losses
are severe because their fusion rates are appreciable in a very
hot ion temperature. Thus, it is possible to self-burn advanced
fuel only by maintaining a hot-ion mode. For the P–B-11, ac-
cording to the recent reduced activity data [10], it seems im-
possible to sustain fusion reaction even in a hot-ion mode. In
the D–He-3 case, due to the production of neutrons from deu-
teriums, it is desirable to have small deuterium density such as
nD/nHe � 0.1. However, at this fuel concentration, there exists
no self-burning regime.

The hot ion mode is always desirable in fusion devices. For
example, in the D–T reactor, it can enhance the performance
and the confinement vastly [11]. In magnetic fusion devices,
the hot-ion mode can be obtained, in principle, by catalyzing
alpha particle power to ions using injected rf waves, i.e. alpha
channeling [12]. Note, however, that the hot-ion mode is a nec-
essary condition for advanced fuel while it is just advantageous
for in the D–T fuel.

To achieve a hot-ion mode in inertial confinement fusion
using P–B-11, there have been proposals to generate a deto-
nation wave [13–16]. Eliezer [14] showed that compressed fuel
can be burned by an expanding ion fusion-burning wave pre-
ceded by an electron-conduction heat detonation wave. A large
gap between the electron temperature Te ∼= 80 keV and the ion
temperature Ti ∼= 200 keV might then be achievable. However,
they withdrew this claim later because the activity data was re-
vised lower [15]. More recently, however, the bremsstrahlung
was predicted to be much reduced, giving brighter prospect for
P–B-11 fusion [7]. Leon et al. [17] showed that plasma de-
generacy lower the ignition temperature for D–T, and that for
P–B-11, the ignition temperature can be lower than 20 keV
when ρ = 3.3 × 107 g/cm3. They implied that the density is
too large for economical fusion reactor.

In the D–He-3 ICF, Honda [18] pointed out that, due to the
nuclear elastic scattering, there will be more energy transfer to
ions from the 14 MeV proton. While this is still smaller than
energy transfer to electrons, it nevertheless improves the fusion
reactivity. However, the electron temperature is still the same as
the ion temperature according to their scenario.

3. Degenerate plasma

In dense plasmas, the power balance becomes very differ-
ent, in ways that favor the hot-ion mode. In quantum electron
plasmas, the electron distribution satisfies Fermi–Dirac statis-
tics, since electrons obey the exclusion principle. In the Fermi
distribution, the occupation number g is defined as g(E) =
1/(exp[(E − μ)/Te] + 1), where μ is the chemical potential,
E = h̄2k2/2me is the kinetic energy of an electron, and g is
normalized as ne = ∫

2g d3k/(8π3). If the final state has the oc-
cupation number gs, a transition from the initial state to the final
state is forbidden with the probability 1 − gs. If the electron De
Broglie wave length is comparable to the inter-particle spacing,
this exclusion principle becomes important to consider. This is
usually when θ = Te/EF < 10, where EF = h̄2(3π3ne)

2/3/2me
is the Fermi energy.

An example, consider metals at ρ = 10 g/cm3, and ne ∼=
1022 cm−3 corresponding to the Fermi energy EF of a few eV.
At room temperature, we then obtain θ ∼= 0.01. Consider, as
another example, a D–T ICF target with ρ = 103 g/cm3 (EF
being a few keV) and the temperature Te ∼= 10 keV. We ob-
tain θ ∼= 2–5. As shown later, the relevant parameter regime for
aneutronic burning will be ρ ∼= 105 g/cm3, at which the Fermi
energy is a few tens of keV. For the electron temperature of a
few tens of keV, the degeneracy parameter θ is order of unity.

3.1. Reduction of ion–electron collisions in a degenerate
plasma with Te = 0

In a degenerate plasma, certain collisions are forbidden be-
cause of the exclusion principle, which reduces the total colli-
sion rate. If the velocity of an ion is slower than the electron
Fermi-velocity, then as the ion moves in the plasma, it slows
down giving its kinetic energy away to electrons. However,
because the Fermi-sea is already occupied by electrons, only
electrons on the Fermi-surface can take part in these collisions
as shown in Fig. 1. The original calculation of the collision rate
has been obtained by Fermi [19] and Lindhard [20]. Later on,
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Fig. 1. Electron velocity space. Because the Fermi-sea (inside the circle) is al-
ready occupied, only electrons on the Fermi-surface (the area filled with black)
can participate in slowing down the ion.

the electronic stopping power in an electron degenerate metal
has been intensively studied theoretically [21–29,31] and ex-
perimentally [27,32–37], in the case when the velocity of an
ion is smaller than the electron Fermi-velocity.

Lindhard derived the stopping power formula:

(1)
dK

dl
= q2

2π2

∫ [
k · v
k2v

ImD(k,k · v)

|D(k,k · v)|2
]
d3k,

where K is the energy of the ions, q is the charge of the ion,
and D is the electron dielectric function. Note that the right-
hand side is the kinetic energy loss of the ion per length. By
using the dielectric function from the quantum random phase
approximation, he obtained the stopping frequency,

(2)
dE

dt
= C(χ)

8

3π

m2Z2e4

μh̄3
E,

where μ is the ion mass, E is the ion energy, m is the elec-
tron mass, χ2 = e2/πh̄vF, vF is the Fermi velocity, and C(χ) ∼=
(1/2)[log(1 + 1/χ2) − 1/(1 + χ2)] [21]. The above formula
is valid if v � vF and rs � 1, where v is the ion velocity,
and rs = (me2/h̄)(3/4πne)

1/3 [19,20,22]. The collisions oc-
cur between the ion and the fastest electrons rather than, as
in a weakly-coupled hot plasma, between the ion and the ther-
mal electrons. The collisional cross-section decreases as 1/v4

F.
This strong dependence of the cross-section on vF just suffices
to cancel the effect of the greater electron density, the greater
energy loss per collision, and the great relative velocity of the
colliding particles. A surprising result is that the stopping fre-
quency is almost independent of the electron density. From
Eq. (2), the i–e collision frequency is given as

(3)νie = 3.47 × 1013(Z2/μ
) 1

s
,

where μ is the nucleus mass in the unit of the proton mass, and
C(χ) ∼= 2 when n ∼= 1028 (1/cm3).

3.2. Reduction of ion–electron collision: Te �= 0

The stopping power in a partially degenerate plasma has
been obtained by Maynard and Deutsch [6]. We apply their for-
mula to our regime of interest. The starting equations is Eq. (1)
Fig. 2. C(Te) in Eq. (2) for 0 < Te < 250 keV with ne = 1.3 × 1029 cm−3 (the
Fermi energy EF = 93 keV, Y-axis: χ(Te), X-axis: electron temperature Te in
keV).

with the dielectric function,

Dl(k,ω)

= 1 + 2m2ω2
pe

h̄2k2
Σn

g(En)

N

(
1

k2 + 2k · kn − 2m
h̄

(ω + iγ )

)

(4)+ 2m2ω2
pe

h̄2k2
Σn

g(En)

N

(
1

k2 + 2k · kn − 2m
h̄

(ω − iγ )

)
,

where g is the occupation number and N = Σng(En) is the
total number of electrons. We numerically integrate Eq. (1) for
the density ne = 1029 cm−3, and obtain the stopping power as
a function of the temperature in Fig. 2. As shown in the figure,
for non-zero electron temperature, the i–e collision frequency
decreases further with the electron temperature. See for details
[6,38,39].

3.3. Relativistic effect and reduction of ion–electron collision

For a plasma with the density ne ∼= 1029 cm−3, the Fermi
energy is not negligible with respect to the rest-mass energy
(500 keV), and the relativistic effect should be taken into ac-
count. While the exact dielectric function with full considera-
tion of the relativistic effect can be found in the literature [30],
a simpler approach with approximations is adopted here.

The stopping power formula for a degenerate plasma [20]
can be written as

(5)
dK

dl
= 4πZ2e4

mev2
neL,

where K is the kinetic energy of the ion, and L is

(6)L = 6

π

v
vF∫

0

udu

∞∫
0

z3 dz
fi(u, z)

(z2 + χ2fr(u, z))2 + χ4fi(u, z)2
,

where vF is the Fermi velocity, z = k/2kF, u = |ω|/kvF, χ2 =
e2/πh̄vF, and fi (fr) is related to the longitudinal dielectric
function as Dl(k,ω) = 1+(3ω2

pe/k2v2
F)(fr + ifi), where ωpe =√

4πne2/me is the plasma frequency.
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For the relativistic dielectric function, we use Lindhard’s ex-
cept that the dispersion relation between the momentum and
the energy is different from the classical one, i.e. E(k) = h̄ωk =√

m2c4 + h̄2k2c2 rather than Ek = h̄2k2/2me. Then, the dielec-
tric function is given as

Dl(k,ω)

= 1 + mω2
pe

k2
Σn

g(En)

N

1

E(k + kn) − E(kn) + h̄(ω + iγ )

(7)

+ mω2
pe

k2
Σn

g(En)

N

1

E(−k + kn) − E(kn) − h̄(ω + iγ )
.

In Eq. (6), we need to integrate fr and fi with respect to u

and z. Lindhard has shown firstly that when the velocity of the
ion is much smaller than the electron Fermi velocity, the major
contribution to L comes from the region in the integration over
the region z � 1 and u ∼= 0, and secondly that fi is proportional
to u when u � 1. Based on these observations, we can use two
approximations. First, in the denominator of Eq. (6), we ignore
fi and consider fr(u, z) only when u = 0 and z � 1. Second,
fi(z, u) in the numerator only needs to be obtained to the first
order in u as a function of z. Therefore, we only need to evaluate
fr(z,0) when ω = 0 and z � 1, and fi(z, u) to the first order
in u.

Firstly, let us evaluate fr . We can write fr from Eq. (7) as

fr = 3

2

h̄2k2
F

2me
Σn

f (En)

N

(8)

×
[

2E(kn)

E(k + kn)2 − E(kn)2
+ 2E(kn)

E(−k + kn)2 − E(kn)2

]
.

After integration of the angle between k and kn, Eq. (8) be-
comes

(9)fr = 3

2
k2
f

1

2π2ne

∫
g(kn)

E(kn)

mc2

kn

k
log

(
kn + k/2

kn − k/2

)
dkn,

where g(k) is the occupation number. Assuming k/2kn � 1, we
can expand the logarithmic terms in terms of k/2kn and sim-
plify Eq. (9) as

(10)fr
∼= 1

kF

∫
g(kn)

E(kn)

mc2
dkn.

For a plasma with zero-temperature, we obtain fr
∼= 1 since

g(kn) = 1 if kn < kF, and g(kn) = 0 if kn � kF. If we cal-
culate Eq. (10) to the first order, we obtain fr(0,0) = 1 +
(1/6)(h̄2k2

F/m2
ec

2). For a plasma with non-zero temperature,
Eq. (10) should be used with appropriate g(k).

Secondly, we consider fi in the denominator of the right-
hand side of Eq. (6). As mentioned, we only need to evaluate fi

to the first order in u. From Eq. (7), we can write fi as

fi = 3

2

h̄2k2
F

2me
Σn

f (En)

N
πδ

(
E(k + kn) − E(kn) + h̄ω

)

− 3

2

h̄2k2
F

2me
Σn

f (En)

N
πδ

(
E(−k + kn) − E(kn) − h̄ω

)
.

After integrating out the angle between k and kn, it becomes

fi(z, u)

= 3

2

k2
F

2mec2

1

2π2ne

∫
R1

[
g(kn)

kn

2k

(
E(kn) + h̄ω

)]
dkn

+ 3

2

k2
F

2mec2

1

2π2ne

∫
R2

[
g(kn)

kn

2k
(−E(kn) + h̄ω)

]
dkn,

where R1 is a set in real axis with R1 = {k > 0: (E(|k|+|kn|) >

E(kn) + h̄ω)}, and R2 = {k > 0: (E(−|k| + |kn|) > E(kn) +
h̄ω)}. Assuming h̄ω/mec

2 � 1, to the first order in u, it can be
shown that

(11)fi(k,ω) ∼= π

2
u

[
g(k)

E(k)

mec2
− h̄2

m2
ec

2

∫
g(kn)kn dkn

]
,

where the first term of the right-hand side in Eq. (11) is from∫
R1

g(kn)(kn/2k)E(kn) dkn − ∫
R2

g(kn)(kn/2k)E(kn) dkn and
the second term is from

∫
R1

g(kn)(kn/2k)h̄ω dkn + ∫
R2

g(kn) ×
(kn/2k)h̄ω dkn. For a plasma with zero-temperature, in the
limit z � 1, we obtain fi from Eq. (11) as

fi(u, z) = π

2
u

(
1 − 1

2

h̄2k2
F

m2
ec

2

)
, if z < 1,

(12)fi(u, z) = 0, if z > 1,

which is the same as the classical formula in the limit (h̄k2
F/

m2
ec

2) � 1.
We now return to the original problem of the relativistic cor-

rection to the stopping power. If the temperature is zero, from
Eqs. (6) and (12), we can conclude that the stopping power is
smaller due the relativistic effect than the classical calculation
by a factor:

(13)
Lrel

Lcla
=

[
1 −

(
1

2
− 1

12 log(χ)

)
h̄2k2

F

mec2

]
.

For a non-zero temperature, we should use Eqs. (6), (10) and
(11). An approximate correction can be made by calculating the
stopping power from classical mechanics [38], and then correct-
ing for the relativistic effect, so that

(14)
Lrel

Lcla

∼=
[

1 − h̄2

m2
ec

2g(0)

∫
g(kn)kn dkn + 1

2

log(A)

log(χ)

]
,

where

(15)A =
∫

g(kn)
E(kn)

mec2 dkn∫
g(kn) dkn

.

Eqs. (13) and (14) are the major results of this section. In
Fig. 3, R = Lrel/Lclassical is plotted as a function of the elec-
tron temperature for ne = 1029 cm−3. In short, the reduction
of the stopping power due to relativistic effects are 10–20% of
the classical result. Nagy [40] has obtained the exact stopping
power formula for zero electron temperature:
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Fig. 3. The ratio of the relativistic stopping power to the classical stop-
ping power for 0 < Te < 80 keV with ne = 1029 cm−3 (the Fermi energy
EF = 78 keV, Y-axis: R = Lrel/Lclassical, X-axis: electron temperature Te in
keV).

C(χ) = 1

2

1 + a2

a2

[
log

(
1 + π

α(1 + a2)1/2

)

(16)− π

π + α(1 + a2)1/2

]
,

where α = e2/h̄c � 1/137 and a = mc/pF. By comparing this
formula with a classical formula in Eq. (2):

(17)C(χ) = 1

2

[
log

(
1 + 1

χ2

)
− 1

1 + χ2

]
,

where χ2 = αa/π , we can also predict 10–20% of reduction in
the stopping due to the relativistic correction. Our result agrees
well with Nagy’s for zero temperature.

3.4. Fraction η of energy that goes from fusion by-products
to electrons

In this section, the fraction η of energy that goes from fu-
sion byproducts into the electrons is calculated, more exactly,
using the result in Sections 3.1 3.2 and 3.3, as a function of the
electron temperature, density and fuel concentrations.

First, note that the ion–ion collision frequency is given as

(18)νC
i,j = 1.8 × 10−7

(
μ

1/2
i

μj

)
1

E3/2
njZ

2
i Z

2
j logΛ,

where log(Λ) is the Coulomb logarithm, i, j is the ion species,
nj is the density of the target ions, Z is the charge and all the
unit in cgs and enery in ev. The Coulomb logarithm, logΛ can
be obtained from the integration of the impact parameter [41]:
logΛ = ∫ ρmax

0 dρ ρ/(ρ2
C + ρ2), where ρC = ZiZje

2/2E0 is the
distance at the closest approach, ρmax is the maximum impact
parameter, and E0 is the kinetic energy of the fusion byproduct.
In our partially degenerate relativistic plasma, the maximum
impact parameter can be estimated as the screening length Ds,
which has been calculated, through the quantum random phase
approximation [42]:

(19)a/Ds = 0.1718,
Fig. 4. The function g [Y-axis: g(ζ ), X-axis: ζ ].

Fig. 5. The fraction of energy transfer from an alpha particle (2.7 MeV)
to electrons as a function of electron temperature. The P–B-11 with density
ne = 4 × 10281/cm3, nB/nP = 0.3, and the Fermi energy EF = 43 keV,
(Y-axis: re, X-axis : the electron temperature Te in keV).

where a is the inter-particle spacing. Then, we can estimate

(20)logΛ ∼= log
[
(ne)

−1/3/0.1718ρC
]
.

For an example, an alpha particle with ε = 3.7 MeV and
ne = 3 × 1028 cm−3, we obtain log(Λ) ∼= 10.8, which is larger
than the Coulomb logarithm used in [3] by a factor 2. With the
change of the Coulomb logarithm and the reduction of the elec-
tron stopping power in mind, we now obtain η-equation:

(21)η = re(Te) =
E0∫

0

dE

E0

νie(Te)

νie(Te) + ∑
j να,j (E)

,

where E0 is the initial energy of the α particle, and νie is given
in Eq. (2). This equation can be simplified to

(22)η(Te) =
1∫

0

1/
(
1 + ζ(Te)/s

3/2)ds,

where

(23)ζ(Te) =
∑

1.8 × 10−7
njZ

2
i Z

2
j λ

ε3/2νie(Te)

(
m

1/2
i

mj

)
.

j
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Fig. 6. The fraction of energy transfer from fusion by-products (a 3.6 MeV
alpha particle and a 14.7 MeV proton) to electrons as a function of electron
temperature. The D–He-3 with density ne = 3 × 10281/cm3, nD/nhe = 0.3,
and the Fermi energy EF = 35 keV, (Y-axis: re, X-axis: the electron tempera-
ture Te in keV).

We plot g(ζ ) = η as a function of ζ in Fig. 4. For an example,
in the P–B-11 fuel with nB/nP = 0.3 and ne = 4 × 1028 cm−3,
we plot η(Te) as a function of Te in Fig. 5.

In the D–He-3, proton (E0 = 14.7 MeV) and alpha parti-
cle (E0 = 3.6 MeV) are fusion by-products. The fraction of
the energy from an alpha particle to electrons, re,α , can be ob-
tained in the same way in the case of the P–B-11. For proton,
the nuclear elastic collision (NEC) must be also taken into ac-
count. The NEC is an elastic collision between nuclei in which
nuclei only exchange their kinetic energy. Especially, the NEC
between proton and He-3 is quite large. Including the NEC, we
can express re,p as

re,p(Te)

(24)

=
E0∫

0

dE

E0

[
νie(Te)

νie(Te) + ∑
j να,j (E) + σN(E)v(E)f (E)

]
,

where E0 is the initial energy of the proton, v(E) is the proton
velocity, σN is the NEC cross-section, and f (E) is the fraction
of the proton energy per a NEC. By assuming σN(E)v(E)f (E)

as constant with respect to energy (this is a good approxi-
mation for the NEC between proton and He-3), we can use
re,p(Te) = γ (Te)g(γ (Te)ζ ), where γ (Te) = νie(Te)/(νie(Te) +
σN(E)v(E)f (E)). Then, the total fraction can be obtained as
η = (14.7re,p + 3.6re,α)(14.7 + 3.6) with re,α is the fraction of
energy from the alpha particle to electrons given in Eq. (21).
For an example, we plot η as a function of Te in Fig. 6 when
nd/nhe = 0.2 and ne = 3 × 1028 cm−3.

4. Conclusion

In degenerate plasmas, the electronic processes are much
slower than the classical prediction due to Fermi–Dirac sta-
tistics. Especially, the i–e collision and bremsstrahlung, which
are essential ingredients in the fusion power balance, are quite
different from classical plasmas. This aspect of degenerate plas-
mas enhances the prospect of controlled fusion of advanced
fuels, since the reduction of the ion–electron coupling and
the bremsstrahlung losses eventually impede energy dissipation
from hot fusing ions. In particular, the ion energy losses are no
longer proportional to the square of the density. The power bal-
ance is then quite sensitive to density, which makes the advance
fuel burning feasible.

We show here that the partial degeneracy and the relativistic
effects reduces the ion–electron collision frequency consider-
ably compared to the zero temperature result previously as-
sumed [3]. This reduction means that the fraction of energy that
goes from fusion byproducts into ions is larger than previously
obtained. We also would like to point out Eliezer’s result of the
reduction of the electron bremsstrahlung. These new aspects of
the electronic processes change the previous power balance [3]
in many aspects.

For example, as shown in Section 3, the i–e collision rate
can be several times less than the zero-temperature result in [3],
which in turns reduces by several times the fraction of energy
that goes from fusion byproduct into electrons. This in turn
means that the density requirement of the self-burning regime
can be several times less than otherwise thought. Since the
bremsstrahlung is simultaneously much reduced compared to
the classical result that was used in previous work, the electron
temperature, which balances the bremsstrahlung losses and ion
energy loss, will then be higher. The higher electron tempera-
ture without too much bremsstrahlung is further advantageous
since it reduces ion-electron collisions further due to the partial
degeneracy effects. This means that if we expect a 100% re-
duction of the i–e collision from the previous result, the density
requirement will be reduced much more than 100%. Because
these effects are coupled to each other, it is not straightforward
to calculate them. The precise calculation of the self-sustained
burning regime is treated in a companion Letter [8].

While these new effects tend to mitigate certain conditions
required for advanced fuel burning [3], the compression of the
fuel and the creation of the hot spot remain challenging [3,43].
Further improvements on these methodologies will be neces-
sary to enter the advanced burning regimes suggested here.
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